中科大模式识别大作业miniproject资料

中科大模式识别大作业miniproject资料
中科大模式识别大作业miniproject资料

模式识别miniproject

实验报告

报告人:李南云

学号:SA16173027

日期:2016.12.23

数据分析

在此简要的说明一下数据情况,给定数据集分为train和test 两个data文件,

train.data是11列8285行,意味着有8285个样本,矩阵的最后一列是该列所对应的样本类别。根据统计,train数据前466个样本均为1类,而后7819个样本均为-1类,所以该分类器为二分类问题。MATLAB中用importdata()读取数据,并将样本和其所属类别分开来,样本为trnset,所属类别为trnclass,train数据用于训练分类器。

Test.data是11列2072行,同样也意味着有2072个样本,最后一列为该列所对应样本类别,test数据前117为1类,后1955个数据为-1类。同样读取数据后,分为tstset和tstclass两个矩阵,前者代表2072个样本,后者代表所对应样本的类别,我们需要将train所训练好的分类器应用在tstset样本上,输出分类结果tstclass1,将其与tstclass相比较,计算每个类别的正确率和总的正确率。

算法介绍

本次实验采用了SVM(support vector machines)分类模型,由于数据线性不可分而且在实际问题中数据也大都线性不可分,所以本次试验采取的线性不可分SVM方法,即将数据向高维空间映射,使其变得线性可分。

本实验选取的二分类算法,SVC_C。

下面先以线性分类器为例,来引入SVM算法的一些概念和处理流程,如图1所示,假设C1和C2是需要区分的类别,而在二维平面中它们的样本如图,中间的一条直线就是一个线性分类函数,由图中可以看出,这个线性分类函数可以完全的将两类样本区分开来,我们就称这样的数据是线性可分的,否则则为线性不可分,本实验中所采用的数据在二维空间里分布如图2和图3所示(红色标注分类为1的样本,蓝色标注为分类为-1的样本),明显线性不可分。

图1

图2

图3

设图1中线性函数为g(x)=wx+b(x是样本的向量表示),那么当有一个样本x i需要判别的时候,就可以看g(x i)的值,若g(x i)>0就判别为C1类,若g(x i)<0就判别为C2类(等于的时候就拒绝判断)。此时也等价与给函数g(x)附加一个符号函数sgn(),即f(x)=sgn[g(x)]是我们真正的判别函数,中间那条线的表达式是

g(x)=0,即wx+b=0,我们也把这个函数叫做分类面。在此我们就不对几何间隔、二次规划问题、支持向量等做详细的介绍了。

SVM在线性分类器上做了重大改进,即为——核函数!

线性分类器只能对线性可分的样本进行处理,但是实际中很多样本都是线性不可分的,那么这种线性可分的分类器就不适用了,是否有某种办法,让线性不可分的数据变得线性可分呢?

实际上是有的!我们可以用一个二维平面中的分类问题作为例子,如图4

图4

横轴短点a和b之间红色的部分里的所有点为正类,两边的黑色点为负类,我们明显找不到符合要求的线性函数将两类数据区分开来,但是可以找到一条曲线例如图5中的曲线来判断所属类别,它的函数表达式可以写为g(x)=c0+ c1x+ c2x2。

图5

明显它不是一个线性函数,但是我们可以新建一个向量a 和y 1

y =[y 1y 2y 3]=[1x x 2] , a =[a 1a 2a 3]=[c 0c 1c 2

] 这样g(x)就可以转化为f(y)=,即:g(x)=f(y)=a*y

在任意维度的空间中,这种形式的函数都是一个线性函数,因为自变量y 的次数不大于1.这样原来在二维空间中线性不可分的问题映射到四维空间中,就变成了线性可分的,这也就形成了我们最初想解决

线性不可分问题的基本思路——向高维空间转化,使其变得线性可分。

而转化的最关键部分就是找打x 对于y 的映射方法,遗憾的是假

设x ’是由x 变换得到的高维变量,在此维度下,问题线性可分,那么只需要计算f(x ’)=+b 的值来进行分类,即只关心高维空间里内积的值。而从理论上来说x ’是由x 变换得来的,因此广义上可以吧它叫做x 的函数,而w ’是常量,它是一个低维空间向量里的常量w 经过x 与x ’之间相同的变换得到的,所以给定了一个w 和w ’的值,我们就可以有一个确定的f(x ’)的值与其对应。那么是否能有这样一种的函数K(w,x),它接受低维空间的输入值,却能够计算出高维空间的内积?如果真的有这种函数,那么当给定了一个低维空间的输入x 之后,使g(x)=K(w,x)+b

f(x’)=+b这两个函数的计算结果就完全一样,我们就不用费力的去找映射关系了。

而上述的K(w,x)却是存在,它被称为核函数(核,kernel),而且只要是满足了Mercer条件的函数,就可以作为核函数。核函数的基本作用就是接受两个低维空间里的向量,能够计算出经过某个变换后在高维空间里的向量内积值。

那么就有两个问题:

1.既然有很多核函数,针对具体问题我们应该怎么选择呢?2.如果使用核函数向高维空间映射后,问题仍然是线性不可分的,那怎么办呢?

