黄金分割论文

黄金分割及应用

李新英摘要:黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比的关系。当人们认识了这一自然法则之后,就被广泛地应用于人类的生活之中。此后,在我们的生活环境中,就随处可见了,如建处门窗、橱柜、书桌;我们常接触的书本、报纸、杂志;现代的电影银幕。电视屏幕,以及许多家用器物都是近似这个数比关系构成的。它特别表现艺术中,在美术史上曾经把它作为经典法则来应用,许多艺术家自觉地被黄金分割的魅力所诱惑,从而使数学与艺术创作紧密的结合起来,创造了不少不朽的名著。

关键词:黄金分割;艺术创作;斐波那契数列

1.引言

大千世界的万事万物都有其独特的结构形式,因而关于形体的结构比例也是多种多样的。人们最常见的一种和谐比例关系,就是毕达哥拉斯学派提出的“黄金分割”,又称“黄金段”或“黄金律”。黄金分割指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值是5^/2-1/2或二分之根号五减一,取其前三位数字的近似值是0.618。0.618被公认为最具审美意义的比例数字。上述比例是最能引起人的美感的比例,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:

1/0.618=1.618

[1]

(1-0.618)/0.618=0.618

这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。其无穷魅力再许多伟大的作品中都有体现。

2.神奇美妙的黄金分割

2.1黄金分割的起源与数学证明

公元前4世纪,古希腊著名的数学家、天文学家欧多克斯,他曾研究过大量的比例问题,提出“中外比”。虽然最先系统研究黄金分割的是欧多克斯,但是,现在人一般认为,黄金分割是由公元前6世纪的毕达哥拉斯发现的。用C点分割木棒AB,整段AB 与长段CB之比,等于长段CB与短段AC之比。

毕达哥拉斯还发现,把较短的一段放在较长的一段上面,也产生同样的比例,这一规律可以重复下去。

经计算得出结沦:长段a(CB)与短段b(AB)之比为1:0.618,其比值为0.618。可用下面的等式表达

a:b= ( a +b) :a

即长段长度的平方又恰等于整个木棒与短段长度的乘积,即

2

a= (a+b) b

在《几何原本》一书中,欧几里得将黄金分割做了系统的论述,这一神奇的比例关系,后来被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”,简称“黄金律”、“黄金比”。19世纪威尼斯数学家帕乔里将黄金分割律誉为“神赐的比例”。文艺复兴时期,许多艺术大师把黄金分割与人们的审美联系在一起。黄金分割更被广泛的应用于艺术创作之中。

黄金分割是古希腊人的重大发现,表现为数学命题:已知一线段,试把它分成两部分,使长的一段为短的一段和原线段的比例中项。

例:设原线段常为a,分成长为一段长为x,那么短的一段长为a-x。如图

则 ()x a a x -=2 解此方程得a a x 618.02

1

5≈-=

于是得黄金分割的精确作图

以上是分割点在原线段上的情况。如果分割点在已知线段的延长线上,

()0,222=---=a ax x a x a 于是得相应的作图

黄金分割在几何学上,成为分已知线段为“中外比”。广义上说

618.02

1

5≈-,618.12

1

5≈+均是黄金分割数或者黄金分割。 2.2黄金分割与裴波那数列

裴波纳奇数与黄金分割有何关系?数列存在这样的递推关系:121==F F ,

*12,N n F F F n n n ∈+=++。前几项为,21,13,8,5,3,2,1,1……则数列{}n F 叫做斐波那契数列,简

称F-数列。它是13 世纪意大利数学家Fibonacci 在研究小兔问题时提出的。 裴波纳奇数数列的递推关系式:

()??

?

≥+===++是自然数和a ,3112

21n a a a a a a n n n

看下列比值:

()1111→= ()25.021→= ()3667.032

→≈ ()46.053→= ()5625.085→= ()66184.0138

→≈ ()7619.02113→≈ ()86176.03421→≈ ()96182.055

34→≈

显然这些数越来越接近0.618.这表明裴波纳奇数列中任意相邻两项(前项比后项)都可用来近似地表示0.618.随着项数的增加,这些比值与0.618的误差越来越小。数学严格论证如下:

因为裴波纳奇数列的通项???

????????? ??--???? ??+=n n n a 251251[2]

,则618.02

150

5151,0515151511515121521525125112512512

51125

1251512512515111

1

1

1

1

1

11lim

lim lim lim

lim

lim lim ≈-=∴=???? ??+-=???? ??+-?

??

?

??+--???

?

??+-?---=???

?

??+?

??? ?

?--????

??+????

??--+=???

????????? ??--????

??+???

?

???????? ??--????

??+=+∞

→+∞→∞→+∞

→+++∞

→++∞

→+∞→n n n n n n

n n n

n n n n n

n n n n

n n n n

n a a a a

另外,F-数列在分析方面有一个非常优美的结[]4

果:1

lim

n

n n F F ?→∞+=. 这使得黄金分割

与F-数列的联系更加紧密。因此,它们在应用上也有很多共同之处,斐波那契数列和黄金分割法相似,他们的区别在于斐波那契数列每次的缩短率不是常数,而是由斐波那契数列决定的。 3 黄金分割法的应用

1953 年,美国的弗基提出0.618 法获得大量应用, 特别是工程设计方面.20 世纪70 年代初,我国著名数学家华罗庚在应用优选法方面做出了杰出贡献,使得黄金分割法在我国得以推广,并取得了很大的成就,以下给出黄金分割法在生产生活及计算数学中的应用实例[]4。

3.1 黄金分割法的基本思想及优选法

黄金分割法, 也叫0.618 法,是黄金分割在优选法上应用的一种方法,是优化计算

中的经典算法,以算法简单、效果显著而著称,是许多优化算法的基础,它适用于一维区间[]b a ,的单峰函数,其基本思想是:依照“去坏留好”原则、对称原则、以及等比收缩原则来逐步缩小搜索范围。具体地说:

设f 是定义在区间[]b a ,的下单峰函数,有唯一的极小点*x 间(即最优点)。在区间

[]b a ,中取点()a b a x

-+=382.01

, ()a b a x -+=618.02

如果 ()()21x f x f ?, 则令 1x a =,取区间 []b x ,1 如果 ()()21x f x f ≤,则令 2x b =,取区间[]2,x a

这样,通过比较()()21,x f x f 的大小,就可以将区间[]b a ,缩短为区间[]b x ,1或[]2,x a ,因为新的区间内包含了一个已经计算过函数值的点,所以从其中找出一个试点,又可将这个新的区间再缩短一次,不断地重复这个过程,直至最终的区间长度缩短到满足预先给定的精度为止。

目前,由于史文谱、刘迎曦等人的努力,用推广的黄金分割法已经能够求解部分多维区域上的函数的最优解了(如例2)。[]3

例2:用黄金分割法和Fibonacci 法求函数()22+-=x x x f 在区间[-1,3]上的极小点,要求最终区间长不大于原始区间长的0.08。

解:函数()22+-=x x x f 在区间[-1,3]上为下单峰函数,且()32.008.013=?+≤ε 用黄金分割法求解:

取()a b a x -+=382.01=0.528,()a b a x -+=618.02=1.472 则695.2,751.121==f f

∵012??f f ∴得到的新区间为[-1,1.472]

要仍把此区间记为[]b a ,并令(),382.0,112a b a x x x -+==取继续迭代,直到满足精度求,计算过程见(表1)

(表1) 迭代计算过程

迭代次数 [a ,b ]

1x 2x

1f 2f

ε?-b a

0 [1,3] 0.528,1.472 1.751,2.695 否 1

[1,1.472]

-0.056,0.528

2.059,1.1751

2 [-0.056,10.472] 0.528,0.888 1.751,1.901 否

3 [-0.056,0.888] 0.305,0.528 1.788,1.751 否

4 [0.305,0.888] 0.528,0.66

5 1.751,1.777 否 5 [0.305,0.665] 0.443,0.528 1.753,1.751 否

6 [0.443,0.665] 0.528,0.58 1.751,1.75

7 是 7 [0.443,0.580

经过6 次迭代已经满足精度要求,最优解与最优值分别为

()571.1,

554.0665.0443.02

1*

*

==+=f

x

下面用Fibonacci 法求解 由66.12==-≥

n a

b F n 可知,应取的试点个数ε

第一次迭代: 最初两个试点分别为

()().

675.2,751.1462.1,538.04*135*12165264

1===-+==-=-+

=f f a b F F a x a b F F a x 且

∵,21f f ?∴缩短后的新区间为[-1,1.462] 第二次迭代: 令2x =0.538,()077.01462.11,751.15

3

12

-=++

-==F F x f

取 则083.21=f

∵,21f f ?∴得到的新区间为[-0.077,1.462] 第三次迭代: 令1x =0.538,()846.0077.0462.177.0,751.14

3

21

=++

-==F F x f

取 则870.12=f

,21f f ?∴得到的新区间为[-0.077,0.846]

……

最后一次迭代:

令2x =0.538,751.12=f ,取1x =2x -0.1*(0.846-0.231)=0.477,751.11=f ∵21f f = ∴最优解可取为()750.1,508.02

1

*21*==+=

f x x x 由此我们可以看到,这两种方法都是通过缩短搜索区间来逼近最优值的。它们的算法在优化问题的求解中发挥着重要的作用. 3.2 黄金分割法在冷压装配中的应用

自行车链轮(一种板料冲压)与右轴柄(一种切削件)要装配成一个组合件,通过链轮内孔与曲柄小台阶外径处的冷压铆合来达到抗扭强度要求,经过2000KN 扭力,在1min 后,两者的铆合处不得发生转动。冷压铆合前,于链轮的内孔上须冲压出一定数量的不冲通内齿形。内齿数太多,冷压装配时曲柄小台阶外径处的材料挤压入其间因量少而铆合不牢;内齿数太少,材料又难以压入填满其间而铆合不牢。故内齿数目有一个最佳值的问题。

1)确定初始点及可行区间

原有一模具(冲头),冲出链轮内齿40 牙/周, 所有组合件均发生转动,转动率100%; 后来加工了一个10 牙/周的冲头,结果转动率仍为60%之多。经分析,小于10 牙/周的冲头也不行。故其实验的区间为[10,40];精度要求为转动率为0。 2) 0.618 法优选齿数 ①新加工模具(齿数)

()()281040618.010618.01≈-+=-+=a b a λ牙/周 实验结果:转动率为10%. ②重新加工模具(齿数)

()()211028618.010618.02≈-+=-+=a b a λ牙/周

实取20 牙/周(为使模具更易加工,齿数要偶数)实验结果:转动率为0。 ③按0.618 法迭代步骤,当出现|b-a |≦ε时,应取()2/*a b +=λ为最佳点。此时应取

*324λλ==。但工程实际问题不完全是一个纯数学问题。在这里, 还必须考虑模加工所用的成本,以及在实验中还有可能产生其它问题等。故用20 牙/周的模具就完全达到了质量要求,就不再继续迭代了。

3.3 黄金分割在股票价格变化中的应用

通常,黄金分割法中的黄金点为0.618 和0.382。但在股票价格涨幅与跌幅的测量中,用黄金分割法时除了用0.618 和0.382 作为反压点外,其间还会用到0.382 的一半这个点作为反压点,即0.191 这一点.这是股市中的实际,也可能是其特点。因此,当预测股价上升能力与可能反转之价位时,可用前段下跌行情之最低点值乘以0.191,

0.382, 0.618,0.809, 1。当超过一倍的涨幅时,其反压点

1.191,1.382,1.618,1.809,2,相仿当预测下跌反压点时可乘以0.809,0.618, 0.382,0.191。

例如,当下跌行情结束前,某股的最低价为10 元,那么,股价反转上升时,可预先计算出不同反弹价位:

10*(1+0.191)=11.9 元10*(1+0.382)=13.8 元

10*(1+0.618)=16.2 元10*(1+0.809)=18.1 元

10*(1+1)=20 元10*(1+1.191)=21.9 元

当上升行情结束前,某股的最高价为30 元,那么,当股价反转下跌时,下跌反压点可能为:

30*(1-0.191)=24.3 元30*(1-0.382)=18.5 元

30*(1-0.618)=11.5 元30*(1-0.809)=5.7 元

下面列出1970~1980 年台湾股票加权股价指数的实际涨、跌值及按黄金点计算价值的对照情况表(见表2)

表2 实际涨跌值与黄金点计算值

序号时间实际下跌、上涨价按黄金分割计算价

1 1973 年底—1974 年底514.85 188.74 514.85*0.382=197.6

2 1975 年初429.02 188.74*(1+1.191)=413.53

3 1976年3 月—1976 年底417.00 257.55 417*0.618=257.70

4 1977 年

5 月—1977 年10月313.92 688.52 313.92*(1+1.191)=687.80

5 1978 年—1981 年688.52 430 688.52*0.618=425.50

6 1982 年—1983 年

7 月 421.43 765.71 421.43*(1+0.809)=766.50 7

1983 年底—1984 年

969.25 421.43*(1+1.191)=923.30

3.3黄金分割的另一种表示——三角表示

由()()000018*3cos 18*2sin ,54cos 36sin ==即

.

0cos1818cos 318cos 418cos 18sin 20

0300≠-=

()()0

2

00218sin 20118sin 218sin 20118sin 218sin 4=∴=-+∴=-+∴?

