函数最值教案

函数最值教案
函数最值教案

函数最值教案

教学目标

理解函数最大(小)值的定义,强调最值是函数的整体性质;

掌握简单的求函数最值的方法(图象法、配方法、单调性法);

会利用求函数最值的方法解决一些简单的实际问题,如:用料最省、利润最大、效率最高等最值问题.

教学重难点

教学重点:

函数最大值、最小值定义的理解;

掌握求函数最值的三种基本方法:图象法、配方法、单调性法;

会利用求函数最值的方法解决一些简单的实际问题.

教学难点:

利用单调性法求函数的最值;

利用求函数最值的方法解决现实生活中的最值问题.

教学过程

(一)观察图象,导入新课

让学生自己动手画出函数2

y x =-和函数||y x =-的图象,引导学生观察两个函数图象的共同点,引导启发学生发现这两个函数的图象都有一个最高点(0,0),并告诉学生在数学上将这个最高点称为函数在定义域上的最大值.进一步提出问题:根据你对图象的观察,能否试着归纳出函数最大值的定义.

根据学生对函数最大值定义的归纳情况,给出函数最大值的准确定义.

一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:

(1)对于任意的x I ∈,都有()f x M ≤;

(2)存在0x I ∈,使得0()f x M =.

那么,就称M 是函数()y f x =的最大值.

(二)列举实例,理解内涵

问题一:

2是函数的最大值吗?为什么?

[设计意图]强调概念中的“任意”二字.

问题二:4是问题一中函数的最大值吗?为什么?

[设计意图]强调最大值必须能取到.

问题三:常值函数1y =有没有最大值?如果有最大值是多少?

[设计意图]强调函数的最大值虽然是唯一的,但与最大值对应的自变量的值并不一定是唯一的.

引导学生归纳出函数的最大值就是函数图象最高点所对应的纵坐标.

(三) 自己动手,类比研究

让学生根据研究函数最大值的方法、手段、过程,给出函数最小值的概念及对概念内涵的理解.

(四)实际应用,巩固提高

讲解课本30页例3(图象法,配方法)

题后小结:

(1)函数最值的图形特征:函数的最大(小)值是函数图像上最高(低)点的纵坐标;

(2)二次函数2(0)y ax bx c a =++≠的最值:

①0a <,当2b x a =-时,2

max 44ac b y a

-=. ②0a >,当2b x a =-时,2

max 44ac b y a

-=. (3)若()f x 在[,]a b 上为增函数,则min max ()(),()()f x f a f x f b ==;

若()f x 在[,]a b 上为减函数,则min max ()(),()()f x f b f x f a ==.

(4)若()f x 值域为[,]a b ,则min max (),()f x a f x b ==.

31页例4(图象法,单调性法,其中详细讲解单调性法的推理过程及解题步骤). 课堂练习:课本32页第5题,39页第5题

小结

学生自己作小结,教师归纳:

函数最大(小)值定义的理解;求函数最值的三种方法

作业

1.39P B 组1 已知函数22

()2,()2([2,4])f x x x g x x x x =-=-∈.

(1)求(),()f x g x 的单调区间; (2)求(),()f x g x 的最小值.

2.39P B 组2 如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建

造围墙的材料总厂是30m (单位: m )为多少才能使所建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?

3.已知函数],1[,86)(2a x x x x f ∈+-=,且)(x f 的最小值为)(a f ,则实数a 的取值范围是 .

答案 ]3,1( 提示: 数形结合.

4.若函数32)(2+-=x x x f 在)0](,0[>a a 上最大值是3,最小值是2,则实数a 的取值范围是 .

答案 ]2,1[ 提示: 2)1(32)(22+-=+-=x x x x f .①当10<+-=+-=a a a a a f .∴当10<

3)0(=f ,∴当1≥a 时必有)()0(a f f ≥,即???≤-≥.

02,12a a a 21≤≤∴a ,此时函数32)(2+-=x x x f 在],0[a 上的最小值为2,最大值为3.综上所述, a 的取值范围是]2,1[.

5.已知函数)(x f 对任意R y x ∈,,总有),()()(y x f y f x f +=+0

>x 且当时,3

2)1(,0)(-=

(2)求)(x f 在]3,3[-上的最大值和最小值.