对于第一个问题——核函数的选择我不太了解它选择中所需要的指导原则

通常而言,径向基核函数(RBF)是比较合理的选择,本次实验也是采用的径向基核函数,这个核函数将样本非线性地映射到一个更高维的空间,与线性核不同,它能够处理分类标注和属性的非线性关系,并且,线性核是RBF的一个特例,同时,sigmoid核的表现很想一定参数的RBF核。第二个原因,超参数的数量会影响到模型选择的复杂度,而多项式核比RBF核具有更多的超参数。最后,RBF核有更少的数值复杂度。当然也存在一些情形RBF核是不适用的。特别的,当特征维数非常大的时候,很可能只能适用线性核。

本实验采用RBF作为核函数,并使用了‘boxconstraint’参数,这是SVM的惩罚系数,一般是按[···,0.1,1,10,···]这样的规律调

节尝试。

实验

1.评价标准

当然是使用正确率作为评价标准啦!我们统计了对于正类即1

的误判率和对于负类-1的误判率,因为所给数据中,正类较少,负类较多,我们尝试对读取的数据多少进行调节,并计算时间,

后续分析结果,总结问题。

2. 整体实验方法和步骤

①将train和test数据读取,并分别将其分成set和class;

②训练并得到分类器;

③测试输出;

④计算评价指标;

⑤减少读取的train数据的负类,并重复上述过程;

⑥总结;

3. 分类器训练算法的参数调整步骤:

①随机生成多个参数(解);

②在目标函数上验证解的质量;

③根据解的质量由好到坏进行排序,取出其中较好的一部分,

在这些解的每个元素上加上一个随机数,从而得到一些新的

解;

④把新解和老解比较,取出最好的一部分,作为下一次迭代的

初始解;

模式识别大作业02125128(修改版)

模式识别大作业 班级 021252 姓名 谭红光 学号 02125128 1.线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1 ,2,1=i (1) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (2) 映射后,各类样本“类内离散度”定义为: 22 ()k i i k i y Y S y m ∈= -∑,2,1=i (3) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离 散度越小越好。因此,定义Fisher 准则函数: 2 1222 12||()F m m J w s s -= + (4) 使F J 最大的解* w 就是最佳解向量,也就是Fisher 的线性判别式. 从 )(w J F 的表达式可知,它并非w 的显函数,必须进一步变换。 已知: ∑∈= i k Y y k i i y n m 1,2,1=i , 依次代入上两式,有: i T X x k i T k X x T i i M w x n w x w n m i k i k === ∑∑∈∈)1 (1 ,2,1=i (5) 所以:2 21221221||)(||||||||M M w M w M w m m T T T -=-=- w S w w M M M M w b T T T =--=))((2121 (6)

其中:T b M M M M S ))((2121--= (7) b S 是原d 维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大 小,因此,b S 越大越容易区分。 将(4.5-6) i T i M w m =和(4.5-2) ∑∈= i k X x k i i x n M 1代入(4.5-4)2i S 式中: ∑∈-= i k X x i T k T i M w x w S 22)( ∑∈?--? =i k X x T i k i k T w M x M x w ))(( w S w i T = (8) 其中:T i X x k i k i M x M x S i k ))((--= ∑=,2,1=i (9) 因此:w S w w S S w S S w T T =+=+)(212221 (10) 显然: 21S S S w += (11) w S 称为原d 维特征空间里,样本“类内离散度”矩阵。 w S 是样本“类内总离散度”矩阵。 为了便于分类,显然 i S 越小越好,也就是 w S 越小越好。

中科大模式识别试题

中国科学技术大学模式识别试题 (2012年春季学期) 姓名:学号:成绩: 一、填空与选择填空(本题答案写在此试卷上,30分) 1、模式识别系统的基本构成单元包括:、 和。 2、统计模式识别中描述模式的方法一般使用;句法模式识别中模式描述方法一般 有、、。 3、聚类分析算法属于;判别域代数界面方程法属于。 (1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法 4、若描述模式的特征量为0-1二值特征量,则一般采用进行相似性度量。 (1)距离测度(2)模糊测度(3)相似测度(4)匹配测度 5、下列函数可以作为聚类分析中的准则函数的有。 (1) (4) 6、Fisher线性判别函数的求解过程是将N维特征矢量投影在中进行。 (1)二维空间(2)一维空间(3)N-1维空间 7、下列判别域界面方程法中只适用于线性可分情况的算法有;线性可分、不可分都适用的 有。 (1)感知器算法(2)H-K算法(3)积累位势函数法 8、下列四元组中满足文法定义的有。 (1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A) (2)({A}, {0, 1}, {A→0, A→ 0A}, A) (3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S) (4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A) 二、(15分)简答及证明题 (1)影响聚类结果的主要因素有那些? (2)证明马氏距离是平移不变的、非奇异线性变换不变的。 (3)画出对样本集 ω1:{(0,0,0)T, (1,0,0)T, (1,0,1)T, (1,1,0)T,} PDF 文件使用 "pdfFactory Pro" 试用版本创建https://www.360docs.net/doc/5616968631.html,

北邮模式识别课堂作业答案(参考)