我们称含有黄金分割比?的图形为"黄金图形"。 因此顶角为036的等腰三角形是一个黄金三角形(如图1):

作AD ⊥BC 于D ,由等腰三角形的性质可知,018sin 21=AB BC ,即

?==018sin 2AB

BC

亦即包含了黄金分割比。 (图1) 被冠以“黄金图形”的几何图形还有很多:黄金矩形、黄金椭圆、黄金立方体、五角星等。这些图形蕴含着客观美和数学的奇异之美,深受人们的喜爱与重视,在艺术及生活中都有着广泛的应用。 4 黄金分割的美学价值

黄金分割点在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,黄金分割是一种数学上的比例关系,它给画面带来美感,令人愉悦。

如图(矩形ABFE ) 为黄金分割矩形:

i.一个正方形边 线的中点A 向对角B 画一条斜线,以斜线为半径画出的弧线,与正方形的延长线相交于C 点。构成一个黄金矩形;

ii.大矩形和小矩形的对角线和边线的相交点,成为黄金二次分割的起始线; iii.这个分割过程可以无限继续下去,产生许多更小的等比的矩形和正方形。 (如图)设因为ABDC 是正方形,所以

,2

1

5-=AE

AB

2

1

51215152

1-=-+=

-=-=-=AB AE CD AC AE CD CE

即CDFE 也是黄金分割矩形

[3]

(图I)

怎会不令人由衷地赞叹。这就是科学与艺术的完

美结合(图I)。科学与艺术自古就是一枚硬币的两

个方面,黄金分割就是一个典型的代表。科学家和艺

术家普遍认为,黄金律是设计师需要遵循的首要原则。

古代绘画大师大都遵循“黄金分割律”作画。黄金分

割律在构图中被用来划分画面和安排视觉中心点。画

面中理想的分割线需要按下列公式寻找:用0.618 乘

以画布的宽,就能得到竖向分割线,用0.618乘以画

布的高,就能得到横向分割线。用上述方法共能得到

四条分割线,同样也得到四个交叉点。将这四个美感

诱发点连接起来,就能产生“九宫布局”(即井字分

割)。画面的地平线或垂直主体时,可把它们安排在

井字分割线上或附近的位置上,可以避免画面被割裂

的视觉感受而获得舒适、协调的构图。黄金分割律作为一种重要的形式美法则成为世代相传的审美经典规律。

早在古希腊时期,人们相信黄金分割可以给人一种特别的美感,所以在雕塑等方面把它作为一特定的审美标准而使用。如维纳斯女神雕像,其上半身和下半身的比恰好符合黄金分割比,因而被认为是代表了最优美的身段。文艺复兴时期的欧洲,由于绘画艺术的发展,促进了对黄金分割的研究。当时,出现了好几位身兼几何学家和画家的人物,著名的有派奇欧里、丢勒、达·芬奇等,他们把把几何学上图形的定量分析用到一般绘画艺术,从而给绘画艺术确立了科学的理论基础。他们看中并运用这个奇妙的比例,取得了不朽的艺术成就。与达·芬奇并称文艺复兴三大巨匠的米开朗其罗、拉斐尔的著名作品中也屡屡出现这一黄金比例。如米开朗其罗的《圣家庭》中人物构图布置中包含着一个“黄金五角星”。而拉斐尔的《刑罚》中人物布局巾.以“蕾余三角形”和“黄金五角星”展开。

可见,作为一种美的比例,黄金分割一直被历代艺术家们所推崇。时至今日,它依然呈现于众多优秀艺术、设计中。许多优秀美术作品将算术和代数、平面几何、立体几何、解析几何、拓扑学、透视方法、对称性质等数学原理运用其中。数学使得美术更容易掌握,美术使得数学平易近人。数学中的黄金分割在美术作品中的广泛运用。黄金分割(Golden Section)是一种数学上的比例关系。黄金分割具有严

格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。

4.1美术与射影几何

在二维平面上画出立体图形,既可以使用平行投影,也

可以使用中心投影。在西方历史上,中心投影画法的提出和

发展主要归功于文艺复兴时期的绘画大师们。

在这一时期,艺术家们想以一种真实而客观的方式把景物画到画布上。这就要面对准确地把三维空间的现实世界表现在二维平面画布上的问题。为了获得一个有效的方法,艺术家们最初是采用反复试验,在黑暗中进行艰苦探索。到了15世纪,他们开始努力探讨在二维平面上展现三维物体的数学基础。这导致了透视法的产生及射影几何的产生。

5.结束语

黄金分割这艺术学历的美学数字,不仅办帮助我们解决了不少数学领域的难题,更渗透到其他各个学科之中,发挥着至关重要的作用。在生活中,还有更多的神秘和美学有待发现、研究,关注数学,会看到更多黄金分割的魅力。而其它领域的成长、发展又会对数学领域产生积极的推动作用。

我们首先要感受到并体会到数学学习中的美。数学美不同于其它的美,是一种独特的内在美。正如英国著名哲学家、数理逻辑学家罗素所说:“数学,如果正确的看待它,不但拥有真理,而且也具有至高无上的美,正像雕塑的美,是一种冷而严肃的美。这种美不是投合我们天性的微弱方面,这种美没有绘画或音乐那样华丽的服饰,它可以纯净到崇高的地步,能够达到严格的只有伟大的艺术能现实的那种完美的境界。”课堂上老师经常给我们讲数学美,通过高等数学的学习,我渐渐领略到数学美的含义,这种感觉是奇异的,微妙的,是可以神会而难以言传的,数学,对我来说,是那样的富有魅力,在生活中只要我们善于观察,善于思考,讲所学的知识与生活结合起来将会感到数学的乐趣。生活中处处都应用着数学的知识。

参考文献

[1] 罗声雄.数学的魅力. 武汉大学出版社.1999:46-50.

[2] 费北林.迷人的彩虹——美中的数.上海科学普及出版社.2000.56-58.

[3] 严振军.从正五边形谈起.上海教育出版社1980.14-16.

[4]史文谱,刘迎曦,巩华荣李翠华.黄金分割法在无约束多元优化问题中的应用[J]东北师大学报自然科学版,2003,35(2):11-14.

[5]华罗庚科普著作选集[M].上海.上海教育出版社1984.

[6]宋巨龙钱富才彭刚.利用平面上的黄金分割法求全局最优解[J].数学实践与认识200434(11) :113-117.

[7]吴振奎. 斐波那契数列[M].沈阳.辽宁教育出版社.1987.

[8]华罗庚.优选法及其实例[M].广东.广东人民出版社.1972.

