三代测序技术的比较

三代测序技术的比较
三代测序技术的比较

一代、二代、三代测序技术

张祥瑞

2013/04/22 11:43

第一代测序技术-Sanger链终止法

一代测序技术是20世纪70年代中期由Fred San ger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸

在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上

没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA莫板分子结合后,DNA R合酶用dNTP延伸引物。延伸反应分四组进行,每一

组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAG吩析四组样品。从得到的PAGE交上可以读出我们需要的序列。

第二代测序技术-大规模平行测序

大规模平行测序平台(massively parallel DNA sequencing platform )的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于

人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Scienee 公司的454基因组测序仪、美国Illumina 公司和英国Solexa techno logy 公司合作开发的Illumi na 测序仪、美国Applied Biosystems 公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer 测序的基本原理是边合成边测序。在Sanger 等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待

测DNA勺序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将川umina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA片段变性成

单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通

过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA 聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开始前将结合的核苷酸剪切并分解。(4)数据分析

第三代测序技术-高通量、单分子测序

被称为第三代的测序的He-licos单分子测序仪,PacificBioscienee 的SMR■技术和

Oxford Nan opore Tech nologies 公司正在研究的纳米孔单分子测序技术正向着

高通量低成本长读取长度的方向发展。不同于第二代测序依赖于DNA模板与固体表面相结合然后边合成边测序,第三代分子测序,不需要进行PCR T增。(1)Helico BioScience单分子测序技术。该测序是基于边合成边测序的思想,将待测序列随机打断成小分子片段并用末端转移酶在3'末端加上poly(A),以及在

poly(A)的末端进行荧光标记和阻断,把这些小片段与带有poly(T)的平板杂交成像来获得已经杂交模板所处的位置,建立边合成边测序的位点加入聚合酶和被Cy3荧光标记脱氧核苷酸进行DNA合成,每次只加入一种脱氧核苷酸,然后将未参与合成的dNTP和DNA聚合酶洗脱,直接对Cy3成像,观测模板位点上是否有荧光信号,然后化学裂解核苷酸上的燃料并释放加入下一种脱氧核苷酸和聚合酶的混合物,进行下一轮反应。(2)Pacific BioscienceSMRTT 技术。该测序也是基于边合成边测序的原理,这项技于使用了

Zero-ModeWaveguide(ZMW)零级波导)。测序的过程:被荧光标记磷酸集团的核苷酸在聚合酶活性位点上与模板链结合(每种脱氧核苷酸被不用颜色的染料标记),被激发出荧光,在荧光脉冲结束后,被标记的磷酸集团被切割并释放,

聚合酶转移到下一个位置,下一个脱氧核苷酸连接到位点上开始释放荧光脉冲,进行下一个循环。(3)Oxford Nanopore Technologies 的纳米孔单分子测序技术。大多数纳米孔测序技术的基本原理是当DNA分子或者它的组成碱基从一个孔

洞经过时而检测到被影响的电流或光信号。OxfordNanopore测序技术是以a -

溶血素来构建生物纳米孔,核酸外切酶依附在孔一侧的外表面,一种合成的环糊精做为传感器共价结合到纳米孔的内表面。这个系统被镶嵌在一个脂双分子层内,为了提供既符合碱基区分检测又满足外切酶活性的物理条件,脂双分子层两侧为不同的盐浓度在适合的电压下,核酸外切酶消化单链DNA单个碱基落入孔中,并与孔内的环糊精短暂的相互作用,影响了流过纳米孔原本的电流,腺嘌呤

与胸腺嘧啶的电信号大小很相近,但胸腺嘧啶在环糊精停留是时间是其他核苷

酸的2-3倍,所以每个碱基都因其产生电流干扰振幅是特有的而被区分开来。

不同代测序方法的原理、发展和应用

摘要:

目前为止,已经发展出了三代不同的测序技术。第一代测序技术具有较长的测序片段和高准确率,在人类基因组计划中发挥了极大的作用。第二代测序技术实现了高通量、高效率、高准确度,大大降低了测序成本。第三代测序技术即纳米孔单分子测序技术,实现了对每一条DNA分子的单独测序,有着更快的数据读取速度,应用潜能也势必超越先前的测序技术。