解 (1)令)()(,0)0(,0x f x f y x f y x -=--====可得令,

在R 上任取21x x >,则).()()()()(212121x x f x f x f x f x f -=-+=-

.0,2121>-∴>x x x x

又.0)()(,0)(,0)(02121<-<-∴<>x f x f x x f x f x 即时,

由定义可知)(x f 在R 上为单调递减函数.

(2))(x f 在R 上是减函数,]3,3[)(-∴在x f 上也是减函数.

)3(-∴f 最大,)3(f 最小.

.2)3

2(3)1()1()1()1()2()3(-=-?=++=+=f f f f f f 2)3()3(=-=-∴f f .

即)(x f 在]3,3[-上最大值为2,最小值为2-. 课后反思

《函数的最大(小)值与导数》教案完美版

《函数的最大(小)值与导数》教案 §1.3.3 函数的最大(小)值与导数(1) 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习引入: 1.极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 2.极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 3.极大值与极小值统称为极值 注意以下几点: (ⅰ)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点. 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值. 5. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x ) 在这个根处无极值. 二、讲解新课: 1.函数的最大值和最小值

二次函数教案二次函数教案

二次函数教案-二次函数教案 二次函数教学重点和难点重点:二次函数的图象的作法和性质难点:理解二次函数的图象的性质教学过程设计从学生原有的认知结构提出问题上一节课,我们把一个二次函数通过配方化成顶点式来研究了二次函数中的a、h、k 对二次函数图象的影响。但我科觉得,这样的恒等变形运算量较大,而且容易出错。这在实际问题中的意义。随堂练习书本P 50 随堂练习《练习册》P 25小结二次函数图象的对称轴和顶点坐标公式。作业书本P 55 习题1教学后记 二次函数能够利用二次函数的对

称轴和顶点坐标公式解决问题教学重点和难点重点:二次函数的图象的作法和性质难点:理解二次函数的图象的性质教学过程设计从学生原有的认知结构提出问题上一节课,我们把一个二次函数通过配方化成顶点式来研究了二次函数中的a、h、k对二次函数图象的影响。二次函数教案但我科在实际问题中的意义。随堂练习书本P 50 随堂练习《练习册》P 25小结二次函数图象的对称轴和顶点坐标公式。作业书本P 55 习题1教学后记 二次函数的应用3、体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。教学重点和难点:重点:二次函数在最优化问题中的应用。难点:例1是从现实问题中建立二次函数模型,学生较难理解。教学过程:由合作学习3引入:拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为那么当竖档AB多少时,长方形框架ABCD的面积最大.图案(4)小结:实际

问题转化为数学模型。作业:作业本。 二次函数的图象和性质主备人 用案人授课时间月日总第课时课题课型新授课教学目标会用描点法画出二次函数的图像;2.知道抛物线的对称轴与顶点坐标;重点会画形如的二次函数的图像难点的二次函数的顶是由抛物线怎样移动得到的?四、总结、扩展一般的二次函数,都可以变形成的形式,其中:1.a能决定什么?怎样决定的?2.它的对称轴是什么?顶点坐标是什么? 二次函数主备人用案人授课时间月日总第课时课题课型新授课教学目标 1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义 2.了解二次函数关系式,会确定二次函数关系式中各项的系数。重点经历探索二次函数关间的函数关系;⑶菱形的两条对角线的和为26cm,求菱形的面积S与

函数的值域和最值教案

函数的值域和最值教案 【教学目标】1.让学生了解求函数值域(最值)常用的方法; 2.让学生了解各种方法的适用题型,并能灵活运用各种方法解函数的值域. 【教学重点】直接法、利用函数单调性求值域(最值)、数形结合法 【教学难点】判别式法和数形结合方法的使用 【例题设置】例1(强调定义域的重要性),其它例题主要指出各种方法适用的题型及 注意点. 【教学过程】 第一课时 〖例1〗已知函数3()2log f x x =+(19x ≤≤),求函数22()[()]()g x f x f x =+的最值. 错解:令3log [0,2]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当2t =时,max 2()()|22t g x g x ===. 错因分析:当2t =时,9x =,2(9)[(9)](81)g f f =+无意义.产生错误的原因主要是忽略了定义域这个前提条件. 正解:由2 1919 x x ≤≤??≤≤?,得()g x 的定义域为[1,3],3log [0,1]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当1t =时,max 2()()|13t g x g x ===. ★点评:1.求函数的值域(最值)同样得在定义域上进行; 2.运用换元法解题时,一定要注意元的取值范围,这步较容易被忽略; 3.配方法是求“二次函数类”值域的基本方法,形如2()()()F x af x bf x c =++的函数的值域问题,均可用此法解决.该法常与换元法结合使用. 〖例2〗 求下列函数的值域: ⑴ 121 21 x x y ++=+; 法一:(直接法)1212(21)11 2212121 x x x x x y +++-===-+++ 由20x >,211x +>,1 0121 x < <+,故12y <<,即原函数的值域为(1,2)