第一次课堂作业 1.人在识别事物时是否可以避免错识 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅 到的到底是真是的,还是虚假的 3.如果不是,那么你依靠的是什么呢用学术语言该如何表示。 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率 评价分类器性能。如果不采用统计学,你是否能想到还有什么合理地分类 器性能评价指标来替代错误率 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算 . 从不同事物所具有的不同属性为出发点认识事物. 一种是对事物的属性进行度量,属于定量的表示方法(向量表示法 )。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题,如”天气预报”),说明: 先验概率、后验概率和类条件概率 按照最小错误率如何决策 按照最小风险如何决策 ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率: 指根据以往经验和分析得到的该老师点名的概率,即为先验概率 P(ωi ) 后验概率: 在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x

西电射频大作业(精心整理)

射频大作业 基于PSpice仿真的振幅调制电路设计数字调制与解调的集成器件学习

目录 题目一:基于PSpice仿真的振幅调制电路设计与性能分析 一、实验设计要求 (3) 二、理论分析 1、问题的分析 (3) 2、差动放大器调幅的设计理论 (4) 2.1、单端输出差动放大器电路 2.2、双端输出差动放大器电路 2.3、单二极管振幅调制电路 2.4、平衡对消二极管调幅电路 三、PSpice仿真的振幅调制电路性能分析 (10) 1、单端输出差动放大器调幅电路设计图及仿真波形 2、双端输出差动放大器调幅电路设计图及仿真波形 3、单二极管振幅调制电路设计图及仿真波形 4、平衡对消二极管调幅电路设计图及仿真波形 四、实验总结 (16) 五、参考文献 题目二数字调制与解调的集成器件学习 一、实验设计要求 (17) 二、概述 (17) 三、引脚功能及组成原理 (18) 四、基本连接电路 (20) 五、参考文献 (21) 六、英文附录 (21)

题目一基于PSpice仿真的振幅调制电路设计 摘要 随着大规模集成电路的广泛发展,电子电路CAD及电子设计自动化(EDA)已成为电路分析和设计中不可缺少的工具。此次振幅调制电路仿真设计基于PSpice,利用其丰富的仿真元器件库和强大的行为建模工具,分别设计了差分对放大器和二极管振幅调制电路,由此对线性时变电路调幅有了更进一步的认识;同时,通过平衡对消技术分别衍生出双端输出的差分对放大器和双回路二极管振幅调制电路,消除了没用的频率分量,从而得到了更好的调幅效果。本文对比研究了单端输出和双端输出的差分对放大器调幅电路及单二极管和双回路二极管调幅电路,通过对比观察时域和频域波形图,可知平衡对消技术可以很好地减小失真。 关键词:PSpice 振幅调制差分对放大器二极管振幅调制电路平衡对消技术 一、实验设计要求 1.1 基本要求 参考教材《射频电路基础》第五章振幅调制与解调中有关差分对放大器调幅和二极管调幅的原理,选择元器件、调制信号和载波参数,完成PSpice电路设计、建模和仿真,实现振幅调制信号的输出和分析。 1.2 实践任务 (1) 选择合适的调制信号和载波的振幅、频率,通过理论计算分析,正确选择晶体管和其它元件;搭建单端输出的差分对放大器,实现载波作为差模输入电压,调制信号控制电流源情况下的振幅调制;调整二者振幅,实现基本无失真的线性时变电路调幅;观察记录电路参数、调制信号、载波和已调波的波形和频谱。 (2) 参考例5.3.1,修改电路为双端输出,对比研究平衡对消技术在该电路中的应用效果。 (3) 选择合适的调制信号和载波的振幅、频率,通过理论计算分析,正确选择二极管和其它元件;搭建单二极管振幅调制电路,实现载波作为大信号,调制信号为小信号情况下的振幅调制;调整二者振幅,实现基本无失真的线性时变电路调幅;观察记录电路参数、调制信号、载波和已调波的波形和频谱。 (4) 参考例5.3.2,修改电路为双回路,对比研究平衡对消技术在该电路中的应用效果。 1.3 写作报告 (1) 按论文形式撰写,包括摘要、正文和参考文献,等等。 (2) 正文包括振幅调制电路的设计原理、理论分析结果、实践任务中各阶段设计的电路、参数、波形和频谱,对观察记录的数据配以图像和表格,同时要有充分的文字做分析和对比,有规律性认识。 (3) 论文结构系统、完备、条理清晰、理论正确、数据翔实、分析完整。 1.4 相关提示 (1) 所有电路和信号参数需要各人自行决定,各人有不同的研究结果,锻炼学生的独立研究和实验分析能力。 (2) 为了提高仿真精度和减小调试难度,可以将调制信号和载波的频率设置得较低。 二、理论分析 1、问题的分析 根据题目的要求,差分对放大器和二极管振幅调制电路目的都是实现基本无