关键词:测序技术,高通量

目前为止,已经发展出了三代不同的测序技术,这些测序技术具有不同的原理和特点,因此其适用范围也不同。

1、第一代测序技术

1975年Sanger和Coulson 发明了“ Plus and Minus”(俗称“加减法”)测定DNA序列;1977年Maxam and Gilbert发明了化学降解法测序;1977年San ger引入ddNTP(双脱氧核苷三磷酸),发明了著名的双脱氧链终止法。双脱氧链终止法有效控制了化学降解法中化学毒素和同位素的危害,在随后的二十多

年得到很好的应用。这些技术及在此基础上发展的相关技术统称为第一代测序技术。

第一代测序技术凭借其长的序列片段和高的准确率,适合对新物种进行基因组长距框架的搭建以及后期GAP填补,尤其在人类基因组计划中发挥了极大的作用和进行了发展。但第一代测序技术成本昂贵,而且难以胜任微量DNA羊品及大规模高通量测序工作的要求。

2、第二代测序技术

随着人类基因组计划的完成,人们开始进入后基因组时代。科学家逐渐测出多种生物的序列,传统的测序技术已无法满足高通量和高效率的大规模基因组测序, 第二代DNA测序技术就诞生了。第二代测序技术实现了高通量、高效率、高准确度,大大降低了测序的成本,DNA测序可以向个人测序发展。

第二代测序技术中,454序列片段最长,比较适合对未知基因组从头测序,搭建主体结构,但是在判断连续单碱基重复区时准确度不高。Solexa较454具有通

量高、片段短、价位低的特点,可以用于大基因组和小基因组的测序和重测序。Solexa双末端测序(paired-end sequencing)可以为基因组进一步拼接提供定位信息,但是随着反应轮数增加,序列长度和质量均有所下降,而且在阅读AT区时有明显错误倾向。SOLiD基于双碱基编码系统的纠错能力以及较高的测序通量,适合转录本研究以及比较基因组学特别是SNP检测等,但是测序的片段短限

制了该技术在基因组拼接中的广泛应用。

3、第三代测序技术

随着在遗传学研究中,成千上万的基因组需要测出及分析,高通量的第二代测序技术还是面临成本高、效率低、准确度不是很高等问题,第三代测序技术已经开始崭露头角,即基于纳米孔(nan opore)的单分子测序技术(见下图)。

第三代测序技术真正实现了对每一条DNA分子的单独测序,有着更快的数据读取速度,应用潜能也势必超越先前的测序技术。但是目前第三代测序技术目前还在开发阶段,尚未正式大量投入使用。

第三代测序技术的三种技术平台介绍

第三代测序技术的三种技术平台介绍 随着生物学的发展,人们对基因的功能研究更加透彻,为了进一步研究和改造基因的目的需要详细了解生物的基因组全序列,因为DNA序列是改造基因的基础,这就要求具有高效的DNA测序技术。DNA测序技术到目前为止已经发展到了第三代测序技术。 最早的Sanger测序在人类基因组计划中立下赫赫战功,但也给基因组测序贴上了数亿美元的价格标签,让人生畏。这两年发展迅猛的第二代测序仪——Illumina的Genome Analyzer、Roche 454的GS系列以及ABI的SOLiD系统——让人类基因组重测序的费用蹭地降低到10万美元以下。现在,能对单个DNA分子进行测序的第三代测序仪也加入到这场比赛中,让竞争更加激烈。 目前,第三代测序主要有三种技术平台。两种通过掺入并检测荧光标记的核苷酸,来实现单分子测序。Helicos的遗传分析系统已上市,而Pacific Biosciences准备在明年推出单分子实时(SMRT)技术。第三种Oxford Nanopore的纳米孔(nanopore)测序还尚未有推出的时间表,但有可能是这三种当中最便宜的。纳米孔测序的优势在于它不需要对DNA进行标记,也就省去了昂贵的荧光试剂和CCD照相机。 最近,Oxford Nanopore T echnologies的Hagan Bayley及他的研究小组正致力于改善纳米孔。根据他们之前的工作,他们以a-溶血素来设计纳米孔,并将环式糊精共价结合在孔的内侧(下图)。当核酸外切酶消化单链DNA后,单个碱基落入孔中,它们瞬间与环式糊精相互作用,并阻碍了穿过孔中的电流。每个碱基ATGC以及甲基胞嘧啶都有自己特有的电流振幅,因此很容易转化成DNA序列。每个碱基也有特有的平均停留时间,它的解离速率常数是电压依赖的,+180 mV的电位能确保碱基从孔的另一侧离开。