《函数的单调性和最大(小)值》教学设计【高中数学人教A版必修1(新课标)】

《函数的单调性与最大(小)值》教学设计 第一课时函数的单调性 通过观察一些函数图像的特征,形成增(减)函数的直观认识。再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义。掌握用定义证明函数单调性的步骤。函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。 【知识与能力目标】 1、结合具体函数,了解函数的单调性及其几何意义; 2、学会运用函数图像理解和研究函数的性质; 3、能够应用定义判断函数在某区间上的单调性。 【过程与方法目标】 借助二次函数体验单调性概念的形成过程,领会数形结合的思想,运用定义进行判断推理,养成细心观察,严谨论证的良好的思维习惯。 【情感态度价值观目标】 通过直观的图像体会抽象的概念,通过交流合作培养学生善于思考的习惯。 【教学重点】 函数单调性的概念。 【教学难点】 判断、证明函数单调性。 从观察具体函数图像引入,直观认识增减函数,利用这定义证明函数单调性。通过练习、交流反馈,巩固从而完成本节课的教学目标。

(一)创设情景,揭示课题 德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究。他经过测试,得到了以下一些数据: 以上数据表明,记忆量y 是时间间隔t 的函数。艾宾浩斯根据这些数据描绘出了著名的“艾宾浩斯遗忘曲线”, 如图: 思考1:当时间间隔t 逐渐增大你能看出对应的函数值y 有什么变化趋势?通过这个 试验,你打算以后如何对待刚学过的知识? 思考2:“艾宾浩斯遗忘曲线”从左至右是逐渐下降的,对此,我们如何用数学观点进行解释? (二)研探新知 观察下列各个函数的图像,并说说它们分别反映了相应函数的哪些变化规律:

函数的最值问题教案

知识点单调性的应用,最值问题 使学生理解函数的最值是在整个定义域上来研究的,是函数单调性的应用. 教学目标 通过渗透数形结合的思想方法,掌握求函数最值的方法. I ■ ■ 教学重点函数最大(小)值的定义和求法. 教学难点如何求一个具体函数的最值. 函数的最大(小)值的定义,是借助于二次函数及其图像引出的,概念的出现仍然是遵循特殊到一般的原则?鉴于学生对于二次函数已经有了一个初步的了解,因此本节课多从学生接触过的二次函数入手,这样能使学生容易找到最高点和最低点?但这只是感性上的认识,要培养学生能用数学语言描述函数最值的概念,通过对概念的辨析,真正让学生理解最值概念的内涵,同时,在做题时多培养学生画图的能力,体会到数形结合的魅力 【知识导图】 教学过程 「、导入 【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状^态。 导入的方法很多,仅举两种方法: ①情境导入,比如讲一个和本讲内容有关的生活现象; ②温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学 生建立知识网络。 提供一个教学设计供讲师参考: ⑴由于某种原因,2019年北京奥运会开幕式时间由原定的7月25日推迟到8月8 日, 请查阅资料说明做出这个决定的主要原因

⑵通过查阅历史资料研究北京奥运会开幕式当天气温变化情况. 课上通过交流,可以了解到开幕式推迟主要是天气的原因, 北京的天气到8月中旬,平 均气温、平均降雨量和平均降雨天数等均开始下降, 比较适宜举办大型国际体育赛事. 下图 是北京市某年8月8日一天24小时内气温随时间变化的曲线图. 问题:观察图形,能 息? 预案:(1)当天最高温 多少以及何时达到; (2) 在某时刻 (3) 某些时段 时 段温度降低. 在生活中,我们关心很多数据的变化规律, 了解这些数据的变化规律, 对我们的生活是 很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 设计意图:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小?从而引入 最大值、最小值的概念. 二、知识讲解 【教学建议】通过前面的引导,得到函数最值的定义,建议老师在引导学生得到最大值的定 义以后,可以让学生来类比写出最小值的定义: 前提 设函数y = f (x)的定义域为1,如果存在实数 M 满足 条件 ① 对于任意X",都有f (x)兰M ; ② 存在x^ I ,使得f (x 0) = M ① 对于任意x",都有f (X) A M ; ② 存在x ^e I ,使得f(xj = M 结论 M 为最大值 M 为最小值 考点数图I 数的意点大值P 的坐标 (x,y)的意义:横坐标x 是自变量的取值,纵坐标y 是自变 量为x 时对应的函数值的大小. (1)图象上最高点的纵坐标是所有函数值中的最大值,即函数的最大值. 得到什么信 度、最低温度是 的温度; 温度升高,某些

