原子物理与量子力学复习要点11级

原子物理与量子力学复习要点11级
原子物理与量子力学复习要点11级

《原子物理与量子力学》总结

1. 给出波函数的各种表达形式,如三角函数式,指数形式,δ函数式,能求出粒子的几率

分布,是否可以归一化,是否符合实际的物理问题。

三角式:)]cos[t A ω-?=r k Ψ,改写为波函数的建立:德布罗意提出的物质波使实物粒子的量子状态可以用波函数)](2cos[

ν

λλ

π

ψt

x A x -

=描述,扩展到空间()z y,x,r ,得

指数式:)

(i e

t A ω-?=r k Ψ,由波矢,动量与能量的关系得

)(i

e

Et A -?=r p Ψ

利用傅里叶积分将波包展开成一系列平面单色波的叠加可以得到:

()p t ,Et d e

)()π2(1

)(i

2

/3-??

=

r p p r Ψ

?波包

利用狄拉克δ函数的性质:??

?=∞

≠=-0

000

)(δx x x x x x ;

1d )(δ-0=-?

+∞

x x x 得

δ函数式:)(i 00e d 21)(δx x k k x x -+∞

-?

=

-

π

波函数服从统计性的规律,即波函数在空间某一点的强度和在该点找到的例子几率成比例,即描述粒子的波矢几率波。通过运算可对波函数进行归一化:

定义:微观粒子的运动状态用波函数),(t r ψ描述,代表t 时间在r 处的概率波幅,其中,

2),(t r w ψ=表示概率密度,在复数形式下,),(),(),(2

t r t r t r ψψψ?=*。全空间内概率

满足

1d ),(2

=?τψt r V

此式为波函数的归一化条件。

由空间的相对性,在同一状态下的波函数相对概率相等有2

21221)

,()

,(),(),(t r t r t r C t r C ψψψψ≡,因此

可对波函数进行归一化: 若:

0d ),(2

>=?

A t r V

τψ则1d ),(1

2

=?τψt r A

V

,得归一化的波函数A r /)(ψ。 例如可将∞≤≤+=-x x x 0,)2i 1()(1

ψ进行归一化,解答如下:

波函数为2412i 12i 11)(x x x x +-=+=

ψ,共轭复数为2

412i 1)(x x x ++=

*

ψ 概率密度2

411)()(x

x x w +=?=*

ψψ 4π

2arctan 21d 411d 0

2

==+=∞

?

?

x x x x w 故归一化的波函数为1)2i 1(π

2)(-+=

x x ψ。

2. 经典物理遇到的困难是什么,如光电效应的困难,黑体辐射的困难。

经典物理遇到的困难即量子论的提出:主要有 一.黑体辐射

(1) 黑体及黑体辐射

定义:黑体——在任何温度下都能全部吸收落在其表面上的一切辐射的理想吸收体 定义:表面亮度:

),()

,()

,(T E T a T e λλλ=其中),(T e λ为物体对光的发射本领;),(T a λ为物体

对光的吸收本领,二者比值),(T E λ为表面亮度。 (2) 黑体辐射的基本规律

定理:斯特番—波尔兹曼公式:4

0)(T T R σ=,其中83

24

51067.5152-?==h

c k πσ—S-B 常数 定理:维恩分布定律:T

a e

B T /3),(γννρ-=

定理:瑞利—金斯公式:KT c

hv T ?=3

2

8),(πνρ 定理:维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即

m λ T=b (常量);

困难:辐射能量密度与频率的平方成正比,频率较低时能量密度与频率符合瑞利—金斯公式,

高频时不满足,紫外端发散形成“紫外灾难”。 二.康普顿效应

X 射线被轻原子量的物质(康普顿用的是石墨靶)散射后,其波长的增量随散射角的不同而变化,这种现象称为康普顿效应,对应的波长称为康普顿波长。如右图:

由经典物理学可知,当自由电子0m 静止,一波长为0λ光子与之碰撞,光子将沿着X 方向呈φ角,Y 方向呈θπ-角度散射出去,在X 、Y 各自的方向上动量、能量均守恒,有: X 方向上:

θφλ

λcos cos 0

mv h

h

+=

(1)

Y 方向上: θφλ

sin sin mv h

= (2) 能量守恒:

200

)(c m m hc

hc

-=λ

λ (3)

其中,λ为康普顿散射波长;c 为光速,由上述3式解得:

2

sin 2200φ

λλc m h =

- (4) 此式说明光具有粒子性,其波长的改变与物质无关,仅取决于入射角,式中常数项即为康普顿波长c

m h

0c =

λ。 带入数值,kg 101.9310-?=m ,s J 1063.634??=-h ,m/s 100.38

?=c 得

fm 10428.23c ?=λ(m 10fm 115-=)

困难:经典物理告诉我们,电荷以与电磁波一直的频率振动,并向外辐射电磁波形成散射波,散射波的频率与入射波相等,波长不变;事实是散射波长是变化的,且波长与散射物质无关,只与散射光和入射光的角度有关,散射角越大,波长改变量0λλλ-=?越大。 三.光电效应与普朗克的量子假说

