MEMS传感器项目规划设计方案 (1)

MEMS传感器项目规划设计方案 (1)
MEMS传感器项目规划设计方案 (1)

MEMS传感器项目规划设计方案

规划设计/投资分析/产业运营

摘要说明—

纵观全球MEMS传感器市场,美、日、德一直占据着主导地位。然而近

年来,亚太地区(含日本)受到智能手机、平板电脑、可穿戴产品等市场

需求持续增长、且全球电子整机产业不断向中国转移等因素影响,增长速

度较快,2017年MEMS市场占比达到46.8%,反超美国、欧洲等区域。

该MEMS传感器项目计划总投资11442.14万元,其中:固定资产投资9291.00万元,占项目总投资的81.20%;流动资金2151.14万元,占项目

总投资的18.80%。

达产年营业收入14909.00万元,总成本费用11826.08万元,税金及

附加179.36万元,利润总额3082.92万元,利税总额3687.51万元,税后

净利润2312.19万元,达产年纳税总额1375.32万元;达产年投资利润率26.94%,投资利税率32.23%,投资回报率20.21%,全部投资回收期6.45年,提供就业职位249个。

报告内容:概论、项目建设背景、项目市场空间分析、产品规划方案、项目选址规划、工程设计说明、工艺概述、清洁生产和环境保护、项目安

全卫生、项目风险、项目节能方案分析、项目实施进度计划、项目投资方案、项目经营效益分析、项目评价等。

规划设计/投资分析/产业运营

MEMS传感器项目规划设计方案目录

第一章概论

第二章项目建设背景

第三章产品规划方案

第四章项目选址规划

第五章工程设计说明

第六章工艺概述

第七章清洁生产和环境保护

第八章项目安全卫生

第九章项目风险

第十章项目节能方案分析

第十一章项目实施进度计划

第十二章项目投资方案

第十三章项目经营效益分析

第十四章招标方案

第十五章项目评价

第一章概论

一、项目承办单位基本情况

(一)公司名称

xxx公司

(二)公司简介

公司坚持以科技创新为动力,建立了基础设施较为先进的技术中心,

建成了较为完善的科技创新体系。通过自主研发、技术合作和引进消化吸

收等多种途径,不断推动产品技术升级。公司主导产品质量和生产工艺居

国内领先水平,具有显著的竞争优势。成立以来,公司秉承“诚实、信用、谨慎、有效”的信托理念,将“诚信为本、合规经营”作为企业的核心理念,不断提升公司资产管理能力和风险控制能力。公司一直秉承“坚持原创,追求领先”的经营理念,不断创造令客户惊喜的产品和服务。

公司坚持以市场需求为导向、以科技创新为中心,在品牌建设方面不

断努力。先后获得国家级高新技术企业等资质荣。公司坚持走“专、精、特、新”的发展道路,不断推动转型升级,使产品在全球市场拥有一流的

竞争力。

公司注重建设、培养人才梯队,与众多高校建立了良好的校企合作关系,学校为企业输入满足不同岗位需求的技术人员,达到企业人才吸收、

培养和校企互惠的效果。公司筹建了实习培训基地,帮助学校优化教学科

目,并从公司内部选拔优秀员工为学生授课,让学生亲身参与实践工作。

在此过程中,公司直接从实习基地选拔优秀人才,为公司长期的业务发展

输送稳定可靠的人才队伍。公司的良好人才梯队和人才优势使得本次募投

项目具备扎实的人力资源基础。为了确保研发团队的稳定性,提升技术创

新能力,公司在研发投入、技术人员激励等方面实施了多项行之有效的措施。公司自成立以来,一直奉行“诚信创新、科学高效、持续改进、顾客

满意”的质量方针,将产品的质量控制贯穿研发、采购、生产、仓储、销售、服务等整个流程中。公司依靠先进的生产、检测设备和品质管理系统,确保了品质的稳定性,赢得了客户的肯定。公司将继续坚持以客户需求为