几种常见的基因测序技术的优缺点及应用复习过程

几种常见的基因测序技术的优缺点及应用

随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以 Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到 2005 年,以 Illumina 公司的 Solexa技术和 ABI 公司的 SOLiD 技术为标志的新一代测序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过 NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着 NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用 NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过 NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种 DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和 Walter Gibert 发明了 Sanger 测序法,并在此后的 10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当 DNA 链加入分子 ddNTP,延伸便终止。每一次 DNA 测序是由 4个独立的反应组成,将模板、引物和 4 种含有不

第二代测序技术

第二代测序技术 --以Illumina/Solexa Genome Analyzer为例 1.概述 DNA测序(DNA sequencing)作为一种重要的实验技术,在生物学研究中有着广泛的应用。早在DNA双螺旋结构(Watson and Crick,1953)被发现后不久就有人报道过DNA测序技术,但是当时的操作流程复杂,没能形成规模。随后在1977年Sanger发明了具有里程碑意义的末端终止测序法,同年A.M.Maxam和W.Gilbert发明了化学降解法。Sanger法因为既简便又快速,并经过后续的不断改良,成为了迄今为止DNA测序的主流。然而随着科学的发展,传统的Sanger 测序已经不能完全满足研究的需要,对模式生物进行基因组重测序以及对一些非模式生物的基因组测序,都需要费用更低、通量更高、速度更快的测序技术,第二代测序技术(Next-generation sequencing)应运而生。第二代测序技术的核心思想是边合成边测序(Sequencing by Synthesis),即通过捕捉新合成的末端的标记来确定DNA的序列,现有的技术平台主要包括Roche/454 FLX、 Illumina/Solexa Genome Analyzer和Applied Biosystems SOLID system。这三个技术平台各有优点,454 FLX的测序片段比较长,高质量的读长(read)能达到400bp;Solexa测序性价比最高,不仅机器的售价比其他两种低,而且运行成本也低,在数据量相同的情况下,成本只有454测序的1/10;SOLID测序的准确度高,原始碱基数据的准确度大于99.94%,而在15X覆盖率时的准确度可以达到99.999%,是目前第二代测序技术中准确度最高的。虽然第二代测序技术的工作一般都由专业的商业公司来完成,但是了解测序原理、操作流程等会对后续的数据分析有很重要的作用,下文将以Illumina/Solexa Genome Analyzer 测序为例,简述第二代测序技术的基本原理、操作流程等方面。 2.基本原理 Illumina/Solexa Genome Analyzer测序的基本原理是边合成变测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。 3.操作流程 1)测序文库的构建(Library Construction) 首先准备基因组DNA(虽然测序公司要求样品量要达到200ng,但是Gnome Analyzer系统所需的样品量可低至100ng,能应用在很多样品有限的实验中),然后将DNA随机片段化成几百碱基或更短的小片段,并在两头加上特定的接头(Adaptor)。如果是转录组测序,则文库的构建要相对麻烦些,RNA片段化之后需反转成cDNA,然后加上接头,或者先将RNA反转成cDNA,然后再片段化并加上接头。片段的大小(Insert size)对于后面的数据分析有影响,可根据需

一代、二代、三代测序技术

一代、二代、三代测序技术 (2014-01-22 10:42:13) 转载 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开