黄金分割率以及初级应用

黄金分割率以及高级应用(2008-05-16 20:51:49) 标签:股票分类:K线与指标 一、黄金分割率的由来 黄金分割率 0.618033988..., 是一个充满无穷魔力的的无理数. 它不但在数学中扮演着神奇的角色,而且在建筑, 美学, 艺术、军事, 音乐, 甚至在投机领域都可以找到这个神奇数字的存在. 四千年前,古埃及人把黄金分割用在大金字塔的建造上. 两千三百年前, 古希腊数学家欧几理德第一次用几何的方法给出黄金分割率的计算. 米开朗基罗、达.芬奇把黄金分割融会于他们的绘画与雕塑,在贝多芬, 莫扎特, 巴赫的音乐里流动着黄金分割的完美和谐(关于黄金分割的更多实例,可以参见附录里面搜集的各方面报道。)。早在古希腊人们就注意到一个“神秘”数字。 假定有一个数φ,它有如下有趣的数学关系: φ^2 - φ^1-φ^0 =0 即:φ^2-φ -1 =0 解这个方程,有两个解: (1 + √5) / 2 = 1.6180339887... (1 - √5) / 2 = - 0.6180339887... 注意这两个数的小数部分是完全相同的。正数解被称为黄金数或黄金分割率,通常用φ表示。这是一个无理数(小数无限不循环,没法用分数来表示),而且是最无理的无理数。我们暂且从遥远的历史长河中回到代的投机市场,黄金分割在投机领域里第一次正式登台亮相,是在艾略特的波浪理论里。虽然本人并不推崇波浪理论,但不得不承认,在投机领域该理论依旧是一个丰碑;并且,他将黄金分割率带到了大众投机者面前。 二、黄金分割率的理论基础 艾略特在其波浪理论里,并没有给出使用黄金分割率和神奇数字的理论基础;这可能是因为局限于那个时代的科学发展水平,他根本找不到依据,虽然他在股市里观察到比比皆是的例子。由于黄金分割率和神密数字一直没有理论作为依据,所以有人批评是迷信,是巧合;本人不敢苟同这种观点;并且尝试着利用我一点儿浅薄的理科知识,来给黄金分割率找个基础。 在附录里面的一篇科学报道里我们看到:“这个实验结果让我们马上想到,植物中斐波纳契数花样的发生可能也是由于同样的原因:即在一定形状的范围内如何让应力引起的应变能最小(能量最小是物理学中的基本原理,最通俗的例子是水总是往低处流)。”黄金分割率在我们的世界无处不在的依据就是:它遵循了能量最小的物理原理。而人类是自然的产物,人类活动也遵循着同样的物理规律,所以人类的大众活动也经常体现出黄金分割率,这就是为什么市场常常在时空的黄金分割点发生重大转变。

黄金分割线的论文

黄金分割线的实际应用 福州教育学院附属中学 高一七班 谢文,林涵,杨莺 据说在古希腊,有一天毕达哥斯拉走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比列被毕达哥斯拉用数理的方式表达出来。被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法“。在金字塔建成1000年后才出现毕达哥斯拉定律,可见这很早既存在。只是不知这个谜底。把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是5^/2-1/2或二分之根号五减一,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618 ,就像圆周率在应用时取3.14一样。黄金分割的

黄金分割的应用十分广泛,不仅仅体现在艺术中,还体现在古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,黄金分割的近似值0.618在生活中可以说是无处不在. 在人体结构上,脐至脚底与头顶至脐之比;躯干长度与臀宽之比;下肢长度与上肢长度之比,均近似于0.618。而且,越是接近于这个值,整个形体就越匀称,越令人觉得完美。人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。再如,营养学中强调,一餐主食中要有六成粗粮和四成细粮的搭配进食,有益于肠胃的消化与吸收,避免肠胃病。这也可纳入饮食的0.618规律之列。抗衰老有生理与心理抗衰之分,哪个为重?研究证明,生理上的抗衰为四,而心理上的抗衰为六,也符合黄金分割律。充分调动与合理协调心理和生理两方面的力量来延缓衰老,可以达到最好的延年益寿的效果。一天合理的生活作息也符合0.618的分割,24小时中,2/3时间是工作与生活,1/3时间是休息与睡眠;在动与静的关系上,究竟是"生命在于运动",还是"生命在于静养"?从辩证观和大量的生活实践证明,动与静的关系同一天休息与工作的比例一样,动四分,静六分,才是最佳的保健之道. 动静:从辩证观点看,动和静是一个0.618

黄金分割论文

黄金分割 希腊的自然科学研究影响西方文化和文明的发展,他们重视分析、分解、假设、推理、推导、实验、验证等思维方式。这与东方重视整体、模糊处理、直觉综合、和谐大同、“仁者爱人”等思维方式和思想有明显的差别。胡适在“中国的文艺复兴”一文中说“当孟子在对人性的内在美德进行理论探讨时,欧几里德正在完善几何学,正在奠定欧洲的自然科学的基础。”这种说法不全面,东方的中华文明有过比西方更辉煌的历史,但在五百多年来,西方经历了继承希腊的文艺复兴和工业革命,使科学和技术快速发展,而中国因封建统治和闭关锁国等原因而衰落。现在应该撷取东西方文明的长处,把它们整合起来,创建中华夏兴。“科学中的美和美的科学”,早期属于自然哲学,自古希腊人开始研究,至今约有2500年。古希腊人喜欢抽象研究。抽象研究又分为逻辑推理研究和形象推理研究,后者所用的工具有直尺和圆规。代数和平面几何为两者的典型代表。 曾提出这样一个问题:“一根棍从哪里分割最为美妙?”答案是:“前半段与后半段之比应等于后半段与全长之比”。设全长为1,后半段为x,此式即成为(1-x):x=x:1,也就是X2+X-1=0。其解为:。棍内分割只能取正值,此值就是著名的黄金分割比值G,G=0.618033988≈0.618。而且G(1+G)=1,即G和(1+G)互为倒数。 偏有一些古希腊人想用形象方法解决黄金分割问题,并获得漂亮

的结果。欧几里德(约公元前330-257年)总结了前人的经验和研究成果,编著了《几何原理》十三卷。这是世界上最早用公理方法叙述的数学著作。其中所载的黄金分割几何问题已引起广泛的兴趣,在科学、艺术、建筑、技术各领域有着广泛的应用,哲学家和美学家也曾反复讨论,不断有文章发表。 自然界的形成、运行、演化、生长、繁衍、消亡等都是有规律的,有些物体可以直接感到自然美,但更多的物体令人迷惑不解。我们深信“天道崇美”,但需要人去探究,揭露其规律,使人感受到深层次的自然美和科学美。这就是“因人而彰”。黄金分割律,就是想梳理和探讨这种自然美和科学美。人有爱美的天性,而且人本身也是很精美的。“天道崇美,人性好美”有普遍性,无论是天然物品还是人工制品,形态的丑陋必然表明其功能的缺陷,而某些功能的完美,往往伴随着美的外形. 黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比的关系。当人们认识了这一自然法则之后,就被广泛地应用于人类的生活之中。此后,在我们的生活环境中,就随处可见了,如建处门窗、橱柜、书桌;我们常接触的书本、报纸、杂志;现代的电影银幕。电视屏幕,以及许多家用器物都是近似

