掉话率公式

掉话率公式
掉话率公式

集团考核掉话率公式:

考核掉话率=D248/D125*100

D248(忙时话音信道掉话总次数)= TFNDROP+THNDROP

D125(忙时系统应答总次数)= NANSW of (ORGOEX + INT + SOTTE + SOTOEX + IEXTE + TRA) – NNBRHBAISDHTOT of (all neighbour MSCs)

五种计算公式

人力资源管理师三级(三版)计算题汇总 历年考点:定员,劳动成本,人工成本核算,招聘与配置,新知识:劳动定额的计算 一、劳动定额完成程度指标的计算方法 1.按产量定额计算产量定额完成程度指标=(单位时间内实际完成的合格产品产量/产量定额)×100% 2.按工时定额计算工时定额完成程度指标=(单位产品的工时定额/单位产品的 【能力要求】: 一、核定用人数量的基本方法(原) (一)按劳动效率定员根据生产任务和工人的劳动效率,以及出勤率来计算。 实际上是根据工作量和劳动定额来计算。适用于:有劳动定额的人员,特别是以手工操作为主的工种。公式中:工人劳动效率=劳动定额×定额完成率。劳动定额可以分为工时定额和产量定额两种基本形式,两者转化关系为: 所以无论采用产量定额还是工时定额,两者计算的结果都是相同的。一般来说,某工种生产产品的品种单一,变化较小而产量较大时,宜采用产量定额来计算。可采用下面的公式: 如果把废品率考虑进来,则计算公式为: 二、劳动定员 【计算题】: 某企业主要生产 A、B、C 三种产品,三种产品的单位产品工时定额和 2011年的订单如表所示。预计该企业在 2011 年的定额完成率为 110%,废品率为 2.5%,员工出勤率为95%。 请计算该企业 2011 年生产人员的定员人数 【解答】: A 产品生产任务总量=150×100=15000(工时) B 产品生产任务总量=200×200=40000(工时) C 产品生产任务总量=350×300=105000(工时) D 产品生产任务总量=400×400=160000(工时) 总生产任务量=15000+40000+105000+160000=320000(工时) 2011 年员工年度工日数=365-11-104=250(天/人年) 【解答】:

数字信号处理常用公式(不惧怕繁琐的推导)

数学信号处理基本公式 1、傅里叶变换定义 连续正变换:X j ω = x t e ?j ωt dt ∞ ?∞ 连续反变换:x t =1 2π X j ω e j ωt d ω∞ ?∞ 离散正变换:21 ()(),0,1,,1N j nk N N N n X k x n W W e k N π--== ==-∑ 离散反变换:210 1()(),0,1,,1N j nk N N N n x n X k W W e n N N π---====-∑ 2、傅里叶变换性质 线性:[] )]([)]([))()((t g F t f F t g t f F βαβα+=+ 位移:)]([)]([0 0t f F e t t f F t j ω-=-; )]([)]([1010ωωωωF F e F F t j --=-. 尺度:设)]([)(t f f F =ω, )(||1)]([a F a at f F ω= . 微分:)]([)]('[t f F j t f F ω=,要求0)(lim =∞ →t f t )]([)()]([)(t f F j t f F n n ω=,要求()lim ()0(1,2,1)k t f t k n →+∞ ==- 积分:)]([1 ])([ t f F j dt t f F t ω= ? ∞ -,要求lim ()0t t f t dt -∞→+∞=? 帕塞瓦尔等式: () 2 2 1 ()()2f t dt F d ωωπ +∞ +∞ -∞-∞ = ?? ,)]([)(t f f F =ω 频率位移:若()ωj e X n x ?)(,则()() 00)(ωωω-?j n j e X n x e 时间共轭:若() ωj e X n x ?)(,则() ,)(**ωj e X n x -? 频率共轭:若()ω j e X n x ?)(,则()ω j e X n x * * )(?- 序列卷积:若)()()(n y n x n w *=,则)()()(z Y z X z W = 序列乘积:若)()()(n y n x n w =,则++---<