最大值与最小值教案

班级:高二( )班 姓名:____________ 教学目标: 1.使学生理解函数的最大值和最小值的概念,掌握可导函数f (x )在闭区间上所有点(包括端点a ,b )处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 教学重点: 利用导数求函数的最大值和最小值的方法. 教学过程: 一、问题情境 1.问题情境.函数极值的定义是什么? 2.探究活动.求函数f (x )的极值的步骤. 二、建构数学 1.函数的最大值和最小值. 观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象. 图中)(1x f ,35(),()f x f x 是极小值,24(),()f x f x 是极大值. 函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x . 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明: (1)在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. 如函数x x f 1)(=在),0(+∞内连续,但没有最大值与最小值; (2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的; (3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个. 2.利用导数求函数的最值步骤: 由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了. 设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:

二次函数教案设计(全)

课题:1.1二次函数 教学目标: 1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。 2、理解二次函数的概念,掌握二次函数的形式。 3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。 4、会用待定系数法求二次函数的解析式。 教学重点:二次函数的概念和解析式 教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。 教学设计: 一、创设情境,导入新课 问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗? 问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度? 这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题) 二、 合作学习,探索新知 请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm ) (2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2) (一)教师组织合作学习活动: 1、先个体探求,尝试写出y 与x 之间的函数解析式。 2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。 (1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000 (3) y = (60-x-4)(x-2)=-x 2+58x-112 (二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。 x

《函数的最大(小)值与导数》教案

《函数的最大(小)值与导数》教案 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习回顾: 1.极值的概念: 极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 2. 判断函数)(x f y =的极值的方法: 解方程0)(='x f .当0)(0='x f 时: (1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,那么)(0x f 是极小值. 3. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不

函数的最大值和最小值教案

函数的最大值和最小值教案 1.本节教材的地位与作用 本节主要研究闭区间上的持续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f是闭区间[a,b]上的持续函数,那么f在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等严重的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为严重的意义. 2.教学重点 会求闭区间上持续开区间上可导的函数的最值. 3.教学难点 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不烂熟,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法. 4.教学关键 本节课突破难点的关键是:理解方程f′=0的解,包含有指定区间内全部可能的极值点. 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: .知识和技能目标 理解函数的最值与极值的区别和联系.

进一步明确闭区间[a,b]上的持续函数f,在[a,b]上必有最大、最小值. 掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 了解开区间内的持续函数或闭区间上的不持续函数不一定有最大、最小值. 理解闭区间上的持续函数最值存在的可能位置:极值点处或区间端点处. 会求闭区间上持续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 认识事物之间的的区别和联系. 培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. 提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课在帮助学生回顾肯定了闭区间上的持续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的持续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行合适的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学. 【学法指导】 对于求函数的最值,高三学生已经具备了优良的知识基础,剩下的问题就是有没有一种更大凡的方法,能运用于更多更繁复函数的求最值问题?教学设计中注意激发起学生剧烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

沪教版(上海)初中数学九年级第一学期 本章小结 二次函数的复习 教案

二次函数的复习 一、教学目标: 1、复习二次函数的概念。 2、复习二次函数的图像与性质:开口方向、对称轴、顶点坐标、图像的上升与下降、图像的平移、会根据图像判断a 、b 、c 的符号。 3、复习配方法与待定系数法。 4、带领学生一起探讨二次函数与相似三角形、锐角三角比的综合运用,提升解决数学综合问题的能力。 二、教学重点与难点: 重点:复习二次函数的图像与性质,复习配方法与待定系数法。 难点:培养学生从图像中获取信息的能力,从中体会数形结合、分类讨论等数学思想。 三、教学过程: (一)、知识整理 1(1)、二次函数的概念. (2)、怎样判断一个函数是否是二次函数? 2、二次函数的图像与性质 复习2ax y =、c ax y +=2、2)(m x a y +=、k m x a y ++=2)(、c bx ax y ++=2 的开口方向、对称轴、顶点坐标、图像的上升与下降。练习: (1)当m =时,m m x m y -+=2)1(是二次函数。 (2)二次函数y=x(1-x)的开口方向向. (3)二次函数y=(x-1)2+2的图像的最(高或低)点的坐标是。