1.普朗克黑体辐射公式:1)/ex p(18),(3

3-?=KT h c hv T νπνρ修正项为1

)/ex p(-KT h νν

。 此式使黑体辐射每个波段都吻合。普朗克提出解释:对于一定频率的电磁辐射,物体只能一

次吸收或发射能量为ε的单元,即物体的能量只能是某一个能量单位的整数倍,每一个最小的能量单元称为能量子,对于频率为ν的电磁波能量子为νεh =,式中

s J 1063.634??=-h ,称为普朗克常数。

困难:能量子的概念说明物体的能量是不连续的,与经典物理的理论是相悖的。

2.光电效应:金属被光照射后,金属内的电子吸收光的能量逃逸出金属,从而使金属带上正电的现象。电子称为光电子,形成的电流为光电流。

实验发现,当入射光线的强度和频率一定时,加速电压越大,光电流越强,但当增大到一定的程度后,无论怎样增加,光电流不再增大,此式的光电流称为饱和光电流。在频率一定的情况下,饱和光电流与光强成正比。

困难:经典物理学可知,光的频率和振幅越大,电子更易吸收能量逸出其表面,然而实验表明,当频率低于一定数值,光电效应不会发生,这与经典物理是不同的。 四.原子结构与玻尔理论

(1)原子核式结构模型及其验证: 1)密立根油滴实验测量到电子的数值C 10

6.119

-?=e 通过实验得电子质量

kg 101.931-?=e m 。

2)α散射实验验证了卢瑟福的原子核式结构模型

(2)氢原子的分立谱线 定理:里德伯公式 ]11[

1

22~

m

n R H -==

λ

ν ,其中71009.1?=H R —里德伯常数 解释:(1)氢原子的光谱由许多分立现状光谱构成;(2)任意一条谱线的波数可用上式表示,

即两项光谱之差;(3)每一项光谱是某一自然数的函数。 (3) 玻尔定态假设 1. 定态假设:

1)原子长时间处于一些稳定状态(定态);2)各定态有相对应的能量,且数值分立(能量不连续);3)原子能量的改变通过跃迁来实现。

2.跃迁能量假设:12E E h -=ν,其中h 为普朗克常量。

3.角动量量子化假设

电子绕核运动的角动量是量子化的,即 n vr m L n ==e ,其中π

2h

= ,n 为量子数,r 为量子化的轨道半径。

4.电子椭圆轨道的量子化:

普适条件的量子化条件:nh q p =?

d ,其中p,q 分别是广义动量与广义坐标。此式为量子化通则。

困难:按照经典物理的理论,物质释放能量将使质量减小,换句话说,电子将会最终落在原子核上,原子时不稳定的,事实是原子核通过强大的库仑力维持体系的完整。

1. 物质波的提出

1)光的干涉衍射偏振说明了光的波动性,而康普顿效应,光电效应和黑体辐射说明了光的粒子性,爱因斯坦描述光子νh E =,由于λν/c =而πνω2=,由质能方程2

mc E =带入得

k h

p ==

λ

,其中k 为波矢量大小,且λ

π

2≡

k ,改写矢量式得k n p ==

λ

h

2)法国科学家德布罗意提出物质波有波粒二象性,即一切实物粒子都有波动性,且波长p h /=λ

以上就是经典物理遇到的困难。

3. 结合杨氏双缝干涉实验对几率波的解释,态叠加原理。 (1) 托马斯·杨双缝干涉

假定两束相干光(满足双缝干涉,频率相同,相位差恒定,强度相差不大),相遇时在空间形成干涉现象,此时波函数为)cos(111?ωψ+=t A ;)cos(222?ωψ+=t A ,合成的运动将由振幅和相位决定,并存在以下关系:

)cos(221212

2212??-++=A A A A A ;2

2112

211cos cos sin sin tan ?????A A A A ++=

,经一段时间τ后两

束光叠加后的光强)cos(2d 1

21212

2210

22

??ττ

-++==

=?

A A A A t A A I ,由此,光强将决定

于相位差。当两束光强度相差不大,振幅可视为相等,π??2

)

12(21+=

-n 时,出现干涉极小值,光强0=I ,由于光线的差异将在挡板上呈现明暗相间的条纹。 (2) 双缝干涉的量子论解释

明暗程度的不同反应了光子到达挡板数量上的差异,光子多的地方出现明条纹,反之则出现暗条纹,同理,使用其他的粒子,由于粒子自身的干涉条件,同样会出现相似的概率分

布。因此双缝干涉的实质是光子在挡板上分布的几率不同,通过波函数可以将这种状态反映出来。

(3)态叠加原理:

若1ψ、2ψ为描述两个不同状态的波函数,则他们的线性叠加态2211ψψψC C +=表示例子既可能处于1ψ态又可能处于2ψ态,且处于这两个态的概率分别为21C 、2

2C 。但是,波函数与态叠加原理仅是量子力学的基本假设。

4. 写出薛定谔方程的几种形式,会对简单的物理问题进行求解,如:一维无限深势阱,方

势阱,一维谐振子,氢原子问题。 (1)薛定谔方程的建立及形式: 由平面单色波波函数)(i

e

Et A -?=r p Ψ

可知,方程两边同时对时间求偏导可得:

ΨΨE t

=??

i , 定义:由梯度算符r

??=

?有?= i -p ,此为动量算符,对应的由mE p 22

=得222?-=m E 即为能量算符。加入粒子势能),(t U r 得),(22

2t r U m E +?-=

薛定谔方程:(1)ψψ]2[i 2

2U m

t +?-

=?? 引入力学算符A

?,结合经典力学中哈密顿能量的表达式 U m

p U T H +=+=22

,定义量子力学中的哈密顿算符)(22

2r U m

H +?-=∧

得到薛定谔方程:(2)ψψE H =∧。 由于哈密顿算符在不同理论中具有不同的形式,故薛定谔方程也可写成:

拉普拉斯方程:(3)ψψE x U x m =+-

)](d d 2[22

2 ;ψψE x U m

=+?-)](2[22 电磁场中带电粒子的薛定谔方程:(4)ψφψ])?(21[i 2

q c

q m t +-=??A P

其中,A B ??=,A 为电磁场的矢势,A v P c

q m +

=,P

?为正则动量,φ为磁标势。 引入矩阵力学的理论,特定的表象下,量子力学中的薛定谔公式可用矩阵表述:

(5)????