导向,以产品开发与服务创新为根本,以持续研发投入为保障,以规范管

理为基础,继续在细分领域内稳步发展,做大做强,不断推出符合客户需

求的产品和服务,保持企业行业领先地位和较快速发展势头。

(三)公司经济效益分析

上一年度,xxx投资公司实现营业收入10597.08万元,同比增长

23.92%(2045.40万元)。其中,主营业业务MEMS传感器生产及销售收入

为9470.27万元,占营业总收入的89.37%。

根据初步统计测算,公司实现利润总额2202.98万元,较去年同期相

比增长201.37万元,增长率10.06%;实现净利润1652.24万元,较去年同期相比增长174.76万元,增长率11.83%。

上年度主要经济指标

二、项目概况

(一)项目名称

MEMS传感器项目

(二)项目选址

xxx保税区

(三)项目用地规模

项目总用地面积32082.70平方米(折合约48.10亩)。

(四)项目用地控制指标

该工程规划建筑系数75.79%,建筑容积率1.50,建设区域绿化覆盖率6.34%,固定资产投资强度193.16万元/亩。

(五)土建工程指标

项目净用地面积32082.70平方米,建筑物基底占地面积24315.48平

方米,总建筑面积48124.05平方米,其中:规划建设主体工程30167.06

平方米,项目规划绿化面积3050.87平方米。

(六)设备选型方案

项目计划购置设备共计135台(套),设备购置费3443.34万元。

(七)节能分析

1、项目年用电量1075821.25千瓦时,折合132.22吨标准煤。

2、项目年总用水量6885.04立方米,折合0.59吨标准煤。

3、“MEMS传感器项目投资建设项目”,年用电量1075821.25千瓦时,年总用水量6885.04立方米,项目年综合总耗能量(当量值)132.81吨标

准煤/年。达产年综合节能量35.30吨标准煤/年,项目总节能率26.78%,

能源利用效果良好。

(八)环境保护

项目符合xxx保税区发展规划,符合xxx保税区产业结构调整规划和

国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明

显的影响。

(九)项目总投资及资金构成

项目预计总投资11442.14万元,其中:固定资产投资9291.00万元,

占项目总投资的81.20%;流动资金2151.14万元,占项目总投资的18.80%。

(十)资金筹措

该项目现阶段投资均由企业自筹。

(十一)项目预期经济效益规划目标

预期达产年营业收入14909.00万元,总成本费用11826.08万元,税

金及附加179.36万元,利润总额3082.92万元,利税总额3687.51万元,

税后净利润2312.19万元,达产年纳税总额1375.32万元;达产年投资利

润率26.94%,投资利税率32.23%,投资回报率20.21%,全部投资回收期

6.45年,提供就业职位249个。

(十二)进度规划

本期工程项目建设期限规划12个月。

项目建设单位要制定严密的工程施工进度计划,并以此为依据,详细

编制周、月施工作业计划,以施工任务书的形式下达给参与工程施工的施

工队伍。在技术交流谈判同时,提前进行设计工作。对于制造周期长的设备,提前设计,提前定货。融资计划应比资金投入计划超前,时间及资金

数量需有余地。

三、项目评价

1、本期工程项目符合国家产业发展政策和规划要求,符合xxx保税区

及xxx保税区MEMS传感器行业布局和结构调整政策;项目的建设对促进

xxx保税区MEMS传感器产业结构、技术结构、组织结构、产品结构的调整

优化有着积极的推动意义。

2、xxx投资公司为适应国内外市场需求,拟建“MEMS传感器项目”,

本期工程项目的建设能够有力促进xxx保税区经济发展,为社会提供就业

职位249个,达产年纳税总额1375.32万元,可以促进xxx保税区区域经

济的繁荣发展和社会稳定,为地方财政收入做出积极的贡献。

3、项目达产年投资利润率26.94%,投资利税率32.23%,全部投资回

报率20.21%,全部投资回收期6.45年,固定资产投资回收期6.45年(含

建设期),项目具有较强的盈利能力和抗风险能力。

4、近年来,国家先后出台了“非公经济36条”、“民间投资36条”、“鼓励社会投资39条”、“激发民间有效投资活力10条”、《关于深化

投融资体制改革的意见》等一系列政策措施,大力营造一视同仁的市场环境,激发民间投资活力。国家发改委会同各地方、各部门,认真贯彻落实

中央关于促进民间投资发展的决策部署,取得了明显成效。今年以来,民

间投资增速持续保持在8%以上,前7个月达到了8.8%,始终高于整体投资增速,占全部投资的比重达到62.6%。

综上所述,项目的建设和实施无论是经济效益、社会效益还是环境保护、清洁生产都是积极可行的。

四、主要经济指标

主要经济指标一览表

第二章项目建设背景

纵观全球MEMS传感器市场,美、日、德一直占据着主导地位。然

而近年来,亚太地区(含日本)受到智能手机、平板电脑、可穿戴产

品等市场需求持续增长、且全球电子整机产业不断向中国转移等因素

影响,增长速度较快,2017年MEMS市场占比达到46.8%,反超美国、

欧洲等区域。

尽管全球MEMS传感器产业向亚洲转移,但具体到国家来看,美国、日本和德国作为全球MEMS产业、技术和产品的发达国家,其行业发展

水平依旧世界领先。以美国为例,经过长期的发展,美国已发展为集官、产、学、研、金融等为一体的较为完整的MEMS产业体系。其用来

进行MEMS产品生产的晶圆尺寸目前基本与IC同步,呈现大口径化、

智能化,与人体神经元和大脑信息互通互联,与IC芯片、计算机软件、数据采集和处理技术等多位一体化发展的趋势。同时,应用领域也不

断向军事、医疗、生物、仿生学、航空航天等领域全方位快速渗透和

发展。

目前,美国主要的MEMS传感器公司有德州仪器(TI)、模拟器件(ADI)、飞思卡尔、楼氏电子(Knowles)、SiTime、惠普、IMT、

SiliconMicrostructures(SMI)、GEInfrastructureSensing等。大

部分半导体制造公司同时具有MEMS生产加工的业务。

根据ICInsights发布数据显示,2017年美国、日本和德国MEMS

传感器市场规模占比分别为23.8%、14.3%和10.5%,因此,测算可得,2017年美国、日本和德国的行业市场规模分别为32.92亿美元、19.78亿美元和14.52亿美元。

全球知名机构YoleDéveloppement每年都会发布全球MEMS公司

排名,不久前,其公布了《MEMS产业现状-2018版》,更新了2017年

排名前30位的MEMS厂商。

2017年,最令人惊喜的是博通集团的爆发性增长使它成为MEMS领

域的第一名。由于滤波器/手机数量持续增长以及前端模组价值的不断

提高,所带来的RF器件需求增长,RF厂商很可能将继续主宰2018年MEMS排行榜。

此外,大部分老牌厂商如Bosch(博世)、STMicroelectronics

(意法半导体)、TI(德州仪器)、HP(惠普)等,也取得了不错的

市场成绩,营收皆取得正增长。

从全球MEMS领先企业所属国家也可看出,美日等国家实力强劲,MEMS领先企业聚集,而中国虽然正享受产业转移带来的福利,但是行业暂处中低端,尚无MEMS技术领先的强企出现。