解析几何公式大全

解析几何中的基本公 式 1、两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 2、平行线间距离:若0C By Ax :l , 0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、点到直线的距离:0C By Ax :l ),y ,x (P =++οο 则P 到l 的距离为:2 2 B A C By Ax d +++= οο 4、直线与圆锥曲线相交的弦长公式:???=+=0 )y ,x (F b kx y 消y :02=++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x

变形后:y y y y x x x x --=λ--= λ21 21或 6、若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。 7、(1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面]2 0[π ∈ββα,,的夹角; (4)l 1与l 2的夹角为θ,∈θ]2 0[π ,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,, 8、直线的倾斜角α与斜率k 的关系

洛必达法则泰勒公式

洛必达法则泰勒公式 一、洛必达法则在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷大之比的极限称为未定式,并分别简记为和.由于在讨论上述未定式的极限时,不能应用商的极限运算法则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天在这里我们应用导数的理论推出一种既简便又重要的未定式极限的计算方法,并着重讨论当时,型未定式极限的计算,关于这种情形有以下定理.定理1设(1) 当时,函数及都趋于零;(2)在点的某去心邻域内,及都存在,且;(3)存在(或为无穷大),则.也就是说,当存在时,也存在,且等于;当为无穷大时,也是无穷大.这种在一定条件下,通过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必达(L' Hospita 1)法则.下面我们给出定理1的严格证明:分析由于上述定理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值定理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理.证因为求极限与及的取值无关,所以可以假定.于是由条件(1)和(2)知,及在点的某一邻域内是连续的.设是这邻域内一点,则在以及为端点的区间上,函数和满足柯西中值定理的条件,因此在和之间至少存在一点,使得等式(在与之间)成立.对上式两端求时的极限,注意到时,贝叽又因为极限存在(或为无穷大),所以.故

定理1成立.注若仍为型未定式,且此时和能满足定理1中和所要满足的条件,则可以继续使用洛必达法则先确定,从而确定和,即.且这种情况可以继续依此类推.例1求.分析当时,分子分母的极限皆为零,故属于型不定式,可考虑应用洛必达法则.解、注最后一个求极限的函数在处是连续的.例2求.解、注例2中我们连续应用了两次洛必达法则.例3求.解、例4求、解、注(1) 在例4中,如果我们不提出分母中的非零因子,则在应用洛必达法则时需要计算导数,从而使运算复杂化.因此,在应用洛必达法则求极限时,特别要注意通过提取因子,作等价无穷小代换,利用两个重要极限的结果等方法,使运算尽可能地得到简化.课后请同学们自己学习教材136页上的例10?(2) 例4中的极限已不是未定式,不能对它应用洛必达法则,否则要导致错误的结果.以后在应用洛必达法则时应特别注意,不是未定式,不能应用洛必达法则.对于时的未定式有以下定理.定理2设(1)当时,函数及都趋于零;(2) 当时,与都存在,且;(3)存在(或为无穷大),则.同样地, 对于(或)时的未定式,也有相应的洛必达法则.定理3设(1)当(或)时,函数及都趋于无穷大;(2)在点的某去心邻域内(或当时),及都存在,且;(3)存在(或为无穷大),则.例5求、解、例6求、解、事实上,例6中的不是正整数而是任何正数其极限仍为零.注由例5和例6可见,当时,函数都是无穷大,但三个函数增大的“速度”是不一样的,最快,其次是,最慢的是.除了和型未定式外,还有型的未定式.这些未定式

各种百分率计算方法(公式)