质谱测序 第三代测序

第三代测序技术与质谱测序技术的 介绍和比较 质谱蛋白测序 质谱分析是一种测量离子质荷比的分析方法。一级质谱主要是给出目标物的分子量,GC-MS一级谱图可以定性分析,LC-MS能用于简单的分子量测定。二级质谱可以看出目标物的部分碎片,可以对目标物的结构进行分析。 在蛋白测序方面,一级质谱结合肽质量指纹图谱(peptide mass fingerprint,PMF)可以初步推测蛋白质的种类、序列。PMF基本原理是将蛋白质直接从双向电泳凝胶上切下或印迹到PVDF膜上并切下,经过原位酶解得到酶解肽段,然后用质谱得到这些肽段的PMF,即获得了肽质量指纹图谱。由于每种蛋白质氨基酸序列都不同,当蛋白质被酶解后,产生的肽片段序列也不同,其肽混合物质量数即具一定特征性。用实测的肽段质量去查找蛋白质和核酸序列库,结合适当的计算机算法,可鉴定蛋白质。但这种方法不能用来直接测序,必须依靠大量的数据库信息进行比对,准确率也受到限制。 串联质谱可直接用于测定肽段的氨基酸序列,其过程是从一级质谱产生的肽段中选择母离子,进入二级质谱,经惰性气体碰撞后肽段沿肽链断裂,由所得到的各肽段质量数差值推定肽段序列。得到的质谱数据既可以通过仪器提供的软件解析,也可以进行手工解析。 在第一级质谱得到肽的分子离子,选取目标肽的离子作为母离子,与惰性气体碰撞,使肽链中的肽键断裂。主要有三种不同的肽键断裂方式,产生6中不同的碎裂离子:即N端的a, b, c型离子与C端的x, y, z型离子. 每种断裂类型分别生成互补的两种离子, 如a-x,b-y,c-z 。最常见的是a 型离子、b 型离子和y型离子,其他类型离子较少出现。将这些碎片离子系列综合分析,可得出肽段的氨基酸序列。质谱法有不少优点,还能用于翻译后修饰的分析(糖基化、磷酰化),但目前只适用于20个氨基酸以下的肽段。此外,还存在固有的局限性,比如Leu和Ile、Lys和Gln不能区分,有些肽的固有序列不能用质谱法测定。

三代测序原理技术比较

导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序 技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为 sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

DNA第一代-第二代-第三代测序的介绍

双脱氧链终止法又称为Sanger法 原理是:核酸模板在DNA聚合酶、引物、4 种单脱氧核苷三磷酸 ( d NTP,其中的一种用放射性P32标记 )存在条件下复制时,在四管反应系统中分别按比例引入4种双脱氧核苷三磷酸 ( dd NTP ),因为双脱氧核苷没有3’-O H,所以只要双脱氧核苷掺入链的末端,该链就停止延长,若链端掺入单脱氧核苷,链就可以继续延长。如此每管反应体系中便合成以各自 的双脱氧碱基为3’端的一系列长度不等的核酸片段。反应终止后,分4个泳道进行凝胶电泳,分离长短不一的核酸片段,长度相邻的片段相差一个碱基。经过放射自显影后,根据片段3’端的双脱氧核苷,便可依次阅读合成片段的碱基排列顺序。Sanger法因操作简便,得到广泛的应用。后来在此基础上发展出多种DNA 测序技术,其中最重要的是荧光自动测序技术。 荧光自动测序技术荧光自动测序技术基于Sanger 原理,用荧光标记代替同位素标记,并用成像系统自动检测,从而大大提高了D NA测序的速度和准确性。20世纪80 年代初Jorgenson 和 Lukacs提出了毛细管电泳技术( c a p il l ar y el ect r ophor es i s )。1992 年美国的Mathies实验室首先提出阵列毛细管电泳 ( c a p il l ar y ar r a y el ectr ophor es i s ) 新方法,并采用激光聚焦荧光扫描检测装置,25只毛细管并列电泳,每只毛细管在1.5h内可读出350 bp,DNA 序列,分析效率可达6 000 bp/h。1995年Woolley研究组用该技术进行测序研究,使用四色荧光标记法,每个毛细管长3.5cM,在9min内可读取150个碱基,准确率约 97 % 。目前, 应用最广泛的应用生物系统公司 ( ABI ) 37 30 系列自动测序仪即是基于毛细管电泳和荧光标记技术的D NA测序仪。如ABI3730XL 测序仪拥有 96 道毛细管, 4 种双脱氧核苷酸的碱基分别用不同的荧光标记, 在通过毛细管时 不同长度的 DNA 片段上的 4 种荧光基团被激光激发, 发出不同颜色的荧光, 被 CCD 检测系统识别, 并直接翻译成 DNA 序列。 杂交测序技术杂交法测序是20世纪80年代末出现的一种测序方法, 该方法不同于化学降解法和Sanger 法, 而是利用 DNA杂交原理, 将一系列已知序列的单链寡核苷酸片段固定在基片上, 把待测的 DN A 样品片段变性后与其杂交, 根据杂交情况排列出样品的序列

