弯管流量计测量高温气冷反应堆一回路流量的可行性研究

弯管流量计测量高温气冷反应堆一回路流量的可行性研究
弯管流量计测量高温气冷反应堆一回路流量的可行性研究

天然气超声波流量计操作规程.docx

天然气超声波流量计 操作维护规程 中国石油西部管道兰州输气分公司年月 签字职务日期 编制人: 审核人: 批准人:

目录 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 操作内容 (2) 5 风险提示 (5) 6 应急处置 (5) 7 附件 (5)

1 范围 本标准规定了涩宁兰超声波流量计的现场操作方法。 本标准适用于涩宁兰气体超声流量计。 2 规范性引用文件 2.1《中华人民共和国国家标准天然气计量系统技术要求》 GB/T 18603一2001 2.2《用气体超声波流量计测量天然气流量》 GB/T 18604-2001 3 术语和定义 3.1气体超声流量计ultrassonic gas flow meter 安装在流动气体的管道上,并用超声原理测量气体流量的流量计。以下简称流量计。 3.2超声换能器ultrassonic transducer 把声能转化成电信号和反过来把电信号转化成声能的元件。 3.3信号处理单元signal processing unit 是流量计的一部分,由电子元件和微处理器系统组成。 3.4零流量测试zero-flow measure 在无流动介质的情况下,检查流量计的读数是否为零或在流量计本身规定的允许范围内。 3.5分界流量transition gas flow rate 低于该流量要采用扩展误差限的流量值。 3.6实流校准系数flow calibration factor 将流量计进行实流校准测试,并将测试结果按照一定修正方法得出的流量计系数。 3.7最大瞬时压力maximum incidental pressures 在短时间内,计量系统能够承受安全装置极限内的最大工作压力。 3.8流量计算机flow computer 计算和指示标准参比条件下的流量等参数的装置。 3.9转换装置conversion device 由一台流量计算机和各个传感器组成的装置。用于以压力、温度和气体组成或以密度或以发热量为参数进行标准参比条件下体积流量和质量流量及能量流量的转换。 4运行操作内容 4.1超声波流量计运行前的准备 4.1.1流量计的安装应符合设计和说明书的要求;天然气的流量、压力、温度范围符合流量计铭牌的规定; 4.1.2流量计、温度变送器、压力变送器具有有效的检定/校准证书; 4.1.3流量计前后阀门,调压阀、放空阀应关严; 4.1.4流量计法兰连接处应无泄漏,各个探头应牢固连接,探头连接信号线路应无松脱;4.1.5流量计信号处理单元(SPU)单元供电应正常; 4.1.6流量计配套的温度变送器、压力变送器供电应正常,压力变送器阀门应全开; 4.1.7流量计算机工作应正常; 4.1.8在线分析仪上传数据应正常。 4.2超声波流量计运行操作与监护 4.2.1缓慢打开流量计入口阀(或管路平衡阀),为超声波流量计管路充压,观察流量计、附属设备及连接管线有无渗漏; 4.2.2压力平衡后,缓慢打开流量计出口阀门,观察流量计显示单元,判断流量计是否正常运行,如无异常,调节流量计下游流量调节阀,使流量计在所需的流量范围内运行;