从1997-2017年全球MEMS传感器专利数量来看,全球MEMS传感器专利数量增长可分为三个阶段:2000年以前,专利数量增长缓慢;2000年开始,受益于消费电子,MEMS传感器迎来了飞速发展;2007-2010年,MEMS传感器进入平稳发展期;2011年以后,物联网的兴起使MEMS传感器技术迎来第三波发展浪潮。

随着MEMS传感器市场需求的不断增加,以及以中国为代表的新兴研发主体的开始加入,可以预测,MEMS传感器未来仍将保持快速发展的态势。

第三章产品规划方案

一、产品规划

项目主要产品为MEMS传感器,根据市场情况,预计年产值14909.00

万元。

通过以上分析表明,项目承办单位所生产的项目产品市场风险较低,

具有较强的市场竞争力和广阔的市场发展空间,因此,项目产品市场前景

良好,投资项目建设具有良好的经济效益和社会效益,其市场可拓展的空

间巨大,倍增效应显著,具有较强的市场竞争力和广阔的市场空间。

二、建设规模

(一)用地规模

该项目总征地面积32082.70平方米(折合约48.10亩),其中:净用

地面积32082.70平方米(红线范围折合约48.10亩)。项目规划总建筑面

积48124.05平方米,其中:规划建设主体工程30167.06平方米,计容建

筑面积48124.05平方米;预计建筑工程投资3929.30万元。

(二)设备购置

项目计划购置设备共计135台(套),设备购置费3443.34万元。

(三)产能规模

项目计划总投资11442.14万元;预计年实现营业收入14909.00万元。

第四章项目选址规划

一、项目选址原则

项目建设方案力求在满足项目产品生产工艺、消防安全、环境保护卫生等要求的前提下尽量合并建筑;充分利用自然空间,坚决贯彻执行“十分珍惜和合理利用土地”的基本国策,因地制宜合理布置。投资项目对其生产工艺流程、设施布置等都有较为严格的标准化要求,为了更好地发挥其经济效益并综合考虑环境等多方面的因素,根据项目选址的一般原则和项目建设地的实际情况,该项目选址应遵循以下基本原则的要求。

二、项目选址

该项目选址位于xxx保税区。

三、建设条件分析

近年来,项目承办单位培养了一大批精通各个工艺流程的优秀技术工人;企业的人才培养和建设始终走在当地相关行业的前列,具有显著的人才优势;项目承办单位还与多家科研院所建立了长期的紧密合作关系,并建立了向科研开发倾斜的奖励机制,每年都拿出一定数量的专项资金用于对重点产品及关键工艺开发的奖励。项目承办单位现有资产运营优良,财务管理制度健全且完善,企业的资金雄厚,凭借优异的产品质量、严谨科

学的管理和灵活通畅的销售网络,连年实现盈利,能够为项目建设提供充足的计划自筹资金。

四、用地控制指标

该项目均按照项目建设地建设用地规划许可证及建设用地规划设计要求进行设计,同时,严格按照项目建设地建设规划部门与国土资源管理部门提供的界址点坐标及用地方案图布置场区总平面图。

五、地总体要求

本期工程项目建设规划建筑系数75.79%,建筑容积率1.50,建设区域绿化覆盖率6.34%,固定资产投资强度193.16万元/亩。

土建工程投资一览表

六、节约用地措施

在项目建设过程中,项目承办单位根据项目建设地的总体规划以及项

目建设地对投资项目地块的控制性指标,本着“经济适宜、综合利用”的

原则进行科学规划、合理布局,最大限度地提高土地综合利用率。

七、总图布置方案

(一)平面布置总体设计原则

达到工艺流程(经营程序)顺畅、原材料与各种物料的输送线路最短、货物人流分道、生产调度方便的标准要求。

(二)主要工程布置设计要求

项目承办单位项目建设场区主干道宽度6.00米,次干道宽度3.00米,人行道宽度采用1.20米。道路路缘石转弯半径,一般需通行消防车的为12.00米,通行其它车辆的为9.00米、6.00米。道路均采用砼路面,道路