百分数应用题中各种百分率的意义与计算方法(公式) 所求的百分率名称意义公式(计算方法)出勤率出勤人数占应出勤人数(总人数)的百分之几出勤率=出勤人数/应出勤人数×100% 缺勤率缺勤人数占应出勤人数(总人数)的百分之几缺勤率=缺勤人数/应出勤人数×100% 达标率达标人数占总人数的百分之几达标率=达标人数/总人数×100% 未达标率未达标人数占总人数的百分之几未达标率=未达标人数/总人数×100% 发芽率发芽种子数占种子的总量(实验种子数)的百分之几发芽率=发芽的种子数/种子的总数×100% 出粉率面粉的质量占小麦的质量的百分之几出粉率=面粉的质量/小麦的质量×100% 出米率出米的质量占稻谷的质量的百分之几出米率=出米的质量/稻谷的质量×100% 出油率油的质量占油料作物(黄豆、芝麻、花生仁等)质量的百分之几出油率=油的质量/油料作物的质量×100% 入学率实际入学人数占应入学人数的百分之几入学率=实际入学人数/应入学人数×100% 优秀率优秀的人数占参加考试的人数的百分之几优秀率=优秀的人数/参加考试的人数×100%及格率考试及格的人数占参加考试的人数的百分之几及格率=考试及格的人数/参加考试的总人数×100%不及格率考试不及格的人数占参加考试的人数的百分之几不及格率=不及格的人数/参加考试的总人数×100%正确率正确的题目数量占题目总量的百分之几正确率=正确的题目数量/题目总量×100% 错误率错误的题目数量占题目总量的百分之几错误率=错误的题目数量/题目总量×100% 成活率成活的树木的数量(动植物)占树木总量(动植物)的百分之几成活率=成活树木的量/树木总量×100% 命中率投中的球数点占投球的总数的百分之几命中率=投中的球数点/投球的总数×100% 射中率射中的次数占射击的总次数的百分之几射中率=射中的次数/射击的总次数×100% 含盐(糖)率盐(糖)的质量占盐水(糖水)的百分之几含盐(糖)率=盐(糖)的质量/盐水(糖水)×100%合格率合格的产品数量占全部产品量的百分之几合格率=合格的产品数量/全部产品的数量×100%不合格率不合格的产品数量占全部产品量的百分之几不合格率=不合格的产品数量/全部产品的数量×100%鸡蛋孵化率孵化成小鸡的数量占鸡蛋总数的百分之几鸡蛋孵化率=孵化成小鸡的数量/鸡蛋总数×100% 参与率参加的人数占全部人数的百分之几参与率=参加的人数/总人数×100% ××率=要求量(就是××所代表的信息)/单位“1”的量(总量)×100% 【注意:关于××必须理解其所代表的内容是人数、质量、物品的数量、次数等。】

水处理常用计算公式汇总

水处理常用计算公式汇总 水处理公式是我们在工作中经常要使用到的东西,在这里我总结了几个常常用到的计算公式,按顺序分别为格栅、污泥池、风机、MBR、AAO进出水系统以及芬顿的计算,大家可有目的性的观看。 格栅的设计计算 一、格栅设计一般规定 1、栅隙 (1)水泵前格栅栅条间隙应根据水泵要求确定。 (2)废水处理系统前格栅栅条间隙,应符合下列要求:最大间隙40mm,其中人工清除 25~40mm,机械清除16~25mm。废水处理厂亦可设置粗、细两道格栅,粗格栅栅条间隙 50~100mm。 (3)大型废水处理厂可设置粗、中、细三道格栅。 (4)如泵前格栅间隙不大于25mm,废水处理系统前可不再设置格栅。 2、栅渣 (1)栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。 格栅间隙16~25mm;0.10~0.05m3/103m3(栅渣/废水)。 格栅间隙30~50mm;0.03~0.01m3/103m3(栅渣/废水)。 (2)栅渣的含水率一般为80%,容重约为960kg/m3。 (3)在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。3、其他参数 (1)过栅流速一般采用0.6~1.0m/s。 (2)格栅前渠道内水流速度一般采用0.4~0.9m/s。 (3)格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。 (4)机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。 (5)设置格栅装置的构筑物,必须考虑设有良好的通风设施。 (6)大中型格栅间内应安装吊运设备,以进行设备的检修和栅渣的日常清除。 二、格栅的设计计算 1、平面格栅设计计算 (1)栅槽宽度B 式中,S 为栅条宽度,m;n 为栅条间隙数,个; b 为栅条间隙,m;为最大设计流量, m3/s;a 为格栅倾角,(°);h为栅前水深,m,不能高于来水管(渠)水深;v 为过栅流速, m/s。 (2)过栅水头损失如