? ??????? ?

?=????? ??

212221121121i a a H H H H a

a

.

说明:薛定谔方程在量子力学中地位等同于牛顿第二定律。适用于非相对论情况。

x

U 0(x )

x =a

(2) 利用薛定谔方程可求解一维定态问题: 1) 一维无限深势阱: 势函数:???><∞

≤≤=a

x x a x x U ,000)(,其中a 为势

阱宽度,

求解:阱内薛定谔方程112

2

2d d 2ψψE x

m =- , a x ≤≤0

阱外薛定谔方程2222

2

2d d 2ψψψE x

m =?∞+- ,a x x ><,0

边界条件)0()0(21ψψ=,)()(21a a ψψ= 阱外解得:0)(2=x ψ 对于阱内:令22

2

mE k =

化方程为012

''1=+ψψk 通解kx B kx A x sin cos )(1+=ψ,带入第二个边界条件,取a n k π=带入2

2

2 mE k =得22222ma n E π =,可以看出,当n 取不同的整

数,能量是量子化的。归一化波函数得??

?

??><≤≤=a x x a x x a

n a x ,000sin 2)(πψ 2)半无限深势阱

势函数:???

??><<<∞=a

x U a x x x U ,0,

00,

)(0

在x <0粒子势能为无穷大,

0)

()(d )

(d 22

22<=?∞+-x x E x x x m ψψψ

边界条件00)(≤=x x ψ

0

区域粒子势能为零

a x x E x x m <<=-0)

(d )

(d 22

2

2

ψψ

x

U 0(x )

U 0

x =a

类似于简谐振子的方程,其通解为a x B kx A x ≤≤+=0)sin()(ψ,其中2

22 mE

k =

代入边界条件得:0sin )0(==B A ?,故0=B a x kx

A x ≤≤=∴0sin )(?

3、在x >a 区域粒子势能不为零(0U ),a x x E U m

x x ≥-=)()(2d )(d 022

2ψψ

即a x x x

x ≥=)(d )

(d 22

2ψκψ,式中)(2022E U m

-=

κ其通解为 a x C B x x x ≥+=-,

e e )(κκψ

在x →∞时波函数应有限,所以C=0,a x B x x

≥=∴-,e )(κψ

结果说明粒子仍有一定的概率进入a x ≥区域

波函数标准化条件要求在边界上波函数的一阶导数连续,否则会导致二阶导数发散,薛定谔方程失去意义

a x a x x x

x x x x ===∴

|)(/d )

(d |)(/d )(d 2211ψψψψ κ-=)

sin()cos(ka ka k ,故1)(sin )(cos 02222-==E U k ka ka κ,有02

)(sin U E ka =

其中)(2022

E U m -=

κ;2

22

mE k =,2π≥ka 结果说明若势阱内有束缚态,能量是量子化的解该超越方程可求出各能量 势阱内至少有一个束缚态的基态能的条件是:22

2 mE k =

;2

1)(sin 2

π≥≤ka ka 或 022

22

2328U ma h ma E ≤== π

a x B x x ≥=∴-,

e )(κψ

结果说明粒子会出现在x =a 的表层附近. 3) 一维无限深方势阱:

势函数????

?≥∞

<=a

x a x x U 0

)(

定态薛定谔方程:

???????≥=+-<=-a x E U x

m a x E x m ψψψ

ψψ

02

222

22

d d 2d d 2 ,当∞→0U 时,

根据波函数的连续性和有限性条件得:a x >=0

ψ,

x

x =a /2

U 0

U 0

x =a/2

U 0(x )

令22 mE =

α,薛定谔方程化为: a x x

<=+0d d 22

2ψαψ

,方程通解:

a x x B x A x <+=ααψcos sin )(,利用边界条件:00==-==a

x a

x ψ

ψ

得:

0cos sin 0

cos sin =+-=+a B a A a B a A αααα,解得???????===)(20cos 0为奇数n a n a A παα;???

????

===)

(20sin 0为偶数n a n a B π

αα。

带入能量本征方程: 3,2,1,82

2

22==n ma

n E π 显然,一维无限深方势阱的能谱是分立谱,这个分离的能谱就是量子化了的能级。 当1=n 时,2

2

218ma E π=

为粒子的基态,此本征值能量称为零点能,是束缚在无限深方势阱

内粒子所具有的最低能量。 归一化以后的波函数为:

4) 一维有限深方势阱

势函数???

?

??

?≥

<

=2

20)(0a x U a

x x U 讨论0U E <情况,在2

a

x ≥

的区域,薛定谔方程化为: 2

022

2/)(220d d E U m a x x

-=>

=+βψβψ

在±∞→x 时,ψ有界的解为:

???

?

??

?<

>

=-2e 2e )(a x B a

x A x x x ββψ, 在2

a

x <

区域,薛定谔方程为: ??