(4)二次函数y=2x 2+4图像的顶点坐标是 ,对称轴是。(5)二次函数y=2x 2+4x 图像的顶点坐标是,对称轴是。 (6)抛物线y=-x 2-2x+1在对称轴左侧部分y 随x 的增大而 。(7)已知二次函数m x m x y 4)2(32-+-=的对称轴是y 轴,则m=_________。 3、二次函数的上下、左右平移 练习:将抛物线2 )2(1--=x y 进行上下或左右两次平移后,使它的顶点移到点(3,-1)的位置,平移的方法可以是先向______平移______个单位,再向______平移______个单位。4、二次函数的图像信息:会根据图像判断a 、b 、c 的符号; 根据图像上的点求函数解析式; 判断y 随x 的增大与减小等 练习1:二次函数c bx ax y ++=2的图象如下图所示,则下列结论正确的是() A..0 ,0,0>>>c b a B.0 ,0,0><>

示范教案(单调性与最大(小)值第课时)

示范教案(1.3.1 单调性与最大(小)值 第2课时) 导入新课 思路1.某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m 2的矩形新厂址,新厂址的长为x m ,则宽为x 10000m ,所建围墙ym ,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y 最短? 学生先思考或讨论,教师指出此题意在求函数y=2(x+ x 10000),x>0的最小值.引出本节课题:在生产和生活中,我们非常关心花费最少、用料最省、用时最省等最值问题,这些最值对我们的生产和生活是很有帮助的.那么什么是函数的最值呢?这就是我们今天学习的课题.用函数知识解决实际问题,将实际问题转化为求函数的最值,这就是函数的思想,用函数解决问题. 思路 2.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①f(x)=-x+3;②f(x)=-x+3,x ∈[-1,2]; ③f(x)=x 2+2x+1;④f(x)=x 2+2x+1,x ∈[-2,2]. 学生回答后,教师引出课题:函数的最值. 推进新课 新知探究 提出问题 ①如图1-3-1-11所示,是函数y=-x 2-2x 、y=-2x+1,x ∈[-1,+∞)、y=f(x)的图象.观察这三个图象的共同特征. 图1-3-1-11 ②函数图象上任意点P(x,y)的坐标与函数有什么关系? ③你是怎样理解函数图象最高点的? ④问题1中,在函数y=f(x)的图象上任取一点A(x,y),如图1-3-1-12所示,设点C 的坐标为(x 0,y 0),谁能用数学符号解释:函数y=f(x)的图象有最高点C ? 图1-3-1-12 ⑤在数学中,形如问题1中函数y=f(x)的图象上最高点C 的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义? ⑥函数最大值的定义中f(x)≤M 即f(x)≤f(x 0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征? ⑦函数最大值的几何意义是什么?