大工19秋《数据挖掘》大作业题目及要求答案

网络教育学院 《数据挖掘》课程大作业 题目:题目一:Knn算法原理以及python实现 姓名: XXX 报名编号: XXX 学习中心:奥鹏XXX 层次:专升本 专业:计算机科学与技术 第一大题:讲述自己在完成大作业过程中遇到的困难,解决问题的思路,以及相关感想,或者对这个项目的认识,或者对Python与数据挖掘的认识等等,300-500字。 答: 数据挖掘是指从大量的数据中通过一些算法寻找隐藏于其中重要实用信息的过程。这些算法包括神经网络法、决策树法、遗传算法、粗糙集法、模糊集法、关联规则法等。在商务管理,股市分析,公司重要信息决策,以及科学研究方面都有十分重要的意义。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术,从大量数据中寻找其肉眼难以发现的规律,和大数据联系密切。如今,数据挖掘已经应用在很多行业里,对人们的生产生活以及未来大数据时代起到了重要影响。

第二大题:完成下面一项大作业题目。 2019秋《数据挖掘》课程大作业 注意:从以下5个题目中任选其一作答。 题目一:Knn算法原理以及python实现 要求:文档用使用word撰写即可。 主要内容必须包括: (1)算法介绍。 (2)算法流程。 (3)python实现算法以及预测。 (4)整个word文件名为 [姓名奥鹏卡号学习中心](如 戴卫东101410013979浙江台州奥鹏学习中心[1]VIP ) 答: KNN算法介绍 KNN是一种监督学习算法,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判(投票法)或者回归。若K=1,新数据被简单分配给其近邻的类。 KNN算法实现过程 (1)选择一种距离计算方式, 通过数据所有的特征计算新数据与

模式识别特征选择与提取

模式识别特征选择与提取 中国矿业大学计算机科学与技术学院电子信息科学系 班级:信科11-1班,学号:08113545,姓名:褚钰博 联系方法(QQ或手机):390345438,e-mail:390345438@https://www.360docs.net/doc/5616968631.html, 日期:2014 年06月10日 摘要 实际问题中常常需要维数约简,如人脸识别、图像检索等。而特征选择和特征提取是两种最常用的维数约简方法。特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。 本文是对主成分分析和线性判别分析。 关键词:特征选择,特征提取,主成分分析,线性判别分析 1.引言 模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。本文要讨论的问题就是特征空间如何设计的问题。 基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。 基于线性判别分析的高维特征选择将单个特征的Fisher准则与其他特征选择算法相结合,分层消除不相关特征与冗余特征。不相关特征滤波器按照每个特征的Fisher评价值进行特征排序,来去除噪音和不相关特征。通过对高维数据特征关联性的分析,冗余特征滤波器选用冗余度量方法和基于相关性的快速过滤器算法。分别在不同情境下进行数据分类实验,验证其性能。

模式识别作业(全)

模式识别大作业 一.K均值聚类(必做,40分) 1.K均值聚类的基本思想以及K均值聚类过程的流程图; 2.利用K均值聚类对Iris数据进行分类,已知类别总数为3。给出具体的C语言代码, 并加注释。例如,对于每一个子函数,标注其主要作用,及其所用参数的意义,对程序中定义的一些主要变量,标注其意义; 3.给出函数调用关系图,并分析算法的时间复杂度; 4.给出程序运行结果,包括分类结果(只要给出相对应的数据的编号即可)以及循环 迭代的次数; 5.分析K均值聚类的优缺点。 二.贝叶斯分类(必做,40分) 1.什么是贝叶斯分类器,其分类的基本思想是什么; 2.两类情况下,贝叶斯分类器的判别函数是什么,如何计算得到其判别函数; 3.在Matlab下,利用mvnrnd()函数随机生成60个二维样本,分别属于两个类别(一 类30个样本点),将这些样本描绘在二维坐标系下,注意特征值取值控制在(-5,5)范围以内; 4.用样本的第一个特征作为分类依据将这60个样本进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志(正确分类的样本点用“O”,错误分类的样本点用“X”)画出来; 5.用样本的第二个特征作为分类依据将这60个样本再进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 6.用样本的两个特征作为分类依据将这60个样本进行分类,统计正确分类的百分比, 并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 7.分析上述实验的结果。 8.60个随即样本是如何产生的的;给出上述三种情况下的两类均值、方差、协方差矩 阵以及判别函数; 三.特征选择(选作,15分) 1.经过K均值聚类后,Iris数据被分作3类。从这三类中各选择10个样本点; 2.通过特征选择将选出的30个样本点从4维降低为3维,并将它们在三维的坐标系中

211大学介绍

211大学介绍 (2014-03-21 18:37:56) 转载▼ 我国 211大学 第一档 (财经类):中央财经大学、上海财经大学、对外经济贸易大学、西南财经大学、中南财经政法大学 (专属类):北京外国语大学、上海外国语大学、中国政法大学、中国传媒大学、中央音乐学院、北京体育大学 (理工类):北京邮电大学、华北电力大学、北京交通大学、北京科技大学、南京航空航天大学、西安电子科技大学、华东理工大学、南京理工大学 第二档 (理工类):西南交通大学、哈尔滨工程大学、武汉理工大学、北京化工大学、北京工业大学、河海大学、大连海事大学 (综合类):上海大学、暨南大学、苏州大学 (医药类):天津医科大学、北京中医药大学、中国药科大学 第三档 (综合类):郑州大学、福州大学、安徽大学、南昌大学、西北大学 (理工类):东华大学、长安大学、江南大学、合肥工业大学、河北工业大学、太原理工大学 (师范类):华中师范大学、华南师范大学、西南大学、东北师范大学、陕西师范大学、南京师范大学、湖南师范大学 (专属类):中国石油大学、中国地质大学、中国矿业大学 第四档 (边远类):云南大学、贵州大学、广西大学、海南大学、辽宁大学、内蒙古大学