类型为城市型。

(三)绿化设计

投资项目绿化的重点是场区周边、办公区及主要道路两侧的空地,美

化的重点是办公区,场区周边以高大乔木为主,办公区以绿色草坪、花坛

为主,道路两侧以观赏树木、绿篱、草坪为主,适当结合花坛和垂直绿化,起到环境保护与美观的作用,创造一个“环境优美、统一协调”的建筑空间。undefined

(四)辅助工程设计

1、投资项目采用雨、污分流制排水系统,分别汇集后排入项目建设区

不同污水管网。

2、项目建设地内规划的排水方案采用分流制,并已建立完善的排水系统,完全能够保证全场生产、生活废水和雨水及时排出。

3、10KV配电室设有专用防雷柜,低压系统分级配有避雷器,弱电系统配有电涌保护器(SPD)。配电系统采用TN-C-S制,变压器中性点接地,

接地电阻R≤4.00欧姆,高压配电设备采用接地保护,低压用电设备采用

接零保护,正常情况下不带电的用电设备金属外壳、构架、穿线钢管均应

可靠接零。电源设备选用隔爆型dⅡBT4级防爆电器,照明导线穿钢管敷设,其他环境按一般建筑物设计;进入易燃易爆区域的各类电缆采用防火性能

较高的阻燃电缆;场内配电采用放射式配电方式,室外电缆直埋或电缆沟

敷设,直埋埋深1.00米,过路及穿墙以钢管保护。

4、外部运输应尽量依托社会运输力量,从而减少固定资产投资;主要

产成品、大宗原材料的运输,应避免多次倒运,从而降低运输成本且提高

运输效率。

5、数据通信:数据传输通道主要采用中国电信ADSL构建VPN虚拟专

用通信网,可同时解决场区数据、IP数据及计算机上网需求;也可采用GPRS数据传输通信,投资项目数据利用中国电信ADSL构建VPN虚拟专用通信网,上传至项目承办单位调度中心。undefined

八、选址综合评价

投资项目选址符合国家相关供地政策及规划要求,其建筑系数、建筑容积率、建设区域绿化覆盖率、办公及生活服务用地比例、投资强度等各项用地指标,均符合《工业项目建设用地控制指标(2008版)》中的相关规定要求。场址周围没有自然保护区、风景名胜区、生活饮用水水源地等环境敏感目标,无粉尘、有害气体、放射性物质和其他扩散性污染源,自然环境条件良好;拟建工程地势开阔,有利于大气污染物的扩散,区域大气环境质量良好。

基于MEMS加速度传感器的双轴倾角计及其应用

基于MEMS加速度传感器的双轴倾角计及其应用 引言 MAV由于体积和负载能力极为有限,因此,减小和减轻飞控导航系统的体积及重量,就显得尤为重要。本文基于MEMS加速度传感器,设计一种双轴倾角计,该装置精度高、重量轻,可满足MAV的姿态角测量要求,也可用于其他需要体积小、重量轻的倾角测量设备上。 MEMS加速度传感器 ADXL202 是最新的、低重力加速度双轴表面微机械加工的加速度计,以模拟量和脉宽调制数字量2种方式输出,并具有极低的功耗和噪音。表面微机械加工使加速度传感器、信号处理电路高度集成于一个硅片上。和所有加速度计一样,传感器单元是差动电容器,其输出与加速度成比例。加速度计的性能依赖于传感器的结构设计。差动电容是由悬臂梁构成,而悬臂梁是由很多相间分布的指状电容电极副构成,一副指状电容电极可简化为图1所示的结构。每个指状电极的电容正比例于固定电极和移动电极之间的重叠面积以及移动电极的位移。显然,这些都是很小的电容器,并且,为了降低噪声和提高分辨力,实际上需要尽可能大的差动电容。 悬臂梁的运动是由支撑它的多晶硅弹簧控制。这些弹簧和悬臂梁的质量遵守牛顿第二定律:质量为m 的物体,因受力F而产生加速度a,则F =m a。而弹簧的形变与所受力的大小成比例,即F = kx,所以 x = (m / k)a , 式中x为位移, m; m 为质量, kg; a为加速度, m / s2 ; k为弹簧刚度系数, N /m。 因此,仅有支撑弹簧的刚度和悬臂梁的质量2个参数是可控的。减小弹簧系数似乎是提高悬臂梁灵敏度的一种容易方法,但悬臂梁的共振频率正比例于弹簧系数,所以, 减小弹簧系数导致悬臂梁共振频率降低,而加速度计必须工作在共振频率之下。此外,增大弹簧系数使悬臂梁更坚固。所以,如果保持尽可能高的弹簧系数, 只有悬臂梁的质量参数是可变化的。通常,增大质量意味着增大传感器的面积,从而使悬臂梁增大。在ADXL202中,设计出一个新颖的悬臂梁结构。构成X轴和Y轴可变电容的指状电极沿着一个正方形四周的悬臂梁集成,从而使整个传感器的面积减小,而且,共用的大质量的悬臂梁提高了ADXL202的分辨力。位于悬臂梁四角的弹簧悬挂系统用以使X 轴和Y轴的灵敏度耦合减小到最小。 倾角测量原理 ADXL202 用于倾角测量是最典型的应用之一,它以重力作为输入矢量来决定物体在空间的方向。当重力与其敏感轴垂直时,它对倾斜最敏感,在该方位上其对倾角的灵敏度最高。当敏感轴与重力平行时,每倾斜1 °所引起输出加速度的变化被忽略。当加速度计敏感轴与重力垂直时,每倾斜1 °所引起输出加速度的变化约为17. 5mgn ,但在45°时,每倾斜1 °所引起输出加速度的变化仅为12. 5mgn ,而且,分辨力降低。表1为X, Y轴在铅垂面内倾斜±90 °时,X, Y 轴的输出。 当该加速度计的X, Y轴都与重力方向垂直时,可作为具有滚转角和俯仰角的双轴倾角传感器。一旦加速度计的输出信号被转化为一个加速度, 该加速度将位于- 1 gn 和+ 1 gn 之间。则倾斜角以度表示可按下式计算 θ= arcsin (AX / gn ) γ= arcsin (AY / gn ),

MEMS压力传感器

MEMS压力传感器 姓名:唐军杰 学号:09511027 班级: _09511__

目录 引言 (1) 一、压力传感器的发展历程 (2) 二、MEMS微压力传感器原理 (3) 1.硅压阻式压力传感器 (3) 2.硅电容式压力传感器 (4) 三、MEMS微压力传感器的种类与应用范围 (5) 四、MEMS微压力传感器的发展前景 (7) 参考文献 (8)