人教初中数学九上二次函数小结与复习教案_3

第22章二次函数

般式与顶点式的互化关系: y =ax 2+bx +c ————→y =a(x +b 2a )2+4ac -b 2 4a (2)强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。 (3)抛物线的平移抓住关键点顶点的移动,分析完例题后归纳; 投影展示: 强化练习: (1)抛物线y =x 2+bx +c 的图象向左平移2个单位。再向上平移3个单位,得抛 物线y =x 2-2x +1,求:b 与c 的值。 (2)通过配方,求抛物线y =12 x 2-4x +5的开口方向、对称轴及顶点坐标,再画出图象。 3.知识点串联,综合应用。 例:如图,已知直线AB 经过x 轴上的点A(2,0),且 与抛物线y =ax 2相交于B 、C 两点,已知B 点坐标为(1, 1)。 (1)求直线和抛物线的解析式; (2)如果D 为抛物线上一点,使得△AOD 与△OBC 的面 积相等,求D 点坐标。 学生活动:开展小组讨论,体验用待定系数法求函数 的解析式。 教师点评:(1)直线AB 过点A(2,0),B(1,1),代入解析式y =kx +b ,可确定 k 、b ,抛物线y =ax 2过点B(1,1),代人可确定a 。 求得:直线解析式为y =-x +2,抛物线解析式为y =x 2。 (2)由y =-x +2与y =x 2,先求抛物线与直线的另一个交点C 的坐标为(-2, 4), S △OBC =S △ABC -S △OAB =3。 ∵ S △AOD =S △OBC ,且OA =2 ∴ D 的纵坐标为3 又∵ D 在抛物线y =x 2上,∴x 2=3,即x =± 3 ∴ D(-3,3)或(3, 3) 强化练习:函数y =ax 2(a ≠0)与直线y =2x -3交于点A(1,b),求: (1)a 和b 的值; (2)求抛物线y =ax 2的顶点和对称轴; (3)x 取何值时,二次函数y =ax 2中的y 随x 的增大而增大, (4)求抛物线与直线y =-2两交点及抛物线的顶点所构成的三角形面积。 二、课堂小结 1.让学生反思本节教学过程,归纳本节课复习过的知识点及应用。 2。投影:完成下表:

高等数学(上册)教案15 函数的极值与最值

第3章 导数的应用 函数的极值与最值 【教学目的】: 1. 理解函数的极值的概念; 2. 掌握求函数的极值的方法; 3. 了解最大值和最小值的定义; 4. 掌握求函数的最值的方法; 5. 会求简单实际问题中的最值。 【教学重点】: 1. 函数极值的第一充分条件,第二充分条件; 2. 导数不存在情况下极值的判定; 3. 函数最值的求解方法; 4. 函数的最值的应用。 【教学难点】: 1. 导数不存在情况下极值的判定; 2. 区分函数的驻点、拐点、极值点以及最值点; 3. 区分极值点与极值,最值点与最值; 4. 函数的最值的应用。 【教学时数】:2学时 【教学过程】: 3.3.1函数的极值 从图3-7可以看出,函数)(x f y =在点2x 、5x 处的函数值2y 、5y 比它们近旁各点的函数值都大;在点1x 、4x 、6x 处的函数值1y 、4y 、6y 比它们近旁各点的函数值都小,因此,给出函数极值的如下定义: 一般地, 设函数)(x f y =在0x 的某邻域内有定义,若对 于0x 邻域内不同于0x 的所有x ,均有)()(0x f x f <,则称)(0x f 是函数)(x f y =的一个极大值,0x 称为极大值点;若对于0x 邻域内不同于0x 的所有x ,均有 )()(0x f x f >,则称)(0x f 是函数)(x f y =的一个极小值,0x 称为极小值点. 函数的极大值与极小值统称为极值,极大值点和极小值点统称为极值点. 注意 可导函数的极值点必是它的驻点,但反过来是不成立的,即可导函数的驻点不一定是它的极值点. 极值的第一充分条件 设函数)(x f y =在点0x 的邻域内可导且0)(0='x f ,则 (1)如果当x 取0x 左侧邻近的值时,0)(0>'x f ;当x 取0x 右侧邻近的值时, 图3-7 y O x a 1 x 2 x 3x 4x 5 x b

总复习教案:函数的单调性与最值(教师版)

第三节 函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1, x 2 当x 1f (x 2) ,那么就说函 数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12

二次函数知识小结教案

二次函数中考复习专题 教学重点 ◆二次函数的三种解析式形式 ◆二次函数的图像与性质 教学难点 ◆二次函数与其他函数共存问题 ◆根据二次函数图像,确定解析式系数符号 ◆根据二次函数图像的对称性、增减性解决相对应的综合问题 教学过程 一、数学知识及要求层次 二、近年二次函数考题及分值分布情况 纵观近两年调考,样卷及中考试卷,能够发现中考中二次函数的题型有如下一些特点:1、综合性强。初中阶段所有的知识点几乎都能够与二次函数联系起来,特别是与一元二次 方程,几何图形、实际问题的联系更紧密些。 2、分值较重。从07年到08年,二次函数的分值逐年增大。 3、覆盖面广。二次函数的图象性质在调考、样题、中考中都出现了。 三、二次函数知识点