(边远类):宁夏大学、青海大学、新疆大学、西藏大学、延边大学、石河子大学 (农林类):北京林业大学、华中农业大学、南京农业大学、东北农业大学、东北林业大学、四川农业大学 下面对211大学的分档进行一下简单的说明 一、排名依据 主要依据是2011年所有大学在全国31个省市的理科平均录取分的平均值的排名。 二、最热门的211 在一档211大学中,最热门的几所大学为中央财经大学、上海财经大学、对外经济贸易大学、北京外国语大学、北京邮电大学这五所。他们的录取分数排在前20名,和二档的985大学可以一争天下。 二档985中只有同济大学、南开大学、北京航空航天大学、西安交通大学可以和他们抗衡。 连著名的中山大学、武汉大学、厦门大学、天津大学,哈尔滨工业大学、华中科技大学,东南大学这些老牌的二档985的分数都没有他们高。可见这五所211大学是何等的热门。 三、一档211财经类 1、中央财经大学 号称我国银行家的摇篮,在金融街的校友资源全国第一,主要是政治定位,需要一所高水平的财经类院校在北京首都。中央财经大学最好的专业是金融学院的金融、金融工程、国际金融。 2、上海财经大学 上海财经大学是全国最著名的财经类大学,全国财经院校综合实力前五,经济学实力全国前十。加上地处上海这个金融大都市、全国金融中心,上海财大的未来将更加辉煌。最好的学院是会计学院、金融学院、商学院、经济学院、国际工商管理学院。 会计学院是第一大王牌大院。国际会计班包括ACCA、CGA、美国会计师。 国际会计班的CGA和ACCA比较好,美国会计证书很难考。非国际会计班包括会计学、注册会计师、财务管理。

西电数据挖掘大作业k-means和k-medoids

题 目: 数据挖掘 学 院: 电子工程学院 专 业: 智能科学和技术 学生姓名: ** 学 号: 02115*** k -means 实验报告 一、 waveform 数据 1、 算法描述 1. 从数据集{X n }n?1N 中任意选取k 个赋给初始的聚类中心c 1, c 2, …,

c k; 2.对数据集中的每个样本点x i,计算其和各个聚类中心c j的欧氏 距离并获取其类别标号: label(i)=arg min ||x i?c j||2,i=1,…,N,j=1,…,k 3.按下式重新计算k个聚类中心; c j=∑x j s:label(s)=j j ,j=1,2,…k 重复步骤2和步骤3,直到达到最大迭代次数为止2、实验结果 二、图像处理 1、算法描述 同上; 2、实验结果

代码: k_means: %%%%%%%%%K_means%%%%%%%% %%%%%%%%%函数说明%%%%%%%% %输入: % sample——样本集; % k ——聚类数目; %输出: % y ——类标(从0开始) % cnew ——聚类中心 % n ——迭代次数 function [y cnew n]=k_means(sample,k) [N V]=size(sample); %N为样本的个数 K为样本的维数 y=zeros(N,1); %记录样本类标 dist=zeros(1,k); rand_num=randperm(N); cnew=(sample(rand_num(1,1:k),:));%随机初始化聚类中心cold=zeros(k,V); n=0;

计算智能大作业.

题目:遗传算法在图像处理中的应用研究课程: 计算智能 姓名: 学号: 专业:模式识别与智能系统

遗传算法在图像处理中的应用 摘要 遗传算法是一种基于生物自然选择与遗传机理的随机搜索与优化方法。近年来,由于遗传算法求解复杂优化问题的巨大潜力,广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法受到了国内外学者的广泛关注,尤其是在计算机科学人工智能领域中。本文介绍了遗传算法基本理论,描述了它的主要特点和基本性质;重点综述遗传算法在图像处理中的主要应用,特别是在图像分割、图像压缩、图像增强等方面的作用;深入研究目前遗传算法在图像处理领域中存在的问题,并结合自己的研究方向,对这些问题提出了一些深刻的见解,展望了今后遗传算法在图像处理应用的发展方向。 关键词:遗传算法,数字图像处理

1.背景介绍 遗传算法(Genetic Algorithm,GA)是一种自适应启发式群体型概率性迭代式的全局收敛搜索算法,其基本思想来源于生物进化论和群体遗传学,体现了适者生存、优胜劣汰的进化原则。使用遗传算法求解科学研究工作和工程技术中各种组合搜索和优化计算问题这一基本思想早在20世纪60年代初期就由美国Michigan大学的Holland教授提出,其数学框架也于20世纪60年代中期形成。由于GA的整体搜索策略和优化计算不依赖于梯度信息,所以它的应用范围非常广泛,尤其适合于处理传统方法难以解决的高度复杂的非线性问题。它在自适应控制、组合优化、模式识别、机器学习、规划策略、信息处理和人工生命等领域的应用中越来越展示出优越性。 图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。图像处理一般指数字图像处理。图像处理是计算机视觉中德一个重要研究领域,然而,在图像处理过程中,如扫描、特征提取、图像分割等不可避免地会存在一些误差,从而影响图像的效果。于是,研究者就开始探索怎么样才能使这些误差最小从而使计算机视觉达到实用化的重要要求,最终,遗传算法凭借其在这些图像处理中的优化计算方面独特的优势成为各种算法的佼佼者,得到了广泛的应用。 2.遗传算法的原理和基本步骤 遗传算法是一个不断迭代过程的搜索算法,它的基本处理流程如下图所示。