???>≤-=a x a

x a x a n a x 0)(2sin 1)(πψ

《大学物理aii》作业 no08 量子力学基出 参考解答

《大学物理AII 》作业No.08量子力学基础 班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求**************************** 1、掌握物质波公式、理解实物粒子的波粒二象性特征。 2、理解概率波及波函数概念。 3、理解不确定关系,会用它进行估算;理解量子力学中的互补原理。 4、会用波函数的标准条件和归一化条件求解一维定态薛定谔方程。 5、理解薛定谔方程在一维无限深势阱、一维势垒中的应用结果、理解量子隧穿效应。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、德布罗意在爱因斯坦光子理论的启发下提出,具有一定能量E 和动量P 的实物粒子也具波动性,这种波称为(物质)波;其联系的波长λ和频率ν与粒子能量E 和动量P 的关系为(νh E =)、(λh p =)。德布罗意的假设,最先由(戴维 孙-革末)实验得到了证实。因此实物粒子与光子一样,都具有(波粒二象性)的特征。 2、玻恩提出一种对物质波物理意义的解释,他认为物质波是一种(概率波),物质波的强度能够用来描述(微观粒子在空间的概率密度分布)。 3、对物体任何性质的测量,都涉及到与物体的相互作用。对宏观世界来说,这种相互作用可以忽略不计,但是对于微观客体来说,这种作用却是不能忽略。因此对微观客体的测量存在一个不确定关系。其中位置与动量不确定关系的表达式为(2 ≥???x p x );能量与时间不确定关系的表达式为(2 ≥???t E )。 4、薛定谔将(德布罗意公式)引入经典的波函数中,得到了一种既含有能量E 、动量P ,又含有时空座标的波函数),,,,,(P E t z y x ψ,这种波函数体现了微观粒子的波粒二象的特征,因此在薛定谔建立的量子力学体系中,就将这种波函数用来描述(微观粒子的运动状态)。

第十三章 量子力学基础2作业答案

(薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1. (基础训练 10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,2 1 -). (B) (2,0,0,21). (C) (2,1,-1,2 1 -). (D) (2,0,1,21). ★提示:2p 电子对应的量子数n = 2; l = 1,只有答案(C )满足。 [ C ]2. (基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3. (自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4. (自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如图19-6所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. ★提示:隧道效应。 二. 填空题 1. (基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是___4___. ★提示:主量子数n =2的L 壳层上最多可容纳228n =个电子(电子组态为2622s p ),如 仅考虑自旋磁量子数2 1 =s m 的量子态,则能够填充的电子数为上述值的一半。 图 19-6

清华大学大学物理习题库量子物理

清华大学大学物理习题库:量子物理 一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为??。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为??的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2??的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ??- E K (C) h ??- E K (D) h ??+ E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量?与反冲电子动能E K 之比??/ E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若?粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则?粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ]

原子物理学试题汇编

部分高校原子物理学试题汇编 试卷A(聊师) 一、选择题 1.分别用1MeV的质子和氘核(所带电荷与质子相同,但质量是质子的两倍)射向金箔,它们与金箔原子核可能达到的最小距离之比为: A.1/4;B.1/2; C.1; D.2. 2.处于激发态的氢原子向低能级跃适时,可能发出的谱总数为: ; ; ; . 3.根据玻尔-索末菲理论,n=4时氢原子最扁椭圆轨道半长轴与半短轴之比为: ;; ; . 电子的总角动量量子数j可能取值为: 2,3/2; 2,5/2; 2,7/2; 2,9/2. 5.碳原子(C,Z=6)的基态谱项为 ;;;. 6.测定原子核电荷数Z的较精确的方法是利用 A.α粒子散射实验; B. x射线标识谱的莫塞莱定律; C.史特恩-盖拉赫实验; D.磁谱仪. 7.要使氢原子核发生热核反应,所需温度的数量级至少应为(K) ;;;. 8.下面哪个粒子最容易穿过厚层物质? A.中子; B.中微子; C.光子; D.α粒子 9.在(1)α粒子散射实验,(2)弗兰克-赫兹实验,(3)史特恩-盖拉实验,(4)反常塞曼效应中,证实电子存在自旋的有: A.(1),(2); B.(3),(4); C.(2),(4); D.(1),(3). 10.论述甲:由于碱金属原子中,价电子与原子实相互作用,使得碱金属原子的能级对角量子数l的简并消除. 论述乙:原子中电子总角动量与原子核磁矩的相互作用,导致原子光谱精细结构. 下面判断正确的是: A.论述甲正确,论述乙错误; B.论述甲错误,论述乙正确; C.论述甲,乙都正确,二者无联系;