1. 二次函数的定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 例:如果函数y=(m -2)x 4 2 -+m m 是二次函数, 求常数m 的值. 【思路点拨】该函数是二次函数, 那么m 2+m -4=2, 且m -2≠0 解: ∵y=(m -2)x 4 2 -+m m 是二次函数 ∴m 2+m -4=2, 即m 2+m -6=0 解这个一元二次方程, 得m 1=-3, m 2=2 当m=-3时, m -2=-5≠0, 符合题意 当m=2时, m -2=0, 不合题意. ∴常数m 的值为-3. 同类练习:已知:函数x m x m y m m )1()1(2 32 -++=--(m 是常数). m 为何值时,它是二 次函数? 2. 二次函数的解析式三种形式 一般式 : y=ax 2 +bx+c(a ≠0) 顶点坐标(2 4,24b ac b a a --) 顶点式 : 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2 的形式 (a b ac a b x a c bx ax y 44222 2 -+??? ? ?+=++=),其中a b a c k a b h 4422-= - =,. ()k h x a y +-=2 顶点坐标(h, k ) 2 24()24b ac b y a x a a -=-+ 交点式 12()()y a x x x x =-- 对称轴12 2 x x x += 例:1.将二次函数y =x 2 -2x +3,化为y =(x -h )2 +k 的形式,结果为( ) A .y =(x +1)2 +4 B .y =(x -1)2 +4 C .y =(x +1)2+2 D . y =(x -1)2 +2 2.若二次函数52 ++=bx x y 配方后为k x y +-=2 )2(则b 、k 的值分别为( ) A 、0.5 B 、0.1 C 、—4.5 D 、—4.1 3. 二次函数图像与性质 (1)抛物线c bx ax y ++=2 中,c b a ,,的作用 1)a 决定抛物线的开口方向:

高一数学《函数的单调性与最值》第二课时教案

1 函数的单调性与最值 学习目标: 1. 使学生理解函数的最值是在整个定义域上来研究的,它是函数单调性的应用。 2. 会用单调性求最值。 3. 掌握基本函数的单调性及最值。 知识重现 1、一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x ∈I ,都有f(x)≤M ; (2) 存在x 0∈I,使得f(x 0)=M. 那么,我们称M 是函数y=f(x)的最大值(maximum value ) 2、一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (3) 对于任意的x ∈I ,都有f(x)≥ M ; (4) 存在x 0∈I,使得f(x 0)=M. 那么,我们称M 是函数y=f(x)的最小值(minimum value ) 理论迁移 例1 “菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂。如果烟花距地面的高度h 米与时间t 秒之间的关系为h(t )=-4.9t 2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1米)? 例2 已知函数f(x)= 1 x 2-(x ∈[2,6]),求函数的最大值和最小值。 归纳基本初等函数的单调性及最值 1. 正比例函数:f(x)=kx(k ≠0),当k 0时,f(x)在定义域R 上为增函数;当k 0时,f(x)在 定义域R 上为减函数,在定义域R 上不存在最值,在闭区间[a,b ]上存在最值,当k 0时函数f(x)的最大值为f(b)=kb,最小值为f(a)=ka, 当k 0时, ,最大值为f(a)=ka ,函数f(x)的最小值为f(b)=kb 。 2. 反比例函数:f(x)=x k (k ≠0),在定义域(-∞,0) (0,+∞)上无单调性,也不存在最值。当k 0时,在(-∞,0),(0,+∞)为减函数;当k 0时,在(-∞,0),(0,+∞)