黄金分割在股票中的运用

黄金分割在股票中的应用【转】 1、黄金分割率由来 数学家法布兰斯在13世纪写了一本关于一些奇异数字的组合的书。这些奇异数字的组合是1、2、3、5、8、13、21、34、55、89、144、233…… 任何一个数字都是前面两数字的总和: 2=1 1、3=2 1、5=3 2、8=5 3……,如此类推。 有人说这些数字是他从研究金字塔所得出。金字塔和上列奇异数字息息相关。金字塔的几何形状有五个面,八个边,总数为十三个层面。由任何一边看进去,都可以看到三个层面。金字塔的长度为5813寸(5-8-13),而高底和底面百分比率是0.618,那即是上述神秘数字的任何两个连续的比率,譬如 55/89=0.618,89/144=0.618,144/233=0.618。 另外,一个金字塔五角塔的任何一边长度都等于这个五角型对角线(Diagonal)的0.618。还有,底部四个边的总数是36524.22寸,这个数字等于光年的一百倍! 这组数字十分有趣。0.618的倒数是1.618。譬如 144/89=1.618、233/144=1.618,而0.618×1.618=1,就等于1。 另外有人研究过向日葵,发现向日葵花有89个花辫,55个朝一方,34个朝向另一方。 神秘?不错,这组数字就叫做神秘数字。而0.618,1.618就叫做黄金分割率(Golden Section)。 数百年来,一些学者专家陆续发现,包括建筑结构、力学工程、音乐艺术,甚至于很多大自然的事物,都与“5:8”比例近似的0.382和 0.618这两个神秘数字有关。而由于0.382与0.618这两个神秘数字相加正好等于1,所以又把“0.382”及“0.618”的比率称之为“黄金分割率”或“黄金切割率”。 许多专家学者指出,“黄金分割率”不但具有美学观点更具有达到机能的目的。比如,建筑物、画框、扑克牌和书籍等,长和宽的比例都十分接近于“黄金分割率”。再比如,一位正常成长的人,从肚脐到脚底的长度,大约占身躯总长度的0.618,那么他(她)的身材必然非常匀称。又例如:细菌繁殖的速率、 海浪的波动、飓风云层及外层空间星云的旋转,都与“黄金分割率”所延伸的“黄金螺旋”1.618倍的比率有关。 2、黄金分割率的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点:

黄金分割线如何应用

黄金分割线如何应用? 黄金分割线 黄金分割线买卖基本法则: 0.618法,来至自然的法则,运用于股票买卖很准,简叙如下: 它以阶段性的低点(1.000)作黄金线分为:1.191、1.382、1.500、1.618、1.809等,每一条线位就是阻力位,一般只要有行情,每个股票都会冲破1.191线上1.382线,部分股票上1.618线少数上1.809线,极少股票突破1.809线而更高。把阶段性的顶点(1.000)作黄金线分为:0.809、0.618、0.500、0.382、0.191每一条线都是强支承位,强式股,股票大多在0.809线止跌反弹,弱势股到0.618线或0.382线等,据黄金线炒作,比较安全! 从高位下落不到0.618线附近,不要作为黄金线的起点。没有一底比一底高的股票低点,不要作黄金线起点。 {黄金分割线研判友情提示 1. 如果回调幅度在0.618内,属强势调整,后市方向不会改变;如果回调超过在0.618,后市方向可能逆转。 2. 如果反弹高度在0.382内,属反弹行情,后市方向不会改变;如果反弹超过在0.382,后市方向可能逆转。 3. 比例0.382、0.50、0.618,是重要的调整和反弹目标位。 某段行情回档支撑位可用下面公式计算: 某段行情回档支撑位=某段行情高点-(某段行情高点-某段行情最低点)/0.382(或0.618)}; 黄金分割线使用时要注意: 1、买点在回调到0.618处比较安全,回调到0.382处对于激进型投资者较适合,稳健型投资者还是选择回调到0.618处介入。 2、卖点在涨升1.382处比较保守,只要趋势保持上升通道,可选择涨升1.618处卖出。 黄金分割法指标的一般研判标准: 股票黄金分割法: 黄金分割率的应用

数学之美——黄金分割(图形相似)汇总

数学之美——黄金分割 前 言 数学可以说是各学科的灵魂,数学中蕴涵着文化价值、美学价值、以及经济价值,而这些价值究竟是如何体现的?随着我国教育水平的逐步提高,我们对数学这门科学的学习更加透彻,我们就以数学中的两大宝藏之一“黄金分割”为例,黄金分割是我们最常见的一种和谐比例关系,即是毕达哥拉斯学派提出的“黄金分割”又称“黄金段”或“黄金率”。在初中教学中对黄金分割的了解还不是很深,只是对黄金分割的定义做了简单的说明和简单的练习。随着我们数学能力水平的提升,我们了解到了许多重要的与黄金分割相关联的数学知识,本节主要解决杨辉三角形等数学量与黄金分割的关系,以及与黄金分割有关的一些概念,最后,将进一步阐述黄金分割的实际应用,可见黄金分割用途之广泛,影响之深远。 另外,我真诚的希望通过本节学习,能够让学生更多的了解黄金分割的实质和内涵,对以后的学习有进一步的帮助。 一、黄金分割的起源与发展 1.1 黄金分割的定义 古希腊雅典学派的第三大数学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L 的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。证明方法为: 设有一根长为1的线段AB 在靠近B 端的地方取点C ,)(CB AC >使AC AB CB AC ::= 则点C 为AB 的黄金分割点。 设x AC =,则x BC -=1 代入定义式AC AB CB AC ::= 可得 x x x :1)1(:=- 即 012 =-+x x 解该二次方程:2151--= x 2 152-=x 其中1x 为负值舍掉。 所以 2 15-=AC 约为618.0.

黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美。 1.2黄金分割的发展史 据记载黄金分割是在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。 其实有关“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边 形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《帕乔利》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 其实,黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多

黄金分割论文

数学应用案例讲座——黄金分割 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金比例,又称黄金比,是一种数学上的比例关系。黄金分割具严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618或1.618 ,就像圆周率在应用时取3.14一样。黄金分割早存在于大自然中,呈现于不少动物和植物外观。现今很多工业产品、电子产品、建筑物或艺术品均普遍应用黄金分割,呈现其功能性与美观性。 常用希腊字母表示黄金比值,用代数式表达就是: 黄金比例是属于数学领域的一个专有名词,但是它最后涵盖的内容不只是有关数学领域的研究,以目前的文献探讨我们可以说黃金比例的发现和如何演进至今仍然一个谜。但有研究指出公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割的一些规则,也发现了无理数。他侧重于从数学关系去探讨美的规律,并认为美就是和谐与比例,按照这种比例关系就可以组成美的图案,这其实是一个数字的比例关系,即将一条线分成两部分,较长的一段与较短的一段之此等于全长与较长的一段之比,它们的比例大约是1.618:1。按此种比例关系组成的任何事物都表现出其内部关系的和谐与均衡。 公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称神圣比例为黄金分割。到19世纪黄金分割这一名称才逐渐通行,而证据在于德国数学家欧姆所写的“基本纯数学”的第二版一书中在注释中写到有关黃金比例的解释,他是这样写的“人们习惯把按此方式将任一直线分割成两部分的方法,称为黄金分割”而在1875出版的大英百科全书的第九版中,苏利有提到这一段话“由费区那……提出的有趣、实验性浓厚的想法宣称,‘黄金分割’在视觉比例上具有所谓的优越性。”可见黄金分割在当时已经流行了。二十世纪时美国数学家巴尔也给他一个叫phi的名子。黄金分割有许多有趣的性质,人类对它的实际应用也很广泛,造就了他今天的名气。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 黄金分割应用领域很广泛,包括艺术创作、人体美学、植物、作息制度、医学、股市等