D.论述甲,乙都正确,二者有联系. 二、填充题(每空2分,共20分) 1.氢原子赖曼系和普芳德系的第一条谱线波长之比为( ). 2.两次电离的锂原子的基态电离能是三次电离的铍离子的基态电离能的( )倍. 3.被电压100伏加速的电子的德布罗意波长为( )埃. 4.钠D 1线是由跃迁( )产生的. 5.工作电压为50kV 的X 光机发出的X 射线的连续谱最短波长为( )埃. 6.处于4D 3/2态的原子的朗德因子g 等于( ). 7.双原子分子固有振动频率为f ,则其振动能级间隔为( ). 8.Co 原子基态谱项为4F 9/2,测得Co 原子基态中包含8个超精细结构成分,则Co 核自旋I=( ). 9.母核A Z X 衰变为子核Y 的电子俘获过程表示( )。 10.按相互作用分类,τ粒子属于( )类. 三、问答题(共10分) 1.(4分)玻尔氢原子理论的定态假设. 2.(3分)何谓莫塞莱定律? 3.(3分)原子核反应的三阶段描述. 四、计算题(50分) 1.(10分)一个光子电离处于基态的氢原子,被电离的电子重新和质子结合成处于第一激发态的氢原子,同时放出波长为626埃的光子.求原入射光子的能量和自由电子动能. 2.(10分)钠原子3S 和3P 谱项的量子亏损分别为和. 试确定钠原子的电离能和第一激发电势. (R=109735cm -1) 3.(10分)试讨论钠原子漫线系的一条谱线(2D 3/2→2P 1/2)在弱磁场中的塞曼分裂,作出能级分裂跃迁图. 4.(10分)2211Na 的半衰期为年.试求:(1)平均寿命和衰变常数;(2)5mg 22 11Na 减少到1mg 需要多长时间?(ln10=,ln2= 5.(10分)试计算中子与O 17 8核发生(n,2n)反应的反应能和阈能. (M(O 178)=,M(O 168)=,M(O 15 8)=,m n = 试 卷 B (聊 师) 1. α粒子以速率V 0对心碰撞电荷数为Z 的原子核,α粒子所能达到的离核的最小距离等于多少? 2.根据玻尔—索末菲理论,氢原子的主量子数n=3时,电子可能有几种不同形状的轨道,它们相应的轨道角动量,能量是否相等? 3. 单电子原子关于l ,j 的电偶极跃迁定则是什么? 4.基态为4F 3/2的钒原子,通过不均匀横向磁场将分裂为几束?基态钒原子的有效磁矩μJ 等于多少玻尔磁子μB ? 5.试求出磷(P,Z=15).氯(Cl,Z=17)原子基态电子组态和基态谱项. 6.d 电子与s 电子间为LS 耦合,试求出可能合成的总轨道角动量L P 大小. 二、1.假定1H 36Cl 分子的转动常数B=10.7cm -1,试计算最低的两个转动能级的能量

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

大学物理 量子物理基础知识点总结

大学物理 量子物理基础知识点 1.黑体辐射 (1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。 (2)斯特藩—玻尔兹曼定律:4 o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设 (1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=?? (2)普朗克黑体辐射公式:2 5 21M T ( )1 hc kt hc e λπλλ =-(,) 3.光电效应和光的波粒二象性 (1)遏止电压a U 和光电子最大初动能的关系为:21 2 a mu eU = (2)光电效应方程: 21 2 h mu A ν= + (3)红限频率:恰能产生光电效应的入射光频率: 00V A K h ν= = (4)光的波粒二象性(爱因斯坦光子理论):2mc h εν==;h p mc λ ==;00m = 其中0m 为光子的静止质量,m 为光子的动质量。 4.康普顿效应: 00(1cos )h m c λλλθ?=-= - 其中θ为散射角,0m 为光子的静止质量,1200 2.42610h m m c λ-= =?,0λ为康普顿波长。 5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()221 11 T T H R m n n m m n ν λ ==-=->()()(), % (2)频率条件: k n kn E E h ν-= (3) 角动量量子化条件:, 1,2,3...e L m vr n n ===

其中 2h π = ,称为约化普朗克常量,n 为主量子数。 (4)氢原子能量量子化公式: 122 13.6n E eV E n n =-=- 6.实物粒子的波粒二象性和不确定关系 (1)德布罗意关系式: h h p u λμ= = (2)不确定关系: 2 x p ??≥ ; 2 E t ??≥ 7.波函数和薛定谔方程 (1)波函数ψ应满足的标准化条件:单值、有限、连续。 (2)波函数的归一化条件: (,)(,)1V r t r t d ψψτ* =? (3)波函数的态叠加原理: 1122(,)(,)(,)...(,)i i i r t c r t c r t c r t ψψψψ=++= ∑ (4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ??? =-?+????? 8.电子自旋和原子的壳层结构 (1)电子自旋: 1,2 S s = = ;1, 2 z s s S m m ==± 注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构 ①原子核外电子可用四个量子数(,,,l s n l m m )描述: 主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。 角量子数:0,1,2,...1l n =- 它决定电子轨道角动量。 磁量子数:0,1,2,...l m l =±±± 它决定轨道角能量在外磁场方向上的分量。 自旋磁量子数:1 2 s m =± 它决定电子自旋角动量在外磁场方向上的分量。

原子物理第三章量子力学初步答案

第三章 量子力学初步 3.1 波长为ο A 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得: 动量为:1 24 10 34 10 63.610 1063.6----???=?= = 秒 米千克λ h p 能量为:λ/hc hv E == 焦耳 15 10 834 10 986.110 /10310 63.6---?=???=。 3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少? 解:德布罗意波长与加速电压之间有如下关系: meV h 2/ =λ 对于电子:库仑 公斤,19 31 10 60.110 11.9--?=?=e m 把上述二量及h 的值代入波长的表示式,可得: ο οο λA A A V 1225.010000 25.1225.12== = 对于质子,库仑 公斤,19 27 10 60.110 67.1--?=?=e m ,代入波长的 表示式,得:ο λ A 3 19 27 34 10 862.210000 1060.110 67.1210 626.6----?=??????= 3.3 电子被加速后的速度很大,必须考虑相对论修正。因而原来ο λ A V 25.12=的电子德布罗意波长与加速电压的关系 式应改为: ο λA V V )10 489.01(25.126 -?-= 其中V 是以伏特为单位的电子加速电压。试证明之。 证明:德布罗意波长:p h /=λ