函数的最大值与最小值 说课稿 教案 教学设计

函数的最大值与最小值 一、教学目标:理解并掌握函数最大值与最小值的意义及其求法.弄请函数极值与最值的区别 与联系.养成“整体思维”的习惯,提高应用知识解决实际问题的能力. 二、教学重点:求函数的最值及求实际问题的最值. 教学难点:求实际问题的最值.掌握求最值的方法关键是严格套用求最值的步骤,突破难 点要把实际问题“数学化”,即建立数学模型. 三、教学过程: (一)复习引入 1、问题1:观察函数f (x )在区间[a ,b ] 的极大值、极小值和最大值、最小值. 2、问题2:观察函数f (x )在区间 [a ,b ]的极大值、极小值和最大值、最小值. (见教材P30面图1.3-14与1.3-15) 3、思考:⑴ 极值与最值有何关系? ⑵ 最大值与最小值可能在何处取得? ⑶ 怎样求最大值与最小值? 4、求函数y = 44313+-x x 在区间[0, 3]上的最大值与最小值. (二)讲授新课 1、函数的最大值与最小值 一般地,设y =f (x )是定义在[a ,b ]上的函数,在[a ,b ]上y =f (x )的图象是一条连续不断的曲线,那么它必有最大值与最小值。 函数的极值是从局部考察的,函数的最大值与最小值是从整体考察的。 2、求y =f (x )在[a ,b ]上的最大值与最小值,可分为两步进行: ⑴ 求y =f (x )在(a ,b )内的极值; ⑵ 将y =f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 例1.求函数y =x 4-2x 2+5在区间[-2, 2]上的最大值与最小值. 解: y'=4x 3-4x =4x (x +1)(x -1)令y'=0,即 4x (x +1)(x -1)=0, 解得x =-1,0,1.当x 变化时,y',y 的变化情况如下表: 故 当x =±2时,函数有最大值13,当x =±1时,函数有最小值4. 练习 例2.求函数y =5363423+-+x x x 在区间[-2, ∞+]上的最大值与最小值. 例3. 求函数]4,0[,2)(∈+=x x x x f 的最大值和最小值.

二次函数知识点总结教案

二次函数知识点总结 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

函数最值教案

函数最值教案 教学目标 理解函数最大(小)值的定义,强调最值是函数的整体性质; 掌握简单的求函数最值的方法(图象法、配方法、单调性法); 会利用求函数最值的方法解决一些简单的实际问题,如:用料最省、利润最大、效率最高等最值问题. 教学重难点 教学重点: 函数最大值、最小值定义的理解; 掌握求函数最值的三种基本方法:图象法、配方法、单调性法; 会利用求函数最值的方法解决一些简单的实际问题. 教学难点: 利用单调性法求函数的最值; 利用求函数最值的方法解决现实生活中的最值问题. 教学过程 (一)观察图象,导入新课 让学生自己动手画出函数2 y x =-和函数||y x =-的图象,引导学生观察两个函数图象的共同点,引导启发学生发现这两个函数的图象都有一个最高点(0,0),并告诉学生在数学上将这个最高点称为函数在定义域上的最大值.进一步提出问题:根据你对图象的观察,能否试着归纳出函数最大值的定义. 根据学生对函数最大值定义的归纳情况,给出函数最大值的准确定义. 一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,就称M 是函数()y f x =的最大值. (二)列举实例,理解内涵 问题一:

2是函数的最大值吗?为什么? [设计意图]强调概念中的“任意”二字. 问题二:4是问题一中函数的最大值吗?为什么? [设计意图]强调最大值必须能取到. 问题三:常值函数1y =有没有最大值?如果有最大值是多少? [设计意图]强调函数的最大值虽然是唯一的,但与最大值对应的自变量的值并不一定是唯一的. 引导学生归纳出函数的最大值就是函数图象最高点所对应的纵坐标. (三) 自己动手,类比研究 让学生根据研究函数最大值的方法、手段、过程,给出函数最小值的概念及对概念内涵的理解. (四)实际应用,巩固提高 讲解课本30页例3(图象法,配方法) 题后小结: (1)函数最值的图形特征:函数的最大(小)值是函数图像上最高(低)点的纵坐标; (2)二次函数2(0)y ax bx c a =++≠的最值: ①0a <,当2b x a =-时,2 max 44ac b y a -=. ②0a >,当2b x a =-时,2 max 44ac b y a -=. (3)若()f x 在[,]a b 上为增函数,则min max ()(),()()f x f a f x f b ==; 若()f x 在[,]a b 上为减函数,则min max ()(),()()f x f b f x f a ==. (4)若()f x 值域为[,]a b ,则min max (),()f x a f x b ==. 31页例4(图象法,单调性法,其中详细讲解单调性法的推理过程及解题步骤). 课堂练习:课本32页第5题,39页第5题 小结 学生自己作小结,教师归纳: 函数最大(小)值定义的理解;求函数最值的三种方法 作业 1.39P B 组1 已知函数22 ()2,()2([2,4])f x x x g x x x x =-=-∈. (1)求(),()f x g x 的单调区间; (2)求(),()f x g x 的最小值. 2.39P B 组2 如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建

相关文档
最新文档