一、二、三代测序技术

一代、二代、三代测序技术 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa

technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA 聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开始前将结合的核苷酸剪切并分解。(4)数据分析 第三代测序技术-高通量、单分子测序 被称为第三代的测序的He-licos单分子测序仪,PacificBioscience的SMRT技术和 Oxford Nanopore Technologies 公司正在研究的纳米孔单分子测序技术正向着高通量低成本长读取长度的方向发展。不同于第二代测序依赖于DNA模板

三代测序原理技术比较

三代测序原理技术比较

三代测序技术和原理介绍 导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术 (Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。

第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中

分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

picbio三代测序原理

三代测序之PacBio SMRT技术全解析 2017-05-11 11:29 来源:基因谷技术 气温回升,天气渐暖, 花儿开了一簇又一簇~ 在这美好的季节里, 我们准备聊点新话题。 今天小编要来和你分享: PacBio SMRT测序那些事儿~ 测序技术在近几年中又有里程碑的发展,Pacific Biosciences公司成功推出商业化的第三代测序仪平台,让三代测序正式走入我们的视线。与前两代相比,第三代测序有什么不同呢?今天小编带大家详细了解测序界新宠-PacBio SMRT测序平台。 PacBio SMRT测序原理 Pacific Biosciences公司研发的单分子实时测序系统(Single Molecule Real Time,SMRT)应用了边合成边测序的原理,并以SMRT芯片为测序载体。基本原理如下: 聚合酶捕获文库DNA序列,锚定在零模波导孔底部 4种不同荧光标记的dNTP随机进入零模波导孔底部 荧光dNTP被激光照射,发出荧光,检测荧光 荧光dNTP与DNA模板的碱基匹配,在酶的作用下合成一个碱基 统计荧光信号存在时间长短,区分匹配碱基与游离碱基,获得DNA序列 酶反应过程中,一方面使链延伸,另一方面使dNTP上的荧光基团脱落 聚合反应持续进行,测序同时持续进行 PacBio SMRT测序原理 PacBio SMRT的单分子测序和超长读长是如何实现的?我们重点看一下该技术的两点关键创新:分别是零模波导孔(zero-mode waveguides, ZMWs)和荧光标记在核苷酸焦磷酸链上(Phospholinked nucleotides)。 SMRT Cell含有纳米级的零模波导孔,每个ZMW都能够包含一个DNA聚合酶及一条DNA样品链进行单分子测序,并实时检测插入碱基的荧光信号。ZMW是一个直径只有10~50 nm的孔,当激光打在ZMW底部时,只能照亮很小的区域,

picbio三代测序原理

p i c b i o三代测序原理 Revised by Jack on December 14,2020

三代测序之PacBio SMRT技术全解析 2017-05-11 11:29 来源: 气温回升,天气渐暖, 花儿开了一簇又一簇~ 在这美好的季节里, 我们准备聊点新话题。 今天小编要来和你分享: PacBio SMRT测序那些事儿~ 测序技术在近几年中又有里程碑的发展,Pacific Biosciences公司成功推出商业化的第三代测序仪平台,让三代测序正式走入我们的视线。与前两代相比,第三代测序有什么不同呢今天小编带大家详细了解测序界新宠-PacBio SMRT 测序平台。 PacBio SMRT测序原理 Pacific Biosciences公司研发的单分子实时测序系统(Single Molecule Real Time,SMRT)应用了边合成边测序的原理,并以SMRT芯片为测序载体。基本原理如下: 聚合酶捕获文库DNA序列,锚定在零模波导孔底部 4种不同荧光标记的dNTP随机进入零模波导孔底部 荧光dNTP被激光照射,发出荧光,检测荧光 荧光dNTP与DNA模板的碱基匹配,在酶的作用下合成一个碱基 统计荧光信号存在时间长短,区分匹配碱基与游离碱基,获得DNA序列 酶反应过程中,一方面使链延伸,另一方面使dNTP上的荧光基团脱落 聚合反应持续进行,测序同时持续进行 PacBio SMRT测序原理 PacBio SMRT的单分子测序和超长读长是如何实现的我们重点看一下该技术的两点关键创新:分别是零模波导孔(zero-mode waveguides, ZMWs)和荧光标记在核苷酸焦磷酸链上(Phospholinked nucleotides)。