神经网络大作业

神经网络的基本特征及其在战斗识别领域的应用前景简介 —神经网络原理及应用报告 课程名称:神经网络原理及应用 课程编号: 指导教师: 学院: 班级: 姓名: 学号: 日期:

神经网络的基本特征及其在战斗识别领域的应用前景简介 摘要:在未来的军事对抗上,对军事打击的物理距离越来越大,对打击的反应时间的要求越来越短,对打击的精度要求越来越高。在这种情况下,迅速且精确的敌我识别系统显得尤其重要。传统的战斗识别方式早已遇到了瓶颈,而神经网络因为它在信息、信号处理、模式识别方面有些独到之处,近年来受到各国军界的普遍重视。 关键词:军事,战斗识别,模式识别,敌我识别,神经网络 1 引言 众多科学家预言,21世纪将是“生物”世纪。这说明生物学的研究和应用已进入了空前繁荣的时代。神经网络系统理论就是近十多年来受其影响而得到飞速发展的一个世界科学研究的前沿领域。这股研究热潮必然会影响到军事技术的研究。在现代战争中,因为远程制导武器的广泛应用,绝大多数军事打击都不再依靠肉眼来辨析敌我,战场上的敌我识别变成了一个重要的问题。据统计,1991年的海湾战争期间,美军与友军之间的误伤比例高达24%;在伊拉克战争期间,共发生17起误伤事件,死18人,伤47人。两场战争的伤亡结果表明,单一的敌我识别武器已不能适应现代战争复杂的作战环境和作战要求。所以提高军队战斗识别的效率是现代军事科技研究中一个极其重要的课题。神经网络作为新的热门技术,必然受到军事研究学者们的青睐。本文只选取战斗识别这一领域,简要探讨神经网络技术在战斗识别领域中的应用前景,但求管中一窥,抛砖引玉。 2 神经网络简介 2.1 神经网络的历史 神经网络的研究可以追溯到上个世纪的1890年。但真正展开神经网络理论研究却始于本世纪40年代。1943年,有心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型——MP模型,从此开创了神经网络理论研究的新时代。MP模型以集体并行计算结构来描述神经网络及网络的运行机制,可完成有限的逻辑运算。 1949年,Hebb通过对大脑神经的细胞、人的学习行为和条件反射等一系列

中科大模式识别课件Lec0

Pattern Recognition Lecture0 Introduction Feb. 19th, 2009

?任课教师 –唐珂ketang@https://www.360docs.net/doc/5616968631.html,; –电话:3600754 ?助教 –林民龙sunnyboy@https://www.360docs.net/doc/5616968631.html, ?课程主页 https://www.360docs.net/doc/5616968631.html,/~sunnyboy/pr/

主要内容 ?0.1 课程内容介绍 –课程内容、特点和授课方式 –教材和主要参考书目 ?0.2 课程要求 –考核和评分要求 ?0.3 模式识别导论 –什么是模式识别? –为什么需要模式识别? –模式识别在计算机科学中的地位 –模式识别系统框架 –模式识别研究领域的重要科学问题

0.1 课程内容介绍 ?课程内容: –模式识别系统模型和基本知识; –模式识别算法:贝叶斯方法、判别分析、神经网络、决策树、聚类算法等; –特征分析方法:特征选择、特征提取; –模式识别理论及系统评估方法。 ?课程特点: –介绍各种模式识别方法 –学习结束后,应能大致了解本领域的研究现状,并会用基本的模式识别方法解决自己科研中的相关问题。?学习方式: –课程讲授、平时作业和课堂讨论相结合

0.1 教材和主要参考书目 ?教材: ?Richard.O.Duda, P.E.Hart, D.G.Stork; 《模式分类》,机械工业出版社,2005年。 ?主要参考书目: – A. R. Webb, Statistical Pattern Recognition. John Wiley & Sons, London, (2002). –T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2001. –边肇祺,张学工;《模式识别》,清华大学出版社,2004年

北邮模式识别课堂作业答案(参考)

第一次课堂作业 ? 1.人在识别事物时是否可以避免错识? ? 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅到的到底 是真是的,还是虚假的? ? 3.如果不是,那么你依靠的是什么呢?用学术语言该如何表示。 ? 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率评价分类 器性能。如果不采用统计学,你是否能想到还有什么合理地分类器性能评价指标来替代错误率? 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算.从不同事物所具有的不同属性为出发点认识事物.一种是对事物的属性进行度量,属于定量的表示方法(向量表示法)。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 ?作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题, 如”天气预报”),说明: ?先验概率、后验概率和类条件概率? ?按照最小错误率如何决策? ?按照最小风险如何决策? ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率:指根据以往经验和分析得到的该老师点名的概率,即为先验概率P(ωi ) 后验概率:在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x 2)计算条件风险