对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:2 22 02 2c p c Km K =+ 而被电压V 加速的电子的动能为:eV K = 2 2 002 2 2 /)(22)(c eV eV m p eV m c eV p += += ∴ 因此有: 2 002112/c m eV eV m h p h + ?= =λ 一般情况下,等式右边根式中2 02/c m eV 一项的值都是很小 的。所以,可以将上式的根式作泰勒展开。只取前两项,得: )10 489.01(2)41(26 02 00V eV m h c m eV eV m h -?-= - = λ 由于上式中ο A V eV m h 25.122/0≈ ,其中V 以伏特为单位,代回原 式得: ο λA V V )10 489.01(25.126 -?-= 由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。 3.4 试证明氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波波长。上述结果不但适用于圆轨道,同样适用于椭圆轨道,试证明之。

如何看待_原子物理学_中的玻尔理论与量子力学

第20卷 第2期太原教育学院学报V o l.20N o.2 2002年6月JOURNAL OF TA I YUAN INSTITUTE OF EDUCATI ON Jun.2002如何看待《原子物理学》中的 玻尔理论与量子力学 赵秀琴1, 贺兴建2 (1.太原师范学院,山西太原030031;2.太原市教育学院,山西太原030001) 摘 要:《原子物理学》在物理学的教育和学习中有着特殊的地位,特别是量子论建立初期的知识体系,是物理学获得知识、组织知识和运用知识的典范,通过量子论建立过程的物 理定律、公式后面的思想和方法的教学,使学生在原子物理的学习过程中掌握物理学的思想 和方法。 关键词:原子物理学;玻尔理论;量子力学 中图分类号:O562 文献标识码:A 文章编号:100828601(2002)022******* 《原子物理学》在物理学的教育和学习中有着特殊的地位,特别是量子论建立的初期知识体系,是物理学获得知识、组织知识和运用知识的典范,通过不断地提出经典物理无法解决的问题,提出假设、建立模型来解释并提出新的结论和预言,再用新的实验检验、修改或推翻,让学生掌握这种常规物理学的发展模式和过程。通过量子论的建立过程的物理定律、公式后面的思想和方法的教学,使学生在原子物理的学习过程中掌握物理学(特别是近代物理学)的思想和方法。 一、玻尔理论的创立 19世纪末到20世纪初,物理学的观察和实验已开始深入到物质的微观领域。在解释某些物理现象,如黑体辐射、光电效应、原子光谱、固体比热等时,经典物理概念遇到了困难,出现了危机。为了克服经典概念的局限性,人们被迫在经典概念的基础上引入与经典概念完全不同的量子化概念,从而部分地解决了所面临的困难。最先是由普朗克引入了对连续的经典力学量进行特设量子化假设。玻尔引入了原子定态概念与角动量量子化规则取得了很大的成果,预言了未激发原子的大小,对它的数量级作出了正确的预言。它给出了氢原子辐射的已知全部谱线的公式,它与概括了发射谱线实验事实的经验公式完全一致。同时,它还包括那些在建立理论时尚未知的谱线,它用几个物理量解释了里德伯经验常数。它向我们提供了一个形象化的系统(尽管有点冒险),并且对与发射有关的事件建立了一种物理秩序。玻尔模型把量子理论推广到原子上,一方面给普朗克的原子能量量子化的思想提供了物理根据,另一方面也解决了经典物理学回答不了的电子轨道的稳定性问题。 收稿日期:2001206212 作者简介:赵秀琴(1966-),女,山西太原人,太原师范学院讲师,教育学硕士。

清华大学《大学物理》习题库试题及答案__10_量子力学习题

一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红 限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射, 发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作 半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0 λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子 能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各 谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为 -0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时 氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨 道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ] 11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?=ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 [ ] 12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定 粒子动量的精确度最高的波函数是哪个图? [ ]

大学物理 量子物理基础知识点总结

大学物理量子物理基础知识点 1.黑体辐射 (1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。 (2)斯特藩—玻尔兹曼定律:4 o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设 (1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是: h εν= 其中h 为普朗克常数,其值为346.6310h J s -=?? (2)普朗克黑体辐射公式:2 5 21 M T ( )1 hc kt hc e λπλλ =-(,) 3.光电效应和光的波粒二象性 (1)遏止电压a U 和光电子最大初动能的关系为:21 2 a mu eU = (2)光电效应方程: 21 2 h mu A ν= + (3)红限频率:恰能产生光电效应的入射光频率: 00V A K h ν= = (4)光的波粒二象性(爱因斯坦光子理论):2 mc h εν==;h p mc λ ==;00m = 其中0m 为光子的静止质量,m 为光子的动质量。 4.康普顿效应: 00(1cos )h m c λλλθ?=-= - 其中θ为散射角,0m 为光子的静止质量,1200 2.42610h m m c λ-= =?,0λ为康普顿波长。 5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()221 11 T T H R m n n m m n ν λ ==-=->()()(), % (2)频率条件: k n kn E E h ν-= (3) 角动量量子化条件:, 1,2,3...e L m vr n n ===