内容提要 在整个传感器家族中,压力传感器是应用最广泛的产品之一, 每年世界性的压力传感器的专利就有上百项。微压力传感器作为微 型传感器中的一种,在近几年得到了快速广泛的应用。本文详细介 绍了MEMS压力传感器的原理与应用。 [关键词]:MEMS压力传感器微型传感器微电子机械系统 引言 MEMS(Micro Electromechanical System,即微电子机械系统) 是指集微型传感器、执行器以及信号处理和控制电路、接口电路、 通信和电源于一体的微型机电系统。它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器在航空、航天、汽车、生物医学、环境 监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的 应用前景。 MEMS微压力传感器可以用类似集成电路的设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过 程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使 压力控制变得简单、易用和智能化。传统的机械量压力传感器是基 于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此 它不可能如MEMS微压力传感器那样,像集成电路那么微小,而且 成本也远远高于MEMS微压力传感器。相对于传统的机械量传感器,MEMS微压力传感器的尺寸更小,最大的不超过一个厘米,相对于 传统“机械”制造技术,其性价比大幅度提高。

MEMS传感器现状及应用_王淑华

MEMS传感器现状及应用 王淑华 (中国电子科技集团公司第十三研究所,石家庄 050051) 摘要:M EM S传感器种类繁多,发展迅猛,应用广泛。首先,简单介绍了M EMS传感器的分类和典型应用。其次,对M EMS压力传感器、加速度计和陀螺仪三种最典型的M EM S传感器进行了详细阐述,包括类别、技术现状和性能指标、最新研究进展、产品,及应用情况。介绍MEM S压力传感器时,给出了国内外采用新型材料制作用于极端环境下压力传感器的研究情况。最后,从新材料、加工和组装技术方面对MEM S传感器的发展趋势进行了展望。 关键词:微电子机械系统(M EMS);传感器;加速度计;陀螺仪;压力传感器 中图分类号:TH703 文献标识码:A 文章编号:1671-4776(2011)08-0516-07 Current Status and Applications of MEMS Sensors Wang Shuhua (The13th Research I nstitute,CET C,S hi jiazhuang050051,China) A bstract:MEMS senso rs feature g reat varieties,rapid development and w ide applications.Firstly, the catego ries and ty pical applicatio ns of M EMS senso rs are introduced briefly.Then three typi-cal M EMS sensors,i.e.the pressure sensor,acceleromete r and gy ro sco pe are illustrated in de-tail,including the subdivision,current technical capability and perfo rmance index,latest research pro gress,products and their applications.Besides that,the research status of the M EM S pres-sure senso r using new m aterials for the extreme enviro nment at ho me and abro ad is presented. Finally,developm ent trends of M EMS sensors are predicted in te rm s o f new materials,pro ces-sing and assembling technolog y. Key words:microelectromechanical sy stem(M EMS);sensor;accelerome ter;gy roscope;pres-sure senso r D OI:10.3969/j.issn.1671-4776.2011.08.008 EEACC:2575 0 引 言 MEM S传感器是采用微机械加工技术制造的新型传感器,是M EMS器件的一个重要分支。1962年,第一个硅微型压力传感器的问世开创了MEM S技术的先河,M EMS技术的进步和发展促进了传感器性能的提升。作为M EMS最重要的组成部分,M EMS传感器发展最快,一直受到各发达国家的广泛重视。美、日、英、俄等世界大国将M EMS传感器技术作为战略性的研究领域之一,纷纷制定发展计划并投入巨资进行专项研究。 随着微电子技术、集成电路技术和加工工艺的发展,MEM S传感器凭借体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成以及耐恶劣工 收稿日期:2011-04-06 E-mail:1117sh uhua@https://www.360docs.net/doc/5615137832.html,

MEMS压力传感器及其应用_颜重光_图文.

MEMS(微机电系统是指集微型 传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。 M E M S 压力传感器可以用类似集成电路(IC设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。传统的机械量压力传感器是基于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此它不可能如MEMS压力传感器那样 做得像IC那么微小,成本也远远高于MEMS压力传感器。相对于传统的机械量传感器,MEMS压力传感器的尺寸更小,最大的不超过1cm,使性价比相对于传统“机械”制造技术大幅度提高。 MEMS压力传感器原理 目前的MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者都是在硅片上生成的微机电传感器。 硅压阻式压力传感器是采用高精密 半导体电阻应变片组 成惠斯顿电桥作为力电变换测量电路的,具有较高的测量精度、较低的功耗,极低的成本。惠斯顿电桥的压阻式传感器,如无压力变化,其输出为零,几乎不耗电。其电原理如图1所示。硅压阻式压力传感器其应变片电桥的光刻版本如图2。 M E M S 硅压阻式压力传感器采用周边固定的圆形的应力杯硅薄膜内壁,采用M E M S 技术直接将四个高精密半导体应变片刻制在其表面应力 最大处,组成惠斯顿测量电桥,作为力电变换测量电路,将压力这个物理量直接变换成电量,其测量精度能达0.01%~0.03%FS。硅压阻式压力传感器结构如图3