DNA第一代,第二代,第三代测序的介绍

原理是:核酸模板在DNA聚合酶、引物、4 种单脱氧核苷三磷酸 ( d NTP,其中的一种用放射性P32标记 )存在条件下复制时,在四管反应系统中分别按比例引入4种双脱氧核苷三磷酸 ( dd NTP ),因为双脱氧核苷没有3’-O H,所以只要双脱氧核苷掺入链的末端,该链就停止延长,若链端掺入单脱氧核苷,链就可以继续延长。如此每管反应体系中便合成以各自 的双脱氧碱基为3’端的一系列长度不等的核酸片段。反应终止后,分4个泳道进行凝胶电泳,分离长短不一的核酸片段,长度相邻的片段相差一个碱基。经过放射自显影后,根据片段3’端的双脱氧核苷,便可依次阅读合成片段的碱基排列顺序。Sanger法因操作简便,得到广泛的应用。后来在此基础上发展出多种DNA 测序技术,其中最重要的是荧光自动测序技术。 荧光自动测序技术荧光自动测序技术基于Sanger 原理,用荧光标记代替同位素标记,并用成像系统自动检测,从而大大提高了D NA测序的速度和准确性。20世纪80 年代初Jorgenson 和 Lukacs提出了毛细管电泳技术( c a p il l ar y el ect r ophor es i s )。1992 年美国的Mathies实验室首先提出阵列毛细管电泳 ( c a p il l ar y ar r a y el ectr ophor es i s ) 新方法,并采用激光聚焦荧光扫描检测装置,25只毛细管并列电泳,每只毛细管在内可读出350 bp,DNA 序列,分析效率可达6 000 bp/h。1995年Woolley研究组用该技术进行测序研究,使用四色荧光标记法,每个毛细管长,在9min内可读取150个碱基,准确率约 97 % 。目前, 应用最广泛的应用生物系统公司 ( ABI ) 37 30 系列自动测序仪即是基于毛细管电泳和荧光标记技术的D NA测序仪。如ABI3730XL 测序仪拥有 96 道毛细管, 4 种双脱氧核苷酸的碱基分别用不同的荧光标记, 在通过毛细管时 不同长度的 DNA 片段上的 4 种荧光基团被激光激发, 发出不同颜色的荧光, 被 CCD 检测系统识别, 并直接翻译成 DNA 序列。 杂交测序技术杂交法测序是20世纪80年代末出现的一种测序方法, 该方法不同于化学降解法和Sanger 法, 而是利用 DNA杂交原理, 将一系列已知序列的单链寡核苷酸片段固定在基片上, 把待测的 DN A 样品片段变性后与其杂交, 根据杂交情况排列出样品的序列

三代测序

第一代测序技术 1977年,Sanger发明的DNA双脱氧核苷酸末端终止测序法(chainter?minatorsequencing)和A.M.Maxam和W.Gilbert 报道的DNA化学降解测序法(chemicaldegradationse?quencing)为代表的第一代测序技术诞生,但由于化学降解法的程序复杂,后来逐渐被Sanger测序法代替。 Sanger测序法原理: 双脱氧核苷酸没有3′-OH,且DNA聚合酶对其没有排斥性。当添加放射性同位素标记的引物时,在聚合酶作用下ddNTP被合成到链上,但其后的核苷酸无法连接,合成反应也随之终止,后续再根据各个合成片段的大小不同进行聚丙烯酰胺凝胶电泳分离,放射自显影后,便可根据片段大小排序及相应泳道的末端核苷酸信息读出整个片段的序列信息。通过调节加入的dNTP和ddNTP的相对量即可获得较长或较短的末端终止片段。 一代测序的特点:速度快,但是一次只能测一条单一的序列,且最长也就能测1000-1500bp。所以被广泛应用在单序列测序上。 在小型的细菌基因组测序、质粒测序、细菌人工染色体末端测序、突变位点验证等研究领域中较为常见。 第二代测序技术 第二代测序技术也称为新一代测序技术NGS(Next Generation Sequencing),相比第一代测序技术,总体往高通量、低成本方向发展。第二代测序技术的核心思想是边合成边测序(Sequencing by Synthesis),即通过捕捉新合成末端的标记来确定DNA的序列。其特点是能一次并行几十万到几百万条DNA分子的序列测定,且一般读长较短。 通过物理或是化学的方式将DNA随机打断成无数的小片段(250-300bp),之后通过建库)富集了这些DNA片段。接下来将建完的库放入测序仪中测序,测序仪中有着可以让DNA片段附着的区域,每一个片段都有独立的附着区域,这样测序仪可以一次检测所有附着的DNA序列信息。最后通过生物信息学分析将小片段拼接成长片段。 第二代测序技术平台主要包括Roche/454 FLX、Illumina/HiSeq/MiSeq、Illumina/Solexa Genome Analyzer和Applied Biosystems SOLID system。 1、Illumina原理: 桥式PCR+4色荧光可逆终止+激光扫描成像 主要步骤: ①DNA文库制备——超声打断加接头 ②Flowcell——吸附流动DNA片段 ③桥式PCR扩增与变性——放大信号 ④测序——测序碱基转化为光学信号 2、Roche454 油包水PCR+4种dNTP车轮大战+检测焦磷酸水解发光 ①DNA文库制备——喷雾打断加接头 ②乳液PCR——注水入油独立PCR ③焦磷酸测序——磁珠入孔,焦磷酸信号转化为光学信号 3、IonTorrent原理 油包水PCR+4种dNTP车轮大战+微电极PH检测 ①DNA文库制备——喷雾打断加接头 ②乳液PCR——注水入油独立PCR ③微电极pH检测——磁珠入池记录pH