其中2h π = ,称为约化普朗克常量,n 为主量子数。 (4)氢原子能量量子化公式: 12213.6n E eV E n n =-=- 6.实物粒子的波粒二象性和不确定关系 (1)德布罗意关系式: h h p u λμ= = (2)不确定关系: 2x p ??≥ ; 2 E t ??≥ 7.波函数和薛定谔方程 (1)波函数ψ应满足的标准化条件:单值、有限、连续。 (2)波函数的归一化条件: (,)(,)1V r t r t d ψψτ*=? (3)波函数的态叠加原理: 1122(,)(,)(,)...(,)i i i r t c r t c r t c r t ψψψψ=++=∑ (4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ???=-?+????? 8.电子自旋和原子的壳层结构 (1)电子自旋: 1 ,2 S s = = ;1, 2 z s s S m m ==± 注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构 ①原子核外电子可用四个量子数(,,,l s n l m m )描述: 主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。 角量子数:0,1,2,...1l n =- 它决定电子轨道角动量。 磁量子数:0,1,2,...l m l =±±± 它决定轨道角能量在外磁场方向上的分量。 自旋磁量子数:1 2 s m =± 它决定电子自旋角动量在外磁场方向上的分量。 ②在多电子原子中,决定电子所处状态的准则是泡利不相容原理和能量最低原理。 9.X 射线的发射和发射谱 (1)X 射线谱是由两部分构成的,即连续谱和线状谱(也称标识谱)。 (2)连续谱是由高速电子受到靶的制动产生的韧致辐射;线状谱是由高速电子的轰击而使靶原子内层出现空位、外层电子向该空位跃迁所产生的辐射。

大学物理量子力学习题附答案

1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0 λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ] 11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?= ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 [ ] 12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定 粒子动量的精确度最高的波函数是哪个图?

大学物理量子物理作业答案

No.6 量子物理 (运输) 一 选择题 1. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足 (A )λ≤ 0eU hc (B )λ≥0 eU hc (C )λ≤hc eU 0 (D )λ≥hc eU 0 [ A ] 2. 光子能量为 0.5 MeV 的X 射线,入射到某种物质上而发生康普顿散射.若反冲电子的动能为 0.1 MeV ,则散射光波长的改变量?λ与入射光波长λ0之比值为 (A ) 0.20. (B) 0.25. (C) 0.30. (D) 0.35. [ B ] 3.氢原子从能量为-0.85eV 的状态跃迁到激发能(从基态到激发态所需的能量)为-10.19eV 的状态时,所发射的光子的能量为 (A )2.56 eV (B )3.41 eV (C )4.26 eV (D )9.34 eV [ A ] 4. 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h . (B) )/(eRB h . (C) )2/(1eRBh . (D) )/(1eRBh . [ A ] 5. 关于不确定关系 ≥??x p x ()2/(π=h ),有以下几种理解: (1) 粒子的动量不可能确定. (2) 粒子的坐标不可能确定. (3) 粒子的动量和坐标不可能同时准确地确定. (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是: (A) (1),(2). (B) (2),(4). (C) (3),(4). (D) (4),(1). [ C ] 6.描述氢原子中处于2p 状态的电子的量子态的四个量子数(n ,l ,m l ,m s )可能取值为 (A )(3,2,1,-21) (B )(2,0,0,21 ) (C )(2,1,-1,-21) (D )(1,0,0,2 1 )

最新大学物理-量子力学基础习题思考题及答案

大学物理-量子力学基础习题思考题及答案

习题 22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。 解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式, 22224 0E c p m c =+ 可得 p = = = h p λ= = 834 -= 131.210m -=? (2)对于质子,利用德布罗意波的计算公式即可得出: 3415h 9.110m p λ--====? 22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。 解:(1)用非相对论公式: m meU h mE h 123 193134108.71025106.1101.921063.622p h ----?=???????====λ(2)用相对论公式: 4 20222c m c p +=E eU E E k ==-20c m

m eU eU c m h mE h 122 20107.722p h -?=+= == ) (λ 22-3.一中子束通过晶体发生衍射。已知晶面间距nm 1032.72-?=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角. 解:先利用德布罗意波的计算公式即可得出波长: 34 11 h 1.410p m λ--====? 再利用晶体衍射的公式,可得出:2sin d k ?λ= 0,1,2k =… 1111 1.410sin 0.095227.3210k d λ?--?===?? , 5.48?= 22-4.以速度m/s 1063?=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长 A 1=λ,电子在此场中应该飞行多长的距离? 解:34 10 h 110p m λ--====? 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。 22-5.设电子的位置不确定度为 A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。 解:由测不准关系: 34 2410 1.0510 5.2510220.110h p x ---??===???? 由波长关系式:E c h =λ 可推出: E E c h ?=?λ 2 151.2410E E E J hc pc λ-??===?? 22-6.氢原子的吸收谱线 A 5.4340=λ的谱线宽度为 A 102 -,计算原子处在被激发态上的平均寿命。 解:能量hc E h νλ == ,由于激发能级有一定的宽度ΔE ,造成谱线也有一定宽度Δλ,两 者之间的关系为:2 hc E λ λ?=? 由测不准关系,/2,E t ??≥平均寿命τ=Δt ,则