所示,上下二层是玻璃体,中间是硅片,硅片中部做成一应力杯,其应力硅薄膜上部有一真空腔,使之成为一个典型的绝压压力传感器。应力硅薄膜与真空腔接触这一面经光刻生成如图2的电阻应变片电 MEMS压力传感器及其应用 MEMS Pressure Sensor Principle and Application 颜重光华润矽威科技(上海有限公司(上海201103 本文于2009年3月22日收到。颜重光:高工,上海市传感技术学会理事,从事IC应用方案的设计策划和客户应用技术支持。 摘要:简述M E M S 压力传感器的结构与工作原理,并探讨了其应用、压力传感器Die的设计及生产成本分析,覆盖了从系统应用到销售链。 关键词:M E M S 压力传感器;惠斯顿电桥;硅薄膜应力杯;硅压阻式压力传感器;硅电容式压力传感器 D O I : 10. 3969/j. i s s n. 1005-5517.2009.06.015 图1 惠斯顿电桥电原理 图2 应变片电桥的光刻版本 图3 硅压阻式压力传感器结构 图4 硅压阻式压力传感器实物责任编辑:王莹 技术长廊|智能传感器 58 https://www.360docs.net/doc/5615137832.html,

MEMS传感器现状及应用

毕业设计指导

山西大学本科论文MEMS传感器现状及应用 MEMS传感器现状及应用 摘要: MEMS传感器种类繁多,发展迅猛,应用广泛。首先,简单介绍了MEMS传感器的分类和典型应用。其次,对MEMS压力传感器、加速度计和陀螺仪三种最典型的MEMS传感器进行了详细阐述,包括类别、技术现状和性能指标、最新研究进展、产品,及应用情况。介绍MEMS压力传感器时,给出了国内外采用新型材料制作用于极端环境下压力传感器的研究情况。最后,从新材料、加工和组装技术方面对MEMS传感器的发展趋势进行了展望。 关键词: 微电子机械系统(MEMS);传感器;加速度计;陀螺仪;压力传感器 Current Status and Applications of MEMS Sensors Abstract: MEMS sensors feature great varieties, rapid development and wide applications. Firstly,the categories and typical applications of MEMS sensors are introduced briefly. Then three typi-cal MEMS sensors, i. e. the pressure sensor, accelerometer and gyroscope are illustrated in de-tail,including the subdivision, current technical capability and performance index, latest researchprogress, products and their applications. Besides that, the research status of the MEMS pres-sure sensor using new materials for the extreme environment at home and abroad is presented.Finally, development trends of MEMS sensors are predicted in terms of new materials, proces-sing and assembling technology. Key words: microelectromechanical system(MEMS); sensor; accelerometer; gyroscope; pres-sure sensor

MEMS压力传感器及其应用

MEMS压力传感器及其应用 MEMS压力传感器可以用类似集成电路(IC)设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。传统的机械量压力传感器是基于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此它不可能如MEMS压力传感器那样做得像IC那么微小,成本也远远高于MEMS压力传感器。相对于传统的机械量传感器,MEMS压力传感器的尺寸更小,最大的不超过1cm,使性价比相对于传统“机械”制造技术大幅度提高。 一、压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段: (1)发明阶段(1945 - 1960 年):这个阶段主要是以1947 年双极性晶体管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯(C.S. Smith)与1945 发现了硅与锗的压阻效应,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为电信号进行测量。此阶段最小尺寸大约为1cm。 (2)技术发展阶段(1960 - 1970 年):随着硅扩散技术的发展,技术人员在硅的(001)或(110)晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。 (3)商业化集成加工阶段(1970 - 1980 年):在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,

MEMS技术的最新发展和MEMS传感器

作业2:叙述MEMS技术的最新发展并介绍几种MEMS传感器 MEMS(Micro-Electro-Mechanical Systems)是微机电系统的缩写。MEMS是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,MEMS就是在一个硅基板上集成了机械和电子元器件的微小机构。在代工厂中,通过对电子部分使用半导体工艺和对机械部分使用微机械工艺将其或者直接蚀刻到一片晶圆中,或者增加新的结构层来制作MEMS产品。作为纳米科技的一个分支,MEMS被称为电子产品设计中的“明星”。目前MEMS加工技术又被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。 MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。 MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。MEMS技术正发展成为一个巨大的产业,就象近20年来微电子产业和计算机产业给人类带来的巨大变化一样,MEMS也正在孕育一场深刻的技术变革并对人类社会产生新一轮的影响。目前MEMS市场的主导产品为压力传感器、加速度计、微陀螺仪、墨水喷咀和硬盘驱动头等。大多数工业观察家预测,未来5年MEMS器件的销售额将呈迅速增长之势,年平均增加率约为18%,因此对对机械电子工程、精密机械及仪器、半导体物理等学科的发展提供了极好的机遇和严峻的挑战。 MEMS第一轮商业化浪潮始于20世纪70年代末80年代初,当时用大型蚀刻硅片结构和背蚀刻膜片制作压力传感器。由于薄硅片振动膜在压力下变形,会影响其表面的压敏电阻走线,这种变化可以把压力转换成电信号。后来的电路则包括电容感应移动质量加速计,用于触发汽车安全气囊和定位陀螺仪。 第二轮商业化出现于20世纪90年代,主要围绕着PC和信息技术的兴起。TI公司根据静电驱动斜微镜阵列推出了投影仪,而热式喷墨打印头现在仍然大行其道。 第三轮商业化可以说出现于世纪之交,微光学器件通过全光开关及相关器件而成为光纤通讯的补充。尽管该市场现在萧条,但微光学器件从长期看来将是MEMS一个增长强劲的领域。 目前MEMS产业呈现的新趋势是产品应用的扩展,其开始向工业、医疗、测试仪器等新领域扩张。推动第四轮商业化的其它应用包括一些面向射频无源元件、在硅片上制作的音频、生物和神经元探针,以及所谓的'片上实验室'生化药品开发系统和微型药品输送系统的静态和移动器件。 MEMS传感器已经存在几十年了,并成功的渗透到一些大规模应用的市场,如医疗压力传感器和安全汽囊加速度计等。尽管取得了这些成功,但MEMS传感器很大程度上还是局限于这些零散的应用。受到汽车电子和消费类电子市场的驱动,这种状况在下一个十年中有望得到改变。 MEMS传感器正在当今的两大热门产品中起到不可或缺的作用。使用测量物理运动从而提供运动感知能力的MEMS加速度计,任天堂公司的Wii无线游戏机允许使用者通过运动和点击互相沟通和在屏幕上处理一些需求,其原理是将运动(例如挥舞胳膊模仿网球球拍的运动)转化为屏幕上的游戏行为。在2006年5