黄金分割律的概念及应用

由林静发表于 2006-3-7 14:41:08
一、定义:黄金分割律,又名黄金率,即把已知线段 A 分成两部分 a 和 b,如下图:
使其中一部分 b 对于全部 A 的比等于其余一部分 a 对于这部分 b 的 比。用公式表示为:b 除以 A=a 除以 b;股票技术分析的专业者将该项 定律引用在股票市场, 用已知的股价高低点来探讨股价变动的未知高低 点,发现准确性不低,因而成为投资人预测未来股价变动完成点的主要 测试标准之一。 二、在股市中的应用 黄金分割律在股市中的应用是有前提条件的, 那就是: 假设“股价的 走势是属于从哪儿来的必定回到哪儿去。” 看下图,截取了沪市大盘 2002 年的年底至今的一段走势图

图中划圈的地方说明了股价从哪儿涨上去的最后还是跌回到了原来 启动的位置。 当然,也许有人会说,股价不都是从哪来的回哪里去哦,有创新高 的,有创新低的,这两种情况我们以后讨论,今天先讨论从哪儿来然后 又回哪儿去的。 因为有了这个“从哪儿来回那儿去”的假设,所以,我们讨论黄金分 割律在股市中的应用。 比如,当某只股票从 3 元涨到了 5 元,然后开始下跌,它能跌到哪 儿是我们关心的问题。假定最后它还要跌回到 3 元(这就是从哪儿来回 到哪儿去) ,但是,它可能不是一下子就跌到 3 元,中间也许会出现反 弹,那么,它首先跌到什么价位才会出现反弹呢?要分析这个问题,我 们就用到了我上面说的分割线段的原理,也就是黄金分割率。 (未完待续)
由林静发表于 2006-3-9 17:59:58

如上图中左侧:是浦发银行(600000)2002 年 12 月底到 2003 年 11 月中时期的走势图, 图中 A 是一个波段的上涨过程, 在其随后的下跌过 程中,又跌回到了它上涨之前的起点,在下跌过程中,不是一下子跌回 到起点的,而是分了两次,第一次,在完成跌幅 a 之后,出现了反弹, 然后才跌了 b,跌到了起点。其实,在刚开始下跌的时候,我们是不会知 道它将要跌到什么位置的,那么第一次下跌了 a,问题的关键是:我们如 何计算它首先下跌了 a 幅度之后才开始出现反弹呢?要探讨这个问题, 我们还要再次讨论黄金分割律。 我在上期讲过,黄金分割就是把一根线段分两段,而且,还有两个 数学推理表达式:A=a+b;b/A=a/b;黄金分割还有一个假设,就是假 设 b/A=0.618 ;为什么等于 0.618 呢,这是从美学角度看的,也就是说, 把线段按照这个比例分割,比较符合视觉习惯,看起来,美观。后来, 人们又进一步把 0.618 引申,又有了 0.191 ;0.382 ;0.5; 0.809;等 有了股市,人们把黄金分割作为一个指标引进股市中的时候,就变成了 如下图样子:

关于黄金分割数学论文

关于黄金分割数学论文 学生姓名:柳静漪班级:初一四班

一.简述黄金分割 1.黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 2.关于黄金分割比例的起源大多认为来自毕达哥拉斯,据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数理的方式表达出来,被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”,也有人称其为“金法”。在金字塔建成1000年后才出现毕达哥拉斯定律,可见这很早就存在,只是不知道这个谜底。 3.把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5-1):2,取其小数点后三位的近似值是0.618。由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1÷0.618≈1.618 (1-0.618)÷0.618≈0.618 或根号5减1的差除以二。如图所示,黄金分割图形 二.黄金分割与生活 1.黄金分割与人体 人体肚脐的位置到脚底的长度与人体身高的比值符合黄金比例 例如一个人身高为136cm,从肚脐到脚底有84cm,肚脐以上52cm,则52:84=0.619……,同时84:136=0.618……,符合黄金分割比例。 2.黄金分割与建筑物 从4600年前修建的埃及金字塔,到2400年前修建的巴特农神殿,到埃菲尔铁塔、东方明珠、联合国大厦,在许多著名的建筑中,人们发现了一个惊人的巧合,那就是,它们都运用了黄金分割。 3.黄金分割与乐器 斯特拉迪瓦里在制造他那有名的小提琴时,运用了黄金分割来确定f形洞的确切位置;二胡要获得最佳音色,其千斤须放在琴弦长度的0.618处。 三.黄金分割与数学 1.黄金分割与图形 ①黄金分割三角形 正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。黄金分割三角形有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与

高中数学史集黄金分割素材

黄金分割 (浙江省宁波市镇海区外语实验学校 315200)余满龙 在初中数学的相似形这一章中有“黄金分割”的简单介绍:把一条线段(PQ )分成两条线段,使其 中较大的线段(PC )是原线段(PQ )与较小线段(CQ )的比例中项,这种分法用途广泛,且美观,所以人们把它称为黄金分割也称“中外比”或“中末比”。(如图1) 世界上最早接触黄金分割的是古希腊的毕达哥拉斯学派。公元前4世纪(二千多年前),古希腊数学家欧多克斯(约公元前408~公元前355)第一个系统研究了这一问题,并建立起比例理论。他发现: 在这个几何问题里,若CQ 与PC 之比等于PC 与PQ 之比, 那么这一比值就等于…,用式子表示就是: 618.0215=-==PQ PC PC CQ 这个神奇的数字已经让我们着迷了几千年但实际上,这个黄金分割很早就存在了,我们 从 Andros 神庙(公元前10000年)就可以看出,而Kheops (公元前2800年)金字塔(如右图)表现的尤为明显。几何学家,哲学家和建筑师都认为黄金分割是一组非常奇特的比例,是一种空间的和谐,能够组成精确的比例。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克斯的工作,系统论述了黄金分割,成为最早的有证论着。欧多克斯就是从整个比例论的角度考虑黄金分割,他还把上述的C 点分PQ 所成的比PC:CQ 叫做“中外比”。欧多克斯发现这种线段之间的中外比关系存在于许多图形中。如正五边形中, Kheops (公元前Q C P 图1