弯管流量计的原理

弯管流量计的原理 弯管流量计与传统的孔板流量计一样同属于差压式流量计的范畴,只是弯管流量计产生差压的方式与孔板流量计不同,孔板是利用流体的缩放原理产生差压的,而弯管传感器是利用流体的惯性原理产生差压的。当流体通过弯管时,由于受弯管的约束流体被迫作类似的圆周运动,流体在作圆周运动时产生的离心力作用于弯管的内外两侧,使弯管传感器内外两侧之间产生一个压力差,该压力差(也就是压差值)的大小与流体的密度有关,与流体的平均流速有关,与流体作圆周运动的曲率半径有关。他们之间遵循作圆周运动物体都必须遵循的牛顿运动定律的有关规律。 F=m(V2/R) 其中:F—流体对弯管施加的离心力; V—流体值弯管中的平均流速; R—弯管中心曲率半径; 我们对上述公式进行整合、积分处理之后,最终获得如下关系式: V=α(R/d)1/2(ΔP/ρ)1/2 其中:V—介质中弯管传感器中的平均流速; R/d—弯管传感器的弯径比; ΔP—流体通过弯管传感器时产生的差压值; ρ—介质的密度; 这个公式就是弯管流量计的基本公式,它描述了介质在弯管传感器中流动时,介质对弯管施加的离心力与介质的密度,介质的平均流速以及弯管的重要几何尺寸弯径比之间的关系。这里提到的弯径比就是弯管的中心曲率半径与弯管内径的比值,它是描述弯管几何特征的重要参数。弯径比的大小准确地描述了弯管的弯曲程度,随着弯管弯径比的增加,弯管的弯曲程度将减小。它在流量公式中的作用于孔板流量计中的开孔率β值十分相似(β=d/D),随着β值的变化可以改变流体通过孔板时的缩流效果,从而可以在相同的流量条件下获得不同的差压值。同样,改变弯管传感器的弯径比可以改变流体作圆周运动的曲率,从而使同样的介质流量获得不同的离心力(也就是弯管传感器显示的差压值),当然改变弯管弯径比远比改变孔板的开孔率要困难得多。 大量的实验证明,我们推导所得的数学公式完全符合实际的结果,只要介质在弯管传感器中流动的最小雷诺数达到一个极低值以上,弯管流量计的流量系数α就是一个定值,这个结论与孔板流量计也是十分相似的。 三、“弯管流量计重现性精度很好,而测量精度不高”结论的可信程度 为什么那么多的前辈们在谈到弯管流量计时虽然承认他们的重现性精度很高,但是,同时总是认为它的测量精度不高,搞清楚这些问题对于弯管流量计的推广应用有着十分重要的作用,也许下面的分析会给我们一个比较公正的答案。 弯管传感器的结构十分简单,它就是一个具有确定几何尺寸的弯头,流体通过弯头产生离心力使弯头的内外两侧产生一个压力差,这个转换原理十分清楚、准确。在弯管传感器工作过程中只要能够重复流体流过弯管传感器的条件和状态,弯管传感器必然会产生不变的差压信号,因此它的重现性精度好的结论是自然成立的。 说到弯管流量计测量精度不高的结论时,我们不能超越当时的历史条件和技术水平来讨论。虽然弯管传感器的结构是特别简单,但是,在当时的历史条件下要想获得高质量的弯管并不容易(我们这里所说的高质量弯管包括:弯管的垂直度、水平度、扭曲度、不圆度、均匀度等等,其中弯管的圆度和均匀度对于加工成弯管传感器特别重要,手工或者简单机械的冷弯或者热弯都很难达到弯管传感器对于弯管的基本要求。其二,弯管流量计与孔板流量计一样,也是属于差压式流量计的范畴,在选择配套的差压变送器量程范围时我们都希望其差压范围大一些比较好,这将有利于保证系统测量精度的提高。孔板流量计可以利用选

弯管流量计的工作原理

弯管流量计的工作原理 推荐一、引言 弯管流量计广泛应用于石油、化工、电力、冶金、钢铁等行业的液体、气体、和蒸汽的流量测量,能在φ10~φ2000mm的大范围管道中精确测量各种流体的流量,弯管传感器可耐高温、高压、可在潮湿、粉尘、振动等各种恶劣的环境中正常工作。它没有插入件,无附加阻力损失,结构简单,安装方便。 二、弯管流量计的工作原理 1、原理 流体在管道中流动,在流经弯管时,流体类似于流过一个整流器,由于弯曲管壁的导流作用,在进入弯管前2D左右流体内侧被加速,而流体外侧被减速,直至进入弯管流体的流速形式被整流成近似于自由旋流理论描述的梯形速度流动模式,且在弯管45°截面处达到最大,这个过程将持续在整个弯管中。在弯管出口处及下游2D范围内,流速模型的变化过程是进口变化的反过程。弯管在45°截面各质点流速分布如图1所示。 图1弯管在45°截面各质点流速分布 根据质量守恒定律、能量守恒定律和动量守恒定律,在相同过流截面,各流质点的能量不变,由于各质点流速的变化,就形成了弯管的内外侧压差△P。这个压力差在45°截面时达到最大,最稳定。且45°弯管断面的流体平均速度υ与压差△P符合平方比例关系,流量愈大,差压愈大。流体流过弯管时的流量系数与弯管的几何结构尺寸(弯曲半径R和内径D)有密切关系,即流量系数α=f(R. D) 因此当弯管传感器的几何结构尺寸确定之后,只要测取弯管45°截面的内、外侧压差△P和流体的密度ρ就可以确定流体的平均流速υ。 2、数学表达式 其中: α(R.D):流量系数 △P: 45°截面内、外侧压差 D:弯管内径