《模式识别》大作业人脸识别方法

《模式识别》大作业人脸识别方法 ---- 基于PCA 和欧几里得距离判据的模板匹配分类器 一、 理论知识 1、主成分分析 主成分分析是把多个特征映射为少数几个综合特征的一种统计分析方法。在多特征的研究中,往往由于特征个数太多,且彼此之间存在着一定的相关性,因而使得所观测的数据在一定程度上有信息的重叠。当特征较多时,在高维空间中研究样本的分布规律就更麻烦。主成分分析采取一种降维的方法,找出几个综合因子来代表原来众多的特征,使这些综合因子尽可能地反映原来变量的信息,而且彼此之间互不相关,从而达到简化的目的。主成分的表示相当于把原来的特征进行坐标变换(乘以一个变换矩阵),得到相关性较小(严格来说是零)的综合因子。 1.1 问题的提出 一般来说,如果N 个样品中的每个样品有n 个特征12,,n x x x ,经过主成分分析,将 它们综合成n 综合变量,即 11111221221122221122n n n n n n n nn n y c x c x c x y c x c x c x y c x c x c x =+++?? =+++?? ? ?=+++? ij c 由下列原则决定: 1、i y 和j y (i j ≠,i,j = 1,2,...n )相互独立; 2、y 的排序原则是方差从大到小。这样的综合指标因子分别是原变量的第1、第2、……、 第n 个主分量,它们的方差依次递减。 1.2 主成分的导出 我们观察上述方程组,用我们熟知的矩阵表示,设12n x x X x ??????= ?????? 是一个n 维随机向量,12n y y Y y ??????=?????? 是满足上式的新变量所构成的向量。于是我们可以写成Y=CX,C 是一个正交矩阵,满足CC ’=I 。 坐标旋转是指新坐标轴相互正交,仍构成一个直角坐标系。变换后的N 个点在1y 轴上

模式识别作业2

作业一: 在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 答案:将10类问题可看作4类满足多类情况1的问题,可将3类单独满足多类情况1的类找出来,剩下的7类全部划到4类中剩下的一个子类中。再在此子类中,运用多类情况2的判别法则进行分类,此时需要7*(7-1)/2=21个判别函数。故共需要4+21=25个判别函数。 作业二: 一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 1.设这些函数是在多类情况1条件下确定的,绘出其判别界 面和每一个模式类别的区域。 2.设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。 3. 设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘 出其判别界面和每类的区域。 答案: 1

2

3 作业三: 两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 答案:如果它们是线性可分的,则至少需要4个系数分量;如果要建立二次的多项式判别函数,则至少需要10 25 C 个系数分量。 作业四: 用感知器算法求下列模式分类的解向量w :

ω1: {(0 0 0)T, (1 0 0)T, (1 0 1)T, (1 1 0)T} ω2: {(0 0 1)T, (0 1 1)T, (0 1 0)T, (1 1 1)T} 答案:将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x①=(0 0 0 1)T,x②=(1 0 0 1)T,x③=(1 0 1 1)T,x④=(1 1 0 1)T x⑤=(0 0 -1 -1)T,x⑥=(0 -1 -1 -1)T,x⑦=(0 -1 0 -1)T,x⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0)T 因w T(1)x①=(0 0 0 0)(0 0 0 1)T=0≯0,故w(2)=w(1)+x①=(0 0 0 1) 因w T(2)x②=(0 0 0 1)(1 0 0 1)T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T(3)x③=(0 0 0 1)(1 0 1 1)T=1>0,故w(4)=w(3)=(0 0 0 1)T 因w T(4)x④=(0 0 0 1)(1 1 0 1)T=1>0,故w(5)=w(4)=(0 0 0 1)T 因w T(5)x⑤=(0 0 0 1)(0 0 -1 -1)T=-1≯0,故w(6)=w(5)+x⑤=(0 0 -1 0)T 因w T(6)x⑥=(0 0 -1 0)(0 -1 -1 -1)T=1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T(7)x⑦=(0 0 -1 0)(0 -1 0 -1)T=0≯0,故w(8)=w(7)+x⑦=(0 -1 -1 -1)T 因w T(8)x⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T=3>0,故w(9)=w(8)=(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代:

西电数字信号处理大作业

第二章 2.25 已知线性时不变系统的差分方程为 若系统的输入序列x(x)={1,2,3,4,2,1}编写利用递推法计算系统零状态响应的MATLAB程序,并计算出结果。 代码及运行结果: >> A=[1,-0.5]; >> B=[1,0,2]; >> n=0:5; >> xn=[1,2,3,4,2,1]; >> zx=[0,0,0];zy=0; >> zi=filtic(B,A,zy,zx); >> yn=filter(B,A,xn,zi); >> figure(1) >> stem(n,yn,'.'); >> grid on;