莱奥纳多·达·芬奇 相邻顶角的两条对角线互相将对方分成中外比,而较长的一段等于正五边形的边。如果将有理线段分成中外比,那末被分成的两个线段长是无理数。 文艺复兴时期的欧洲,由于绘画艺术的发展,促进了对黄金分割的研究。当时,出现了好几个身兼几何学家的画家,着名的有帕奇欧里、丢勒、达芬奇等人。他们反几何学上图形的定量分析用到一般绘画艺术,从而给绘画艺术确立了科学的理论基础。 1228年,意大利数学家斐波那契在《算盘书》的修订本中提出“兔子问题”,导致斐波那契数列:1,1 ,2,3,5,8,13,21,34,55,89,……,它的每一项与后一项比值的极限就是黄金分割数,即黄金分割形成的线段与全线段的比值。(即设F 1 =1,F 2 =1,F n = F n-2 + F n-1,n ≥3,则) 1525年丢勒制定了充分吸收黄金分割几何意义的比例法则,揭示了黄金分割在绘画中的重要地位。丢勒以为,在所有矩形中,黄金分割的矩形,即短边与长边之比为2 15 的矩形最美观。因为这样的矩形,“以短边为边,在这个矩形中分出一个 正方形后,余下的矩形与原来的矩形相似,仍是 一个黄金分割形的矩形”,这使人们产生一种 “和谐”的感觉。 后来意大利伟大画家达·芬奇(1452-1519)(如右图)把欣赏的重点转到使线段构成中外比的分割,而不是中外比本身,提出了“黄金分割”这一名称。这一命名一直延用至今。 欧洲中世纪的物理学家和天文学家开普勒(J .Kepler1571—1630),曾经说过:“几何学里有二个宝库:一个是毕达哥拉斯定理(我们称为“商

黄金分割论文

黄金分割及应用 李新英摘要:黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比的关系。当人们认识了这一自然法则之后,就被广泛地应用于人类的生活之中。此后,在我们的生活环境中,就随处可见了,如建处门窗、橱柜、书桌;我们常接触的书本、报纸、杂志;现代的电影银幕。电视屏幕,以及许多家用器物都是近似这个数比关系构成的。它特别表现艺术中,在美术史上曾经把它作为经典法则来应用,许多艺术家自觉地被黄金分割的魅力所诱惑,从而使数学与艺术创作紧密的结合起来,创造了不少不朽的名著。 关键词:黄金分割;艺术创作;斐波那契数列 1.引言 大千世界的万事万物都有其独特的结构形式,因而关于形体的结构比例也是多种多样的。人们最常见的一种和谐比例关系,就是毕达哥拉斯学派提出的“黄金分割”,又称“黄金段”或“黄金律”。黄金分割指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值是5^/2-1/2或二分之根号五减一,取其前三位数字的近似值是0.618。0.618被公认为最具审美意义的比例数字。上述比例是最能引起人的美感的比例,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 [1] (1-0.618)/0.618=0.618

这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。其无穷魅力再许多伟大的作品中都有体现。 2.神奇美妙的黄金分割 2.1黄金分割的起源与数学证明 公元前4世纪,古希腊著名的数学家、天文学家欧多克斯,他曾研究过大量的比例问题,提出“中外比”。虽然最先系统研究黄金分割的是欧多克斯,但是,现在人一般认为,黄金分割是由公元前6世纪的毕达哥拉斯发现的。用C点分割木棒AB,整段AB 与长段CB之比,等于长段CB与短段AC之比。 毕达哥拉斯还发现,把较短的一段放在较长的一段上面,也产生同样的比例,这一规律可以重复下去。 经计算得出结沦:长段a(CB)与短段b(AB)之比为1:0.618,其比值为0.618。可用下面的等式表达 a:b= ( a +b) :a 即长段长度的平方又恰等于整个木棒与短段长度的乘积,即 2 a= (a+b) b 在《几何原本》一书中,欧几里得将黄金分割做了系统的论述,这一神奇的比例关系,后来被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”,简称“黄金律”、“黄金比”。19世纪威尼斯数学家帕乔里将黄金分割律誉为“神赐的比例”。文艺复兴时期,许多艺术大师把黄金分割与人们的审美联系在一起。黄金分割更被广泛的应用于艺术创作之中。 黄金分割是古希腊人的重大发现,表现为数学命题:已知一线段,试把它分成两部分,使长的一段为短的一段和原线段的比例中项。 例:设原线段常为a,分成长为一段长为x,那么短的一段长为a-x。如图

黄金分割及其应用

让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被 称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。经研究发现菲波那契数列相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更常接近黄金 分割比的. 一 五角星是 36度,这样割的数值为三大算学家欧道克萨斯首先提出黄金 分割。所谓黄金分割,指的是把长为L 的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。 黄金分割在我国是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音

精品毕业论文数学中的黄金分割美

目录 中文摘要 (Ⅰ) 英文摘要 (Ⅱ) 前言 (1) 一、黄金分割理论发展概况 (2) (一)黄金分割概述 (2) (二)黄金分割理论的产生和发展 (3) 二、现实生活中的黄金分割 (4) (一)人体中的黄金分割 (4) (二)自然界中的黄金分割 (5) (三)艺术作品中的黄金分割 (6) (四)著名建筑中的黄金分割 (7) (五)自然现象中的黄金分割 (8) 三、黄金分割与证券投资 (9) (一)家庭理财中的黄金分割法 (9) (二)证券价格预测中的黄金分 (9) (三)波浪理论 (10) 结束语 (12)

参考文献 (13) 致谢 (15)

数学中的黄金分割美 摘要 黄金分割是世界上最优美的比例之一,是将一条线段分成不相等的两段,使较小线段与较大线段的比等于较大线段与整个线段的比。黄金分割作为自然界普遍存在的客观规律,是自然界现象之间必然的、实质性的、不断重复着的关系,体现了客观世界统一性与多样性的辩证关系,它在科学研究中被广泛运用。斐波纳契数列又称黄金分割数列,是一个蕴含黄金分割关系的神奇数列。黄金分割广泛存在于我们的生活中。在股市上,黄金分割率为艾略特所创的波浪理论所套用,被投资人士广泛采用。波浪理论的数学基础,就是在13世纪发现的斐波那契数列。本文通过对黄金分割在不同领域的运用和不同地方的体现进行分析,去揭示那些神秘现象,体现了人与社会、人与自然的和谐。 关键词:黄金分割;斐波那契数列;波浪理论

The beauty of Golden section in mathematics Abstract Golden section is one of the world's most beautiful proportions. It is a ratio that the smaller line segment divided by the longer one equals to the longer one divided by the whole line segment, when divide a line segment into two. Golden section, as the common objective law of nature, is a kind of relationship that is inevitable substantive and repeated between natural phenomenas. It reflects the dialectical relationship between unity and diversity of the objective world and is widely used in scientific research. Fibonacci Sequence, also known as golden sequence, is a magic sequence which contains golden section relation. Golden section widely exists in our lives. In the stock market, golden section is used by Eliot to create wave theory, and is widely used by investors. The mathematical basis of the wave theory is Fibonacci sequence, which is fond in the 13th century. This article reveals the mysterious phenomenons through the analysis of the use of golden section in many different areas, reflects the harmony between human and society and between human and nature. Keywords:Golden Section;Fibonacci Sequence;wave principle