解应用题必备的公式

解应用题必备的公式 【求分率、百分率问题的公式】 比较数÷标准数=比较数的对应分(百分)率; 增长数÷标准数=增长率; 减少数÷标准数=减少率。 或者是 两数差÷较小数=多几(百)分之几(增); 两数差÷较大数=少几(百)分之几(减)。 【增减分(百分)率互求公式】 增长率÷(1+增长率)=减少率; 减少率÷(1-减少率)=增长率。 比甲丘面积少几分之几?” 解这是根据增长率求减少率的应用题。按公式,可解答为百分之几?” 解这是由减少率求增长率的应用题,依据公式,可解答为【求比较数应用题公式】 标准数×分(百分)率=与分率对应的比较数; 标准数×增长率=增长数; 标准数×减少率=减少数; 标准数×(两分率之和)=两个数之和; 标准数×(两分率之差)=两个数之差。 【求标准数应用题公式】 比较数÷与比较数对应的分(百分)率=标准数; 增长数÷增长率=标准数; 减少数÷减少率=标准数; 两数和÷两率和=标准数; 两数差÷两率差=标准数; 【方阵问题公式】

(1)实心方阵:(外层每边人数)2=总人数。 (2)空心方阵: (最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。 或者是 (最外层每边人数-层数)×层数×4=中空方阵的人数。 总人数÷4÷层数+层数=外层每边人数。 例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解一先看作实心方阵,则总人数有 10×10=100(人) 再算空心部分的方阵人数。从外往里,每进一层,每边人数少2,则进到第四层,每边人数是 10-2×3=4(人) 所以,空心部分方阵人数有 4×4=16(人) 故这个空心方阵的人数是 100-16=84(人) 解二直接运用公式。根据空心方阵总人数公式得 (10-3)×3×4=84(人) 【利率问题公式】利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。 (1)单利问题: 本金×利率×时期=利息; 本金×(1+利率×时期)=本利和; 本利和÷(1+利率×时期)=本金。 年利率÷12=月利率; 月利率×12=年利率。 (2)复利问题: 本金×(1+利率)存期期数=本利和。 例如,“某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2

洛必达公式+泰勒公式+柯西中值定理+罗尔定理

洛必达公式+泰勒公式+柯西中值定理+罗尔定理 洛必达法则洛必达[/url]法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。 设 (1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。 ②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.) /n!*(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足 P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.); P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得: P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得 Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))

内插法计算公式

内插法计算公式 1、X1、Y1为《建设工程监理与相关服务收费标准》附表二中计费额的区段值;Y1、Y2为对应于X1、X2的收费基价;X为某区段间的插入值道;Y为对应于X由插入法计算而得的收费基价。 2、计费额小于500万元的,以计费额乘以3.3%的收费专率计算收费基价; 3、计费额大于1,000,000万元的,以计费额乘以1.039%的收费率计算收费基价。 【例】若计算得计费额为600万元,计算其收费基价属。 根据《建设工程监理与相关服务收费标准》附表二:施工监理服务收费基价表,计费额处于区段值500万元(收费基价为16.5万元)与1000万元(收费基价为30.1万元)之间,则对应于600万元计费额的收费基价: 内插法(Interpolation Method) 什么是内插法 在通过找到满足租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值等于租赁资产的公平价值的折现率,即租赁利率的方法中,内插法是在逐步法的基础上,找到两个接近准确答案的利率值,利用函数的连续性原理,通过假设关于租赁利率的租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值与租赁资产的公平价值之差的函数为线性函数,求得在函数值为零时的折现率,就是租赁利率。 内插法原理 数学内插法即“直线插入法”。其原理是,若A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。而工程上常用的为i在i1,i2之间,从而P在点A、B之间,故称“直线内插法”。 数学内插法说明点P反映的变量遵循直线AB反映的线性关系。 上述公式易得。A、B、P三点共线,则 (b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直线斜率,变换即得所求。 内插法的具体方法 求得满足以下函数的两个点,假设函数为线性函数,通过简单的比例式求出租赁利率。 以每期租金先付为例,函数如下:

解方程的公式

解方程的公式: 1. 加法方程,求加数加数=和-另一个加数 如:x+3.7=9.2 1.8+x=11.6 解:x=9.2-3.7 解:x=11.6-1.8 x=x= 2. 减法方程,求减数减数=被减数-差求被减数被减数=差+减数 如:15.6-x=10 如:x-3.6=1.8 解:x=15.6-10 解:x=1.8+3.6 x=x= 3. 乘法方程求因数因数=积÷另一个因数 如: 3.5x=7 解:x=7÷3.5 x= 4. 除法方程,求被除数被除数=商×除数求除数除数=被除数÷商 如:x÷6.3=5 如:21.7÷x=7 解:x=5×6.3 解:x=21.7÷7 x=x= 用方程解决应用题 1、审:审题,分析题中已知什么,求什么,明确各数量之间的关系. 2.、设:设未知数(可分直接设法,间接设法) 3、列:根据题意列方程. 4、解:解出所列方程.5、检:检验所求的解是否符合题意. 6、答:写出答案(有单位要注明答案) 解方程的公式: 1. 加法方程,求加数加数=和-另一个加数 如:x+3.7=9.2 1.8+x=11.6 解:x=9.2-3.7 解:x=11.6-1.8 x=x= 2. 减法方程,求减数减数=被减数-差求被减数被减数=差+减数 如:15.6-x=10 如:x-3.6=1.8 解:x=15.6-10 解:x=1.8+3.6 x=x= 3. 乘法方程求因数因数=积÷另一个因数 如: 3.5x=7 解:x=7÷3.5 x= 4. 除法方程,求被除数被除数=商×除数求除数除数=被除数÷商 如:x÷6.3=5 如:21.7÷x=7 解:x=5×6.3 解:x=21.7÷7 x=x= 用方程解决应用题 1、审:审题,分析题中已知什么,求什么,明确各数量之间的关系. 2.、设:设未知数(可分直接设法,间接设法) 3、列:根据题意列方程. 4、解:解出所列方程.5、检:检验所求的解是否符合题意. 6、答:写出答案(有单位要注明答案)

考研数学讲解之洛必达法则失效的情况及处理方法

洛必达法则失效的情况及处理方法 【本章定位】 此部分内容不需要特别掌握,关键是要用这部分的讲解来让读者记住使用泰勒展开式的重要性! 。 洛必达法则是计算极限的一种最重要的方法,我们在使用它时,一定要注意到该法则是极限存在的充分条件,也就是说洛必达法则 )()(lim )()(lim x g x f x g x f a x a x ''=→→的三个条件: (1)0)(lim =→x f a x (或∞),0)(lim =→x g a x (或∞); (2))(x f 和)(x g 在a x =点的某个去心邻域内可导; (3)A x g x f a x =''→)()(lim (或∞)。 其中第三个条件尤其重要。 其实,洛必达法则的条件中前两条是一望即知的,所以我们在解题过程中可以不用去细说,而第三个是通过计算过程的尝试验证来加以说明的,由于验证结束,结论也出来了,也就更加没有细说的必要了。所以在利用洛必达法则解题过程中,往往只用式子说话,不必用文字来啰嗦的。 而对于极限问题?+∞→x x x x x 0d sin 1lim 来说,因为x x g x f x x sin lim )()(lim +∞→+∞→=''不存在(既不是某个常数,也不是无穷 大),而可知洛必达法则的第三个条件得不到验证。此时,我们只能说洛必达法则对本问题无效,绝对不能因此而说本问题之极限不存在。 实际上,我们利用“将连续问题离散化”的方法来处理,可以断定这个极限是存在的。 【问题1】求极限?+∞→x x x x x 0d sin 1lim 。 【解】对于任何足够大的正数x ,总存在正整数n ,使ππ)1(+<≤n x n ,也就是说总存在正整数n ,使r n x +=π,其中π<≤r 0。 这样+∞→x 就等价于∞→n ,所以