MEMS传感器在汽车安全系统中的应用

为了监测车辆翻滚的这种状态,把陀螺仪输出的传感器信号与低g值加速度传感器的输出信号结合起来是至关重要的。通过处理两个传感器给出的信号,系统的算法确定车的Z轴以及垂直线之间的夹角,以及每一时刻车辆的角速度ωx。因此,车辆翻滚感测算法及时确定准确的时间点和位置,从而爆开特定的气囊或主动收紧绑在乘员身上的安全带,起到保护作用。 此外,电子稳定程序系统也是MEMS传感器的一个重要应用领域,它能够在所有的驾驶情况下提高车辆的行驶稳定性。通过传感器测量车辆的偏航率,并把它与其它参数类似转向角和速度一一进行比较,可以检测过度转向或转向不够这样的行驶状况。如果行驶过程中需要ESP发挥作用,那么,该系统会自动地分别制动车轮。因此,传感器提供的信号是ESP算法执行的根本基础,是提高行车稳定性的关键。 MEMS偏航传感器一般由容性硅振荡器构成,其周围是若干悬浮的网状材料。当受到垂直于振动轴的外部旋转运动的作用时,作用力使振动面出现偏离,从而导致电容的变化让驾驶员做出准确的操作。 目前,汽车安全系统应用中的偏航传感器的发展趋势是具有高偏移量稳定性、振动鲁棒性以及全数字信号处理功能。这使之比模拟传感器更为耐用。永久性的主动内部故障检测功能,使故障识别以及主动自测功能成为可能,因此,有助于增强可靠性。此外,根据整车系统设计的需要,传感器串由于采用了灵活的结构,能够在不同的车辆方向上监测偏航率以及加速度,因此,适合于高度动态以及高度精密的系统,如电子稳定程序、翻滚减轻系统以及电子主动操纵系统等等。偏航传感器与加速度传感器的结合构成一体化的传感器平台也是汽车传感器一大发展趋势。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/5615137832.html,/

剖析MEMS传感器的三大应用领域

剖析MEMS传感器的三大应用领域 来源:互联网 [导读] MEMS传感器是采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。 关键词:可穿戴设备MEMS汽车电子 随着可穿戴智能设备的发展,特别是医疗可穿戴智能设备,主要依靠MEMS传感器,从而检测到穿戴者的身体各项信息。那么什么是MEMS传感器呢? MEMS即微机电系统(Microelectro Mechanical Systems),是MEMS传感器在微电子技术基础上发展起来的多学科交叉的前沿研究领域。经过四十多年的发展,已成为世界瞩目的重大科技领域之一。它涉及电子、机械、材料、物理学、化学、生物学、医学等多种学科与技术,具有广阔的应用前景。 截止到2010年,全世界有大约600余家单位从事MEMS的研制和生产工作,已研制出包括微型压力传感器、加速度传感器、微喷墨打印头、数字微镜显示器在内的几百种产品,其中MEMS传感器占相当大的比例。 MEMS传感器是采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。 它的主要应用有一下三个方面: 1.应用于医疗 MEMS传感器应用于无创胎心检测,检测胎儿心率是一项技术性很强的工作,由于胎儿心率很快,在每分钟l20~160次之间,用传统的听诊器甚至只有放大作用的超声多普勒仪,用人工计数很难测量准确。而具有数字显示功能的超声多普勒胎心监护仪,价格昂贵,仅为少数大医院使用,在中、小型医院及广大的农村地区无法普及。此外,超声振动波作用于胎儿,会对胎儿产生很大的不利作用尽管检测剂量很低,也属于有损探测范畴,不适于经常性、重复性的检查及家庭使用。 基于VTI公司的MEMS加速度传感器,提出一种无创胎心检测方法,研制出一种简单易学、直观准确的介于胎心听诊器和多普勒胎儿监护仪之间的临床诊断和孕妇自检的医疗辅助仪器。 通过加速度传感器将胎儿心率转换成模拟电压信号,经前置放大用的仪器放大器实现差值放大。然后进行滤波等一系列中间信号处理,用A/D转换器将模拟电压信号转换成数字信号。通过光隔离器件输入到单片机进行分析处理,最后输出处理结果。