黄金分割点的应用

黄金分割点的应用 摘要:黄金律历来被染上瑰丽诡秘的色彩,被人们称为"天然合理"的最美妙的形式比例。世界上到处都存在数美,对于我们的眼睛,尤其是对我们学习音乐的人的耳朵来说,"美是到处都有的,不是缺乏美,而是缺少发现"。 关键词:黄金分割应用比例美感一、什么是黄金分割 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 二、发现历史 公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。他认为所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波那契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,5/8,8/13,13/21,...近似值的。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲

人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代由华罗庚提倡在中国推广。 三、黄金分割点的应用 希腊的自然科学研究影响西方文化和文明的发展,他们重视分析、分解、假设、推理、推导、实验、验证等思维方式。这与东方重视整体、模糊处理、直觉综合、和谐大同、“仁者爱人”等思维方式和思想有明显的差别。胡适在“中国的文艺复兴”一文中说“当孟子在对人性的内在美德进行理论探讨时,欧几里德正在完善几何学,正在奠定欧洲的自然科学的基础。”这种说法不全面,东方的中华文明有过

生活中的黄金分割结题报告论文

生活中的黄金分割结题 报告论文 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

高二年研究性学习数学课题结题论文 一、标题“生活中的黄金分割”结题报告论文 二、署名杨晶 三、内容提要和关键词 [摘要]黄金分割是一种数学上的比例关系。黄金分割具有严格的比例性,艺术性,和谐性,蕴藏着丰富的美学价值。应用时一般取,就像圆周率在应用时取一样。黄金分割在生活的体现很多,在摄影、医学、生物界、建筑甚至人体,处处都有黄金分割。 [关键词]黄金分割和谐美应用 四、前言: 在我们的生活中处处有数学,而历史悠久的可说是黄金比例了。它可追溯到古代雅典的巴特农神庙,它之所以显得那么和谐,是因为这个建筑符合黄金比例。在我们的生活中,摄影、医学、生物界、建筑甚至人体,处处都有黄金分割。普通书的长宽比是黄金分割;有些植物的花瓣及主干上枝条的生长,也隐藏着黄金分割;一些名画、雕塑、摄影作品的主题,大多在画面的…处。艺术家们认为弦乐器的琴马放在琴弦的…处,能使琴声更加柔和甜美。由此可见黄金比例的历史和作用。我们以“生活中的黄金分割”为课题展开研究,进行近一步的了解,使学生了解生活中有数学,从而热爱数学,喜欢数学。 五、主要研究内容、方法: 1、内容:生活中的黄金分割 2、方法:1)去图书关查找资料,翻阅图书或相关的书籍

2)上网查找相关的资料 3)询问老师;小组成员之间相互探讨 3、研究涉及的知识基础、所需资源: 数学的黄金比例,斐波那契数列知识,杂志,网上所涉及的黄金比例的内容。 4、研究思路、活动步骤及进度安排: 1.将学生按班级分组,并分配各组成员的工作及调查方向。(第1周) 2.到图书馆查找有关黄金比例的书籍,并摘抄有关内容。(第2-3周) 3.到网上查找相关黄金比例内容。(第2——3周) 4.整理资料,小组组员讨论,发表观点,互相展示研究成果。(第4周) 5、研究方法 成员分工以网络及图书馆书籍查找有关资料,并对其进行汇总、筛选、加工,成员根据其结果讨论分析,并展示研究成果。 六、研究结果 1、艺术中的黄金数 “",这个比值因具有美学价值而被古希腊美学家运用到造型艺术中,因为凡符合黄金分割律的形体总是最美的形体。在美术史上曾经把它作为经典法则来应用。有许多美术家运用它创造了不少不朽的着名。例如达·芬奇的《蒙娜丽莎》、拉斐尔笔下温和俊秀的圣母像,都有意无意地用上了这个比值。

黄金分割律的概念及应用

由林静发表于2006-3-7 14:41:08 一、定义:黄金分割律,又名黄金率,即把已知线段A分成两部分a和b,如下图: 使其中一部分b对于全部A的比等于其余一部分a对于这部分b的比。用公式表示为:b除以A=a除以b;股票技术分析的专业者将该项定律引用在股票市场,用已知的股价高低点来探讨股价变动的未知高低点,发现准确性不低,因而成为投资人预测未来股价变动完成点的主要测试标准之一。 二、在股市中的应用 黄金分割律在股市中的应用是有前提条件的,那就是:假设“股价的走势是属于从哪儿来的必定回到哪儿去。” 看下图,截取了沪市大盘2002年的年底至今的一段走势图

图中划圈的地方说明了股价从哪儿涨上去的最后还是跌回到了原来启动的位置。 当然,也许有人会说,股价不都是从哪来的回哪里去哦,有创新高的,有创新低的,这两种情况我们以后讨论,今天先讨论从哪儿来然后又回哪儿去的。 因为有了这个“从哪儿来回那儿去”的假设,所以,我们讨论黄金分割律在股市中的应用。 比如,当某只股票从3元涨到了5元,然后开始下跌,它能跌到哪儿是我们关心的问题。假定最后它还要跌回到3元(这就是从哪儿来回到哪儿去),但是,它可能不是一下子就跌到3元,中间也许会出现反弹,那么,它首先跌到什么价位才会出现反弹呢?要分析这个问题,我们就用到了我上面说的分割线段的原理,也就是黄金分割率。 (未完待续) 由林静发表于2006-3-9 17:59:58

如上图中左侧:是浦发银行(600000)2002年12月底到2003年11月中时期的走势图,图中A是一个波段的上涨过程,在其随后的下跌过程中,又跌回到了它上涨之前的起点,在下跌过程中,不是一下子跌回到起点的,而是分了两次,第一次,在完成跌幅a之后,出现了反弹,然后才跌了b,跌到了起点。其实,在刚开始下跌的时候,我们是不会知道它将要跌到什么位置的,那么第一次下跌了a,问题的关键是:我们如何计算它首先下跌了a幅度之后才开始出现反弹呢?要探讨这个问题,我们还要再次讨论黄金分割律。 我在上期讲过,黄金分割就是把一根线段分两段,而且,还有两个数学推理表达式:A=a+b;b/A=a/b;黄金分割还有一个假设,就是假设b/A=0.618 ;为什么等于0.618呢,这是从美学角度看的,也就是说,把线段按照这个比例分割,比较符合视觉习惯,看起来,美观。后来,人们又进一步把0.618 引申,又有了0.191 ;0.382 ;0.5;0.809;等有了股市,人们把黄金分割作为一个指标引进股市中的时候,就变成了如下图样子:

相关文档
最新文档