计算方法公式总结

计算方法公式总结 绪论 绝对误差 e x x *=-,x *为准确值,x 为近似值。 绝对误差限 ||||e x x ε*=-≤,ε为正数,称为绝对误差限 相对误差* r x x e e x x * *-== 通常用r x x e e x x *-==表示相对误差 相对误差限||r r e ε≤或||r r e ε≤ 有效数字 一元函数y=f (x ) 绝对误差 '()()()e y f x e x = 相对误差 ''()()()()()()() r r e y f x e x xf x e y e x y y f x =≈= 二元函数y=f (x 1,x 2)

绝对误差 1212 12 12 (,)(,) () f x x f x x e y dx dx x x ?? =+ ?? 相对误差 121122 12 12 (,)(,) ()()() r r r f x x x f x x x e y e x e x x y x y ?? =+ ?? 机器数系 注:1. β≥2,且通常取2、4、6、8 2. n为计算机字长 3. 指数p称为阶码(指数),有固定上下限L、U

4. 尾数部 120.n s a a a =±,定位部p β 5. 机器数个数 1 12(1)(1)n U L ββ-+--+ 机器数误差限 舍入绝对 1|()|2 n p x fl x ββ--≤ 截断绝对|()|n p x fl x ββ--≤ 舍入相对1|()|1||2 n x fl x x β--≤ 截断相对1|()|||n x fl x x β--≤ 九韶算法 方程求根 ()()()m f x x x g x *=-,()0g x ≠,*x 为f (x )=0的m 重根。 二分法

污水处理基本计算公式

污水处理基本计算公式 水处理公式是我们在工作中经常要使用到的东西,在这里我总结了几个常常用到的计算公式,按顺序分别为格栅、污泥池、风机、MBR、AAO进出水系统以及芬顿、碳源、除磷、反渗透、水泵和隔油池计算公式,由于篇幅较长,大家可选择有目的性的观看。 格栅的设计计算 一、格栅设计一般规定 1、栅隙 (1)水泵前格栅栅条间隙应根据水泵要求确定。 (2) 废水处理系统前格栅栅条间隙,应符合下列要求:最大间隙40mm,其中人工清除25~40mm,机械清除16~25mm。废水处理厂亦可设置粗、细两道格栅,粗格栅栅条间隙50~100mm。 (3) 大型废水处理厂可设置粗、中、细三道格栅。 (4) 如泵前格栅间隙不大于25mm,废水处理系统前可不再设置格栅。 2、栅渣 (1) 栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。 格栅间隙16~25mm;0.10~0.05m3/103m3 (栅渣/废水)。 格栅间隙30~50mm;0.03~0.01m3/103m3 (栅渣/废水)。

(2) 栅渣的含水率一般为80%,容重约为960kg/m3。 (3) 在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。 3、其他参数 (1) 过栅流速一般采用0.6~1.0m/s。 (2) 格栅前渠道水流速度一般采用0.4~0.9m/s。 (3) 格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。 (4) 机械格栅的动力装置一般宜设在室,或采取其他保护设备的措施。 (5) 设置格栅装置的构筑物,必须考虑设有良好的通风设施。 (6) 大中型格栅间应安装吊运设备,以进行设备的检修和栅渣的日常清除。 二、格栅的设计计算 1、平面格栅设计计算 (1) 栅槽宽度B

七年级数学列方程解应用题的常用公式梳理

关于一元一次方程所涉及的各种问题的公式 一元一次方程应用题 1.列一元一次方程解应用题的一般步骤 (1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,?然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,?是否符合实际,检验后写出答案. 2.和差倍分问题 增长量=原有量×增长率现在量=原有量+增长量 3.等积变形问题 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式V=底面积×高=S?h=r2h ②长方体的体积V=长×宽×高=abc 4.数字问题 一般可设个位数字为a,十位数字为b,百位数字为c. 十位数可表示为10b+a,百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程. 5.市场经济问题 (1)商品利润=商品售价-商品成本价(2)商品利润率=×100% (3)商品销售额=商品销售价×商品销售量 (4)商品的销售利润=(销售价-成本价)×销售量 (5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售. 6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间 (1)相遇问题:快行距+慢行距=原距 (2)追及问题:快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 7.工程问题:工作量=工作效率×工作时间 完成某项任务的各工作量的和=总工作量=1 8.储蓄问题 利润=本金×利润率利息=本金×利率×期数

