电动汽车高压电气演示课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6) 高压系统内的每一路高压回路需设置必要的过载/短路保护装置, 如熔断器;
7) 高压系统连接件具备防插错措施;
8) 各系统控制继电器的模块根据继电器的类型设置保护电路,避免出 现继电器断开瞬 间过压或过流损坏部件。
9
精
Leabharlann Baidu动汽车安全课题
整车电气设计
• 主动安全设计 • 被动安全设计
高压电气生产使用
成熟的电动汽车应该实时检测一下数据:
① 高压电气参数: 高压系统电压、 电流, 高压总线剩余电量;
② 高压电路参数: 动力电池绝缘电阻、 高压总线等效电容;
③ 非电测量参数: 环境温度、 湿度:
④ 数字量测控参数: 主要是开关量的输入和输出;
⑤ 辅助电压、 继电器链接状况等
一般采样频率要控制在10-100MS,对重要的安全指 18 精 标采样频率应控制在10MS。
备注
电池成组电压
国内主要商用车电压水平
体积:740L 成组方案:5P157S; 标称电压:3.65*157=574V; 标称电量:69kwh; 电池模组固定采用框架式结构,分两层布置; 分箱布置
5
精
6
精五征电动汽车高压电路示意图
高压安全管理系统拓扑图
7
精
高压供电系统方案
目前汽车用单芯电线电压等级60V 600V两种。
13
精
采用高压设计,是为了减小电机、逆变器的成本与体积、并且利于控 制总线的工作电流在一定范围内从而保护电源系统。
根据标准要求电机及控制器必须能在电源电压为120%额定电压下安全 承受最大电流。另外电机在电源电压降为75%额定电压时,应能在最 大电流下运行。
15
精
整车电压平台越少越安全,减少故障率,防护成本 低。
五征物流微卡电压平台为: 高压574V 低压12V 有些混合动力车型考虑轻量化会有双向逆变。
16
精
高压电系统安全性设计
目的在于防止漏电、 过流、 有毒及易燃的化学 物质泄漏等。
17
精
高压电系统安全性设计
目的在于防止漏电、 过流、 有毒及易燃的化学 物质泄漏等。
流快充、交流慢充电口、应急开关等。
2
精
五征物流车整车参数 微卡车型
动力
柴油
汽油
后桥
后双胎
后单胎
后单胎
车身
单排
排半
图片
平板车
平板车
车型
厢式车
厢式车
仓栅车
仓栅车
结合产品需求,选定单排厢式车型为基础车型进行开发,载质量为1500kg
3
精
双排
平板车 厢式车 仓栅车
动力总成及附 件
电池 高压控制
底盘
电器系统
2) 具备绝缘检测模块 含一个绝缘检测模块,在电池系统内,负责整 个高压系统直流侧的绝缘状态检测;
3) 具备高压系统下电后的主动高压放电功能; 4) 具备快慢充电口高压隔离功能,实现充电时充电口不带电;
8
精
5) 具备充电互锁和机械检修互锁功能,互锁信号可由硬件、软件或综 合判断实现,建议 由硬件实现; (1)充电互锁:通过交流充电口和快充充电口的硬件握手信号 CC 实 现; (2)在 FP 阶段,电池系统无高低压互锁,EP 阶段待定; (3)手动检修互锁由电池系统的检修开关实现;
单级减速速比改为1.9以下 采用三元材料电池,电池电量为69kwh 采用分体式高压控制系统,包括充电机、电机控制器、中控盒等 包括快充、慢充 借用 电动助力转向 根据轴荷变化情况,对制动系统进行改进优化 轮胎及车轮借用,车桥在原车基础进行改进,改为后驱形式,速比保持不变为5.375 改为CAN仪表,边界不变,表盘重新进行设计 推拉式换档机构 借用 根据客户需求,重新开发 前保险杠重新开发,以体现新能源产品差异化 1、方向盘重新开发,增加多功能按键功能 2、副仪表板根据换档机构重新开发
人体电阻 =1000Ω (润湿状态的大致阻值)
11
精
电动汽车高压电伤害分析
电脱离的极限电压 E=I×R=0.07×1000=70V
12
精
高压电系统安全性设计
电压平台选择
目前ISO和国标没有对高压平台进行强制性规定, 结合目前国内电机电控平台现状,有一个推荐 值。 144V 288V 320V 346V 400V 576V