MEMS传感器的发展说课讲解

MEM传感器的现状及应用0引言 MEMS (微电子机械系统)传感器是利用集成电路技术工艺和微机械加工方法将基于各种物理效应的机电敏感元器件和处理电路集成在一个芯片上的传感器。20世纪60年代霍尼韦尔研究中心和贝尔实验室研制出首个硅隔膜压力传感器和应变计开创了MEMS技术的先河。此后,MEMS技术的快速发展使得MEMS 传感器受到各发达国家的广泛关注,与此同时,美国、俄国、日本等世界大国将MEMS传感器技术作为战略性的研究领域之一,纷纷制定相关的计划并投入巨资进行专项研究。 MEMS传感器具有体积小、质量轻、功耗低、灵敏度咼、可靠性咼、易于集成以及耐恶劣工作环境等优势,从而促进了传感器向微型化、智能化、多功能化和网络化的方向发展。步入21世纪以后,MEMS传感器正逐步占据传感器市场,并逐步取代传统机械传感器的主导地位,在消费电子产品、汽车工业、航空航天、机械、化工及医药等各领域备受青睐。 1 MEMS专感器的分类及原理 MEMS传感器种类繁多,按照测量性质可以分为物理MEMS传感器、化学MEMS传感器、生物MEMS传感器。按照被测的量又可分为加速度、角速度、压力、位移、流量、电量、磁场、红外、温度、气体成分、湿度、pH值、离子浓度、生物浓度及触觉等类型的传感器。目前,MEMS压力传感器、MEMS加 速度计、MEMS陀螺仪等已在太空卫星、运载火箭,航空航天设备、飞机、各种车辆、生物医学及消费电子产品等领域中得到了广泛的应用。 MEMS传感器主要由微型机光电敏感器和微型信号处理器组成。前者功能与传统传感器相同,主要区别在于用MEMS工艺实现传统传感器的机光电元器

件的同时对敏感元件输出的数据进行各种处理,以补偿和校正敏感元件特性不理想和影响量引入的失真,进而恢复真实的被测量。 待测量 / : 基片/ :——------- -------------- 图1.1 MEMS传感器原理图 MEMS传感器主要用于控制系统。利用MEMS技术工艺将MEMS传感器、MEMS执行器和MEMS控制处理器都集中在一个芯片上,则所构成的系统称为MEMS芯片控制系统。微控制处理器的主要功能包括A/D和D/A转换,数据处理和执行控制算法;微执行器将电信号转换成非电量,使被控对象产生平动、转动、 声、光、热等动作。 2 MEMS专感器的典型应用 2.1 MEMS压力传感器 MEMS压力传感器一般采用压阻力敏原理,即被测压力作用于敏感元件引起电阻变化,利用恒流源或惠斯顿电桥将电阻变化转化成电压,是目前应用最为 广泛的传感器之一,其性能由测量范围、测量精度、非线性和工作温度决定。这种传感器以单晶硅作材料,并采用MEMS技术在材料中间制成力敏膜片,然后在膜片上扩散杂质形成四只应变电阻,再以惠斯顿电桥的方式将应变电阻连接成电路,来获得高灵敏度。从信号检测方式来划分,MEMS压力传感器可分为压 阻式、电容式和谐振式等; 2.1.1 MEMS压力传感器在汽车上的应用 MEMS传感器是在汽车上应用最多的微机电传感器。汽车上MEMS压力传感器可用于测量气囊贮气压力、燃油压力、发动机机油压力、进气管道压力、空气过

MEMS传感器及其应用

MEMS传感器及其应用 科目:先进制造技术教师:周忆(教授)姓名:张雷学号: 专业:机械设计及理论类别:学术 上课时间:2011年11月至2011 年1月 考生成绩: 阅卷评语: 阅卷教师(签名)

MEMS传感器及其应用 张雷 (机械传动实验室) 摘要:和传统的传感器相比,微型传感器具有许多新特性,它们能够弥补传统传感器的不足,具有广泛的应用前景,越来越受到重视。文中简单介绍了一些微型传感器件的结构和原理及其应用情况。 关键词: MEM压力传感器;MEM加速度传感器;应用

1 引言 微机电系统(Microelectro Mechanical Systems,MEMS)是在微电子技术基础上发展起来的多学科交叉的前沿研究领域。经过几十年的发展,已成为世界瞩目的重大科技领域之一。它涉及电子、机械、材料、物理学、化学、生物学、医学等多种学科与技术,具有广阔的应用前景。目前,全世界有大约600余家单位从事MEMS的研制和生产工作,已研制出包括微型压力传感器、加速度传感器、微喷墨打印头、数字微镜显示器在内的几百种产品,其中微传感器占相当大的比例。微传感器是采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。本文概述国内外目前已实现的微机械传感器特别是微机械谐振式传感器的类型、工作原理、性能和发展方向。 2 MEMS传感器的特点及分类 2.1MEMS传感器特点 MEMS传感器是利用集成电路技术工艺和微机械加工方法将基于各种物理效应的 机电敏感元器件和处理电路集成在一个芯片上的传感器。MEMS是微电子机械系统的缩写,一般简称微机电。如图1所示,主要由微型机光电敏感器和微型信号处理器组成。前者功能与传统传感器相同,区别是用MEMS工艺实现传统传感器的机光电元器件。后者功能是对敏感元件输出的数据进行各种处理,以补偿和校正敏感元件特性不理想和影量引入的失真,进而恢复真实的被测量。 图1 MEMS传感器原理图

相关文档
最新文档