Excel公式处理文本有妙招

前面我们在《菜鸟进阶:Excel公式应用初步》中介绍了Excel公式应用的基础知识,以及几个简单实用的实例剖析:《销售情况统计》、《家庭收支管理》和《业绩奖金计算》等,并介绍了Excel日期与时间计算的常见实例,今天我们介绍Excel公式处理文本的实例剖析。文章末尾提供原文件供大家下载参考。 阅读导航: 一、判断单元格数据类型是否为文本 有时,我们需要判断单元格中是否包含文本,这时可以借助ISTEXT函数。 二、确定文本字符串的长度 当需要确定文本字符串的长度时,利用LEN函数可以很容易得出答案。 三、从文本字符串中提取字符 有时我们可能需要从文本字符串中提取字符,比如从姓名字符串中提取出姓,从包含国家和城市的字符串中提取出城市名等等。在这种情况下,可以供我们使用的常用函数有三个:LEFT、RIGHT和MID。 下面我们用三个实例进一步的体会它们的使用方法: 1. 使用LEFT函数提取姓名字符串中的姓字符 2. 使用RIGHT函数提取城市名称 3. 使用MID函数提取区域字符参阅专题: Excel常用函数 及实例剖析 四、将数值转换为文本并以指定格式显示 在某些任务中,我们需要将数值转换为文本,并以指定的格式显示,比如在将金额小写转换为大写格式的过程中,就有这种需求。这时在公式中利用TEXT函数可以很好地解决问题。 五、在文本中进行替换 某些情况下,我们需要将文本字符串中的一部分替换为其他文本,可以在公式中使用这两个函数:SUBSTITUTE和REPLACE。 一、判断单元格数据类型是否为文本 有时,我们需要判断单元格中是否包含文本,这时可以借助ISTEXT函数(具体函数功能以及用法请参阅《Excel常用函数及实例剖析》),如图1所示,在B2单元格中输入公式“=ISTEXT(A2)”。如果单元格中包含文本,则返回值为TRUE,反之,返回值为FALSE。

解一元二次方程公式法

公式法解一元二次方程 一、教学目标 (1)知识目标 1.理解求根公式的推导过程和判别公式; 2.使学生能熟练地运用公式法求解一元二次方程. (2)能力目标 1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思 想. 2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。 (3)德育目标 让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感. 二、教学的重、难点及教学设计 (1)教学的重点 1.掌握公式法解一元二次方程的一般步骤. 2.熟练地用求根公式解一元二次方程。 (2)教学的难点: 理解求根公式的推导过程及判别公式的应用。 (3)教学设计要点 1.情境设计 上课开始,通过提问让学生回忆一元二次方程的概念及配方法解一元二次方程的一般步骤。利用昨天所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。 然后让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0) 能否用配方法求出它的解?引出本节课的内容。 2.教学内容的处理 (1)回顾配方法的解题步骤,用配方法来解一般形式的一元二次方程ax2+bx+c=0(a≠0)。 (2)总结用公式法解一元二次方程的解题步骤,并补充理解判别公式的分类与应用。 (3)在小黑板上补充课后思考题:李强和萧晨刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 李强说:“此方程有两个不相等的实数根”,而萧晨反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由. 3.教学方法 在教学中由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形

洛必达法则

洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母 分别求导再求极限来确定未定式值的方法。 设 (1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥 用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这 时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。 ②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往 计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因 子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当 函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项 称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出 的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数 P(x)满足 P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是 可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.); P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!…… P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得: P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有 Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=…… =Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))

解一元二次方程(公式法)