微型电动物流车项目车型的高压系统包含动力电池 PACK、OBC、 EAS、PTC、MCU(MCU与 DCDC 集成在一个高压盒中)、高压盒 系统,高压系统原理设计原则如下:
1) 具备预充电电路,降低系统的电流冲击 含有两路预充电电路: 一 路在电池系统内为整个高压负责预充电; 一路在车载充电机输出端为 车载充电机输出端提供预充电;
• 安全实时监测 • 诊断
10
精
电动汽车高压电伤害分析
电动汽车高压电安全隐患的主要部件是动力电池系统, 包括单体电池、 电池模块、电池箱及管理系统、 充电系 统、 高压动力线等。
电伤害主要有触电和短路。
触电的种类:
接触触电指与充电接触发生的触电; 电磁感应触电是指与交流高压附近的金属相接触发生的触电; 静电感应触电指在交流高电压附近人体产生触电, 因放电时的冲击发生的触 电; 电弧触电指人体因大电流在大气中的放电被吹起而发生的触电。
车身
系统 动力总成 动力附件 电机 主减速器 动力电池
高压控制系统 充电口 悬架 转向 制动 行驶
组合仪表 变速换档
白车身 货箱 外饰
内饰
4
精
开发方案 取消发动机、变速箱、离合器 增加额定功率55KW 峰值110KW永磁同步水冷电机 取消进排气系统、供油系统
额定功率55KW 峰值110KW永磁同步水冷电机
电动汽车高压电气安全交流
1
精
电动汽车高压电气系统结构
动力电池组输出的高压直流电通过电机控制器逆变 驱动电机转动,同时通过直流电压转换器或逆变器 向空调压缩机、PTC、或外输出口等提供电能,这构
成了整车的高压电气系统。 主要分: ① 动力模块: 电机总成、 电池包总成; ② 控制模块:电机控制器、DC-DC 、BMS 等; ③ 高压辅助模块:漏电保护器、PTC、压缩机 、直
根据前述规格及采用的蓄电池类型,来确定电源系统的标称电压。
根据国标GB-T 18488_1-2001 《电动汽车用电机及其控制器技术条件》 电源的电压等级为:
14
精
综合: 整车安全防护级别,电线线束防护等级、电线线束线径成本、IGBT高效 工作区、整车功率需求、现有配套体系成熟产品。
以上因素决定整车高压电路电压等级。
7) 高压系统连接件具备防插错措施;
8) 各系统控制继电器的模块根据继电器的类型设置保护电路,避免出 现继电器断开瞬 间过压或过流损坏部件。
9
精
Leabharlann Baidu动汽车安全课题
整车电气设计
• 主动安全设计 • 被动安全设计
高压电气生产使用
成熟的电动汽车应该实时检测一下数据:
① 高压电气参数: 高压系统电压、 电流, 高压总线剩余电量;
② 高压电路参数: 动力电池绝缘电阻、 高压总线等效电容;
③ 非电测量参数: 环境温度、 湿度:
④ 数字量测控参数: 主要是开关量的输入和输出;
⑤ 辅助电压、 继电器链接状况等
一般采样频率要控制在10-100MS,对重要的安全指 18 精 标采样频率应控制在10MS。
备注
电池成组电压
国内主要商用车电压水平
体积:740L 成组方案:5P157S; 标称电压:3.65*157=574V; 标称电量:69kwh; 电池模组固定采用框架式结构,分两层布置; 分箱布置
5
精
6
精五征电动汽车高压电路示意图
高压安全管理系统拓扑图
7
精
高压供电系统方案
目前汽车用单芯电线电压等级60V 600V两种。
13
精
采用高压设计,是为了减小电机、逆变器的成本与体积、并且利于控 制总线的工作电流在一定范围内从而保护电源系统。
根据标准要求电机及控制器必须能在电源电压为120%额定电压下安全 承受最大电流。另外电机在电源电压降为75%额定电压时,应能在最 大电流下运行。
15
精
整车电压平台越少越安全,减少故障率,防护成本 低。
五征物流微卡电压平台为: 高压574V 低压12V 有些混合动力车型考虑轻量化会有双向逆变。
16
精
高压电系统安全性设计
目的在于防止漏电、 过流、 有毒及易燃的化学 物质泄漏等。
17
精
高压电系统安全性设计
目的在于防止漏电、 过流、 有毒及易燃的化学 物质泄漏等。
流快充、交流慢充电口、应急开关等。