三代测序原理技术比较

导从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测导序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从读长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到 长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势 位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变 革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在 这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1 :测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson )开创的链终止法或者是1976-1977年由马克西姆(Maxam和吉尔伯特(Gilbert )发明的化学法(链降解)?并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱 基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。 研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基 因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2' 和3'都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为san ger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了San ger法之外还出现了一 些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2 - 4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方 法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP 图2: Sanger法测序原理

picbio 三代测序原理

三代测序之PacBio SMRT技术全解析2017-05-11 11:29 来源:基因谷技术 气温回升,天气渐暖, 花儿开了一簇又一簇~ 在这美好的季节里, 我们准备聊点新话题。 今天小编要来和你分享: PacBio SMRT测序那些事儿~

测序技术在近几年中又有里程碑的发展,Pacific Biosciences公司成功推出商业化的第三代测序仪平台,让三代测序正式走入我们的视线。与前两代相比,第三代测序有什么不同呢?今天小编带大家详细了解测序界新宠-PacBio SMRT测序平台。 PacBio SMRT测序原理 Pacific Biosciences公司研发的单分子实时测序系统(Single Molecule Real Time,SMRT)应用了边合成边测序的原理,并以SMRT芯片为测序载体。基本原理如下: 聚合酶捕获文库DNA序列,锚定在零模波导孔底部 4种不同荧光标记的dNTP随机进入零模波导孔底部 荧光dNTP被激光照射,发出荧光,检测荧光 荧光dNTP与DNA模板的碱基匹配,在酶的作用下合成一个碱基 统计荧光信号存在时间长短,区分匹配碱基与游离碱基,获得DNA序列 酶反应过程中,一方面使链延伸,另一方面使dNTP上的荧光基团脱落 聚合反应持续进行,测序同时持续进行 PacBio SMRT测序原理 PacBio SMRT的单分子测序和超长读长是如何实现的?我们重点看一下该技术的两点关键创新:分别是零模波导孔(zero-mode waveguides, ZMWs)和荧光标记在核苷酸焦磷酸链上(Phospholinked nucleotides)。

三代测序技术的比较

一代、二代、三代测序技术 张祥瑞 2013/04/22 11:43 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把 DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA 聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开始前将结合的核苷酸剪切并分解。(4)数据分析 第三代测序技术-高通量、单分子测序

三代基因组测序技术原理(简介)

三代基因组测序技术原理简介 【写在前面的话】:首先,这一篇博文中的内容并非原创,而是对多篇文献中内容的直接摘录,有些图片和资料还来自身边的同事(在此深表谢意!),再夹杂自己的零星想法,写在这里分享与大家,同时也是为了方便自己日后若有需要能够方便获得,文章比较长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1: 测序技 术的发 展历程 生命体 遗传信 息的快 速获得 对于生 命科学 的研究 有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。

一代、二代、三代测序技术

三代基因组测序技术原理简介 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和 ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

相关文档
最新文档