“用求根公式法解一元二次方程”教学设计 【摘要】 数学是一种逻辑性较强的科目,有较强的规律可探索,而探索与猜想不仅要体现数学知识的应用,而且要注重在观察实践中抽象出规律。在计算量较大时,规律的探索显得尤为重要,本节课是一元二次方程求根公式的推导和应用,教师通过引导学生自主探究推导出公式,按照:质疑—猜想—类比—探索—归纳—应用的教学流程,让学生进一步体会公式法由配方法产生,且优于配方法,从而达到知识正迁移的目的。【关键词】 猜想探索配方交流矫正归纳拓展应用 【正文】 一、使用教材 新人教版义务教育课程标准实验教科书《数学》九年级上册 二、素质教育目标 (一)知识教学点 1、一元二次方程求根公式的推导 2、利用公式法解一元二次方程 (二)能力训练点 通过配方法解一元二次方程的过程,进一步加强推理技能训练,同时发展学生的逻辑思维能力。 (三)德育渗透点 向学生渗透由特殊到一般的唯物辩证法思想。 三、教学重点、难点、关键点 1、教学重点:一元二次方程的求根公式的推导过程

2、教学难点:灵活地运用公式法解一元二次方程 3、教学关键点: (1)掌握配方法的基本步骤 (2)确定求根公式中 a 、 b 、 c 的值 四、 学法引导 1、教学方法:指导探究发现法 2、学生学法:质疑探究发现法 五、教法设计 质疑—猜想—类比—探索—归纳—应用 六、 教学流程 (一) 创设情境,导入新课: 前面我们己学习了用配方法解一元二次方程,想不想再探索一种比配方法更简单,更直接的方法? 大家一定想,那么这节课我们一同来研究。 < 设计意图 > 数学是一种逻辑性较强的科目,并且有时计算量较大,如果能简化计算,那是我们所期望的,逐步激发学生的学习欲望。 教师;下面我们先用配方法解下列一元二次方程 学生;(每组一题,每组派一名同学板演) 1.2x 2-4x-1=0 2. x 2+1.5=-3x 3.02 122=+-x x 4. 4x 2-3x+2=0 完成后小组内进行交流,并进行反馈矫正。 学生:总结用配方法解一元二次方程的步骤 教师板书:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方;

(完整版)浅析洛必达法则求函数极限

本科学年论文论文题目:用洛必达法则求极限的方法 学生姓名:卫瑞娟 学号: 1004970232 专业:数学与应用数学 班级:数学1002班 指导教师:严惠云 完成日期: 2013 年 3月 8 日

用洛必达法则求未定式极限的方法 内容摘要 极限运算是微积分学的基础,在众多求极限方法中,洛必达法则是一种简单而又方便的求极限方法。但在具体使用过程中,一旦疏忽,解题就很可能出错。本文就针对利用此法则求极限的过程及解题过程中常见问题,对洛必达法则求函数极限的条件及范围、应用、何时失效做了整体分析与探讨,并举例说明。除此之外,还介绍了除洛必达法则之外其他求函数极限的方法以及同洛必达法则的比较,最后对洛必达法则进行小结。 关键词:洛必达法则函数极限无穷小量

目录 一、洛必达法则求极限的条件及适用范围 (1) (一)洛必达法则定理 (1) (二)洛必达法则使用条件 (2) 二、洛必达法则的应用 (2) (一)洛必达法则应用于基本不定型 (2) (二)洛必达法则应用于其他不定型 (3) 三、洛必达法则对于实值函数失效问题 (5) (一)使用洛必达法则后极限不存在 (5) (二)使用洛必达法则后函数出现循环 (6) (三)使用洛必达法则后函数越来越复杂 (6) (四)使用洛必达法则中求导出现零点 (6) 四、洛必达法则与其他求极限方法比较 (6) (一)洛必达法则与无穷小量替换求极限法 (7) (二)洛必达法则与利用极限运算和已知极限求极限 (8) (三)洛必达法则与夹逼定理求极限 (9) 五、洛必达法则求极限小结 (10) (一)洛必达法则条件不可逆 (10) (二)使用洛必达法则时及时化简 (11) (三)使用洛必达法则前不定型转化 (11) 参考文献 (13)

相关文档
最新文档