大学物理量子物理

15. 量子物理 班级 学号 姓名 成绩 一、选择题 1.黑体辐射、光电效应及康普顿效应皆突出表明了光的 (A)波动性; (B)粒子性; (C)单色性; (D)偏振性。 ( B ) 解:黑体辐射、光电效应及康普顿效应皆突出表明了光的粒子性。 2.已知某金属中电子逸出功为eV 0,当用一种单色光照射该金属表面时,可产生光电效应。则该光的波长应满足: (A))/(0eV hc λ≤; (B) )/(0eV hc λ≥; (C))/(0hc eV λ≤; (D) )/(0hc eV λ≥。( A ) 解:某金属中电子逸出功 0000000 eV c ch W h eV h eV ννλλ==?==?= 产生光电效应的条件是 000 ch eV ννλλ≥?≤= 3.康普顿效应说明在光和微观粒子的相互作用过程中,以下定律严格适用 (A)动量守恒、动能守恒; (B)牛顿定律、动能定律; (C)动能守恒、机械能守恒; (D)动量守恒、能量守恒。 ( D ) 解:康普顿效应说明在光和微观粒子的相互作用过程中,动量守恒、能量守恒严格适用。 4.某可见光波长为550.0nm ,若电子的德布罗依波长为该值时,其非相对论动能为: (A)5.00×10-6eV; (B)7.98×10-25eV; (C)1.28×10-4eV; (D)6.63×10-5eV 。 ( A ) 解:根据h p h p λλ=?=,c <

大学物理量子物理试题及答案

电气系\计算机系\詹班 《大学物理》(量子物理基础)作业 6 一 选择题 1. 以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,然后保持光的频率不变,增大照射光的强度,测出其光电流曲线在图中用虚线表示,满足题意的图是 [ B ] 2. 用X 射线照射物质时,可以观察到康普顿效应,即在偏离入射光的各个方向上观察到散射光,这种散射光中 (A)只包含有与入射光波长相同的成分。 (B) 既有与入射光波长相同的成分,也有波长变长的成分,波长的变化只与散射方向有关,与散射物质无关。 (C) 既有与入射光相同的成分,也有波长变长的成分和波长变短的成分,波长的变化既与散射方向有关,也与散射物质有关。 (D)只包含着波长变长的成分,其波长的变化只与散射物质有关,与散射方向无关。 [ B ] 3. 关于不确定关系η≥??x p x ()2/(π=h η),有以下几种理解: (1) 粒子的动量不可能确定. (2) 粒子的坐标不可能确定. (3) 粒子的动量和坐标不可能同时准确地确定. (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是: (A) (1),(2). (B) (2),(4). (C) (3),(4). (D) (4),(1). [ C ] 二 填空题 1.当波长为300 nm (1 nm=10-9m )的光照射在某金属表面时,产生的光电子动能范围为0 ~ ×10-19 J 。此金属的遏止电压为|U a |= V ;红限频率ν0= ×1014 Hz 。 【解】由于光电子的最大初动能为J m 192m 100.4v 2 1-?=, 由光电效应方程A m h +=2 m v 2 1ν,所以红限频率 2.在康普顿散射实验中,当出射光子与入射光子方向成夹角θ= π 时,光子的频率减小得最多;当θ= 0 时,光子的频率保持不变。 解:2020.024sin 2θ λλλ?=-=? 3.氢原子的部分能级跃迁示意如图,在这些能级跃迁中, (1)从n= 4 的能级跃迁到n= 1 的能级时所发射的光子的波长最短; (2)从n= 4 的能级跃迁到n= 3 的能级时所发射的光子的频率最小。 n=4 n=3 n=2 n=1

大学物理下必考15量子物理知识点总结

§15.1 量子物理学的诞生—普朗克量子假设 一、黑体辐射 物体由其温度所决定的电磁辐射称为热辐射。物体辐射的本领越大,吸收的本领也越大,反之亦然。能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为黑体。 二、普朗克的量子假设: 1. 组成腔壁的原子、分子可视为带电的一维线性谐振子,谐振子能够与周围的电磁场交换能量。 2. 每个谐振子的能量不是任意的数值, 频率为ν的谐振子,其能量只能为hν, 2 hν, …分立值, 其中n = 1,2,3…,h = 6.626×10 –。 3. 当谐振子从一个能量状态变化到另一个状态时, 辐射和吸收的能量是hν的整数倍。 §15.2 光电效应 爱因斯坦光量子理论 一、光电效应的实验规律 金属及其化合物在光照射下发射电子的现象称为光电效应。逸出的电子为光电子,所测电流为光电流。 截止频率:对一定金属,只有入射光的频率大于某一频率ν0时, 电子才能从该金属表面逸出,这个频率叫红限。 遏制电压:当外加电压为零时, 光电流不为零。 因为从阴极发出的光电子具有一定的初动能,它可以克服减速电场而到达阳极。当外加电压反向并达到一定值时,光电流为零,此时电压称为遏制电压。 21 2 m m eU =v 二、爱因斯坦光子假说和光电效应方程 1. 光子假说 一束光是一束以光速运动的粒子流,这些粒子称为光子; 频率为v 的每一个光子所具有的能量为h εν=, 它不能再分割,只能整个地被吸收或产生出来。 2. 光电效应方程 根据能量守恒定律, 当金属中一个电子从入射光中吸收一个光子后,获得能量hv ,如果hv 大于该金属的电子逸出功A ,这个电子就能从金属中逸出,并且有 上式为爱因斯坦光电效应方程,式中2m 1 2 m v 为光电子的最大初动能。当h A ν< 时,电子无法获得足够能量脱离金属表面,因此存在 三、光(电磁辐射)的波粒二象性 光子能量2E mc h ν==

相关文档
最新文档