2
精
五征物流车整车参数 微卡车型
动力
柴油
汽油
后桥
后双胎
后单胎
后单胎
车身
单排
排半
图片
平板车
平板车
车型
厢式车
厢式车
仓栅车
仓栅车
结合产品需求,选定单排厢式车型为基础车型进行开发,载质量为1500kg
3
精
双排
平板车 厢式车 仓栅车
动力总成及附 件
电池 高压控制
底盘
电器系统
2) 具备绝缘检测模块 含一个绝缘检测模块,在电池系统内,负责整 个高压系统直流侧的绝缘状态检测;
3) 具备高压系统下电后的主动高压放电功能; 4) 具备快慢充电口高压隔离功能,实现充电时充电口不带电;
8
精
5) 具备充电互锁和机械检修互锁功能,互锁信号可由硬件、软件或综 合判断实现,建议 由硬件实现; (1)充电互锁:通过交流充电口和快充充电口的硬件握手信号 CC 实 现; (2)在 FP 阶段,电池系统无高低压互锁,EP 阶段待定; (3)手动检修互锁由电池系统的检修开关实现;
单级减速速比改为1.9以下 采用三元材料电池,电池电量为69kwh 采用分体式高压控制系统,包括充电机、电机控制器、中控盒等 包括快充、慢充 借用 电动助力转向 根据轴荷变化情况,对制动系统进行改进优化 轮胎及车轮借用,车桥在原车基础进行改进,改为后驱形式,速比保持不变为5.375 改为CAN仪表,边界不变,表盘重新进行设计 推拉式换档机构 借用 根据客户需求,重新开发 前保险杠重新开发,以体现新能源产品差异化 1、方向盘重新开发,增加多功能按键功能 2、副仪表板根据换档机构重新开发
人体电阻 =1000Ω (润湿状态的大致阻值)
11
精
电动汽车高压电伤害分析
电脱离的极限电压 E=I×R=0.07×1000=70V
12
精
高压电系统安全性设计
电压平台选择
目前ISO和国标没有对高压平台进行强制性规定, 结合目前国内电机电控平台现状,有一个推荐 值。 144V 288V 320V 346V 400V 576V
微型电动物流车项目车型的高压系统包含动力电池 PACK、OBC、 EAS、PTC、MCU(MCU与 DCDC 集成在一个高压盒中)、高压盒 系统,高压系统原理设计原则如下:
1) 具备预充电电路,降低系统的电流冲击 含有两路预充电电路: 一 路在电池系统内为整个高压负责预充电; 一路在车载充电机输出端为 车载充电机输出端提供预充电;
• 安全实时监测 • 诊断
10
精
电动汽车高压电伤害分析
电动汽车高压电安全隐患的主要部件是动力电池系统, 包括单体电池、 电池模块、电池箱及管理系统、 充电系 统、 高压动力线等。
电伤害主要有触电和短路。
触电的种类:
接触触电指与充电接触发生的触电; 电磁感应触电是指与交流高压附近的金属相接触发生的触电; 静电感应触电指在交流高电压附近人体产生触电, 因放电时的冲击发生的触 电; 电弧触电指人体因大电流在大气中的放电被吹起而发生的触电。
车身
系统 动力总成 动力附件 电机 主减速器 动力电池
高压控制系统 充电口 悬架 转向 制动 行驶
组合仪表 变速换档
白车身 货箱 外饰
内饰
4
精
开发方案 取消发动机、变速箱、离合器 增加额定功率55KW 峰值110KW永磁同步水冷电机 取消进排气系统、供油系统
额定功率55KW 峰值110KW永磁同步水冷电机
电动汽车高压电气安全交流
1
精
电动汽车高压电气系统结构
动力电池组输出的高压直流电通过电机控制器逆变 驱动电机转动,同时通过直流电压转换器或逆变器 向空调压缩机、PTC、或外输出口等提供电能,这构
成了整车的高压电气系统。 主要分: ① 动力模块: 电机总成、 电池包总成; ② 控制模块:电机控制器、DC-DC 、BMS 等; ③ 高压辅助模块:漏电保护器、PTC、压缩机 、直
根据前述规格及采用的蓄电池类型,来确定电源系统的标称电压。
根据国标GB-T 18488_1-2001 《电动汽车用电机及其控制器技术条件》 电源的电压等级为:
14
精
综合: 整车安全防护级别,电线线束防护等级、电线线束线径成本、IGBT高效 工作区、整车功率需求、现有配套体系成熟产品。
以上因素决定整车高压电路电压等级。