2.28图所示系统是由四个子系统T1、T2、T3和T4组成的,分别用单位脉冲响应或差分方程描述为 T1: 其他 T2: 其他 T3: T4: 编写计算整个系统的单位脉冲响应h(n),0≤n≤99的MATLAB程序,并计算结果。 代码及结果如下: >> a=0.25;b=0.5;c=0.25; >> ys=0; >> xn=[1,zeros(1,99)]; >> B=[a,b,c]; >> A=1; >> xi=filtic(B,A,ys); >> yn1=filter(B,A,xn,xi); >> h1=[1,1/2,1/4,1/8,1/16,1/32]; >> h2=[1,1,1,1,1,1]; >> h3=conv(h1,h2); >> h31=[h3,zeros(1,89)]; >> yn2=yn1+h31; >> D=[1,1];C=[1,-0.9,0.81]; >> xi2=filtic(D,C,yn2,xi); >> xi2=filtic(D,C,ys); >> yn=filter(D,C,yn2,xi); >> n=0:99; >> figure(1) >> stem(n,yn,'.'); >> title('单位脉冲响应'); >> xlabel('n');ylabel('yn');

华南理工大学《模式识别》大作业报告

华南理工大学《模式识别》大作业报告 题目:模式识别导论实验 学院计算机科学与工程 专业计算机科学与技术(全英创新班) 学生姓名黄炜杰 学生学号201230590051 指导教师吴斯 课程编号145143 课程学分2分 起始日期2015年5月18日

实验概述 【实验目的及要求】 Purpose: Develop classifiers,which take input features and predict the labels. Requirement: ?Include explanations about why you choose the specific approaches. ?If your classifier includes any parameter that can be adjusted,please report the effectiveness of the parameter on the final classification result. ?In evaluating the results of your classifiers,please compute the precision and recall values of your classifier. ?Partition the dataset into2folds and conduct a cross-validation procedure in measuring the performance. ?Make sure to use figures and tables to summarize your results and clarify your presentation. 【实验环境】 Operating system:window8(64bit) IDE:Matlab R2012b Programming language:Matlab

中科大模式识别大作业miniproject资料

模式识别miniproject 实验报告 报告人:李南云 学号:SA16173027 日期:2016.12.23

数据分析 在此简要的说明一下数据情况,给定数据集分为train和test 两个data文件, train.data是11列8285行,意味着有8285个样本,矩阵的最后一列是该列所对应的样本类别。根据统计,train数据前466个样本均为1类,而后7819个样本均为-1类,所以该分类器为二分类问题。MATLAB中用importdata()读取数据,并将样本和其所属类别分开来,样本为trnset,所属类别为trnclass,train数据用于训练分类器。 Test.data是11列2072行,同样也意味着有2072个样本,最后一列为该列所对应样本类别,test数据前117为1类,后1955个数据为-1类。同样读取数据后,分为tstset和tstclass两个矩阵,前者代表2072个样本,后者代表所对应样本的类别,我们需要将train所训练好的分类器应用在tstset样本上,输出分类结果tstclass1,将其与tstclass相比较,计算每个类别的正确率和总的正确率。 算法介绍 本次实验采用了SVM(support vector machines)分类模型,由于数据线性不可分而且在实际问题中数据也大都线性不可分,所以本次试验采取的线性不可分SVM方法,即将数据向高维空间映射,使其变得线性可分。 本实验选取的二分类算法,SVC_C。

下面先以线性分类器为例,来引入SVM算法的一些概念和处理流程,如图1所示,假设C1和C2是需要区分的类别,而在二维平面中它们的样本如图,中间的一条直线就是一个线性分类函数,由图中可以看出,这个线性分类函数可以完全的将两类样本区分开来,我们就称这样的数据是线性可分的,否则则为线性不可分,本实验中所采用的数据在二维空间里分布如图2和图3所示(红色标注分类为1的样本,蓝色标注为分类为-1的样本),明显线性不可分。 图1

模式识别作业

模式识别作业 班级: 学号: 姓名:

一、实验内容 (1)了解与熟悉模式识别系统的基本组成和系统识别原理。 (2)使用增添特征法对特征进行提取与选择。 (3)编写MATLAB程序,对原始数据特征进行提取与选择,并选择适当的分类器对样本进行训练和分类,得出最后的分类结果以及识别正确率。二、实验原理 模式识别系统的原理图如下: 图1.模式识别系统原理图 对原始样本数据进行一些预处理,使用增添特征法进行特征提取与选择。增添特征法也称为顺序前进法(SFS),每次从未选择的特征中选择一个,使得它与已选特征组合后判据值J最大,直到选择的特征数目达到d。特征选取后用SVM分类器对随机选取的训练样本和测试样本进行分类,最后得出不同特征维数下的最高SVM分类正确率,以及不同特征维数下的最大类别可分性判据。 三、实验方法及程序 clear; clc; load('C:\Users\Administrator\Desktop\homework\ionosphere.mat'); m1=225;m2=126; p1=m1/(m1+m2);p2=m2/(m1+m2); chosen=[]; for j=1:34 [m,n]=size(chosen);n=n+1; J1=zeros(1,33); for i=1:34 Sw=zeros(n,n);Sb=zeros(n,n); S1=zeros(n,n);S2=zeros(n,n); p=any(chosen==i); if p==0 temp_pattern1=data(1:225,[chosen i]); temp_pattern2=data(226:351,[chosen i]);

相关文档
最新文档