R:弯管弯曲半径 ρ:流体密度 根据管道流体流速υ与流量Q的关系就可以得到以下流量计算公式: Q=π/4D2υ. 3.6ρ t/h 三、测量系统的组成 弯管流量计的基本组成除弯管传感器和主机外,还需要配置差压变送器、压力变送器和温度变送器, 1、差压变送器是用来检测弯管传感器产生的差压值,因此它是弯管流量计测量系统必不可少的配件。 2、系统是否配置压力和温度变送器,要根据具体的测量对象来决定,对于测量蒸汽或其它气体介质的系统,原则上必须配置温度和压力变送器,以便能对蒸汽或气体进行必要的实时温、压补偿。见图2 图2弯管流量计数学模型的框架结构 四、测量系统优点 1、传感器结构简单 弯管传感器利用管道系统弯头作检测元件,无附加压损及专门安装节流元件是其优点,弯管取压口开在45o处,取压口结构与标准孔板相同,两个平面内的两个取压口对准,使其能处于同一条直线上,如图3, 图3弯管流量传感器 2、免维护的流量传感器 弯管流量计在工作中不会磨损;在高速流体冲击下不会变形、扭曲、震动;对于环境中可能出现的震动、粉尘、潮湿、电磁场干扰不敏感;经过长周期运行它的稳定性、灵敏度、准确性不会发生明显变化;能在最大程度上防止传感器被粘污、结疤、堵塞等等。保证了流量计长期高精度测量的工作状态。而孔板流量计的节流口对微量磨损就十分敏感。规程规定,计量用孔板流量计的孔板每年必须进行一次或一次以上的强制性磨损检查,才能保证孔板流量计准确计量。对于

几种常见的流量测量方法 气体

流量计常用的几种测量方法简述点击次数:179 发布时间:2010-8-31 15:48:15 为了满足各种测量的需要,几百年来人们根据不同的测量原理,研究开发制造出了数十种不同类型的流量计,大致分为容积式、速度式、差压式、面积式、质量式等。各种类型的流量计量原理、结构不同既有独到之处又存在局限性。为达到较好的测量效果,需要针对不同的测量领域,不同的测量介质、不同的工作范围,选择不同种类、不同型号的流量计。工业计量中常用的几种气体流量计有: (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为:

式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=3.1794×10-6;c为流出系数;E为渐近速度系数;d 为工况下孔板内径,mm;FG为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 (2)速度式流量计

天然气超声波流量计操作规程

天然气超声波流量计操作维护规程 中国石油西部管道兰州输气分公司 年月

签字职务日期编制人: 审核人: 批准人:

目录 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 操作内容 (2) 5 风险提示 (5) 6 应急处置 (5) 7 附件 (5)

1 范围 本标准规定了涩宁兰超声波流量计的现场操作方法。 本标准适用于涩宁兰气体超声流量计。 2 规范性引用文件 2.1《中华人民共和国国家标准天然气计量系统技术要求》 GB/T 18603一2001 2.2《用气体超声波流量计测量天然气流量》 GB/T 18604-2001 3 术语和定义 3.1气体超声流量计ultrassonic gas flow meter 安装在流动气体的管道上,并用超声原理测量气体流量的流量计。以下简称流量计。 3.2超声换能器ultrassonic transducer 把声能转化成电信号和反过来把电信号转化成声能的元件。 3.3信号处理单元signal processing unit 是流量计的一部分,由电子元件和微处理器系统组成。 3.4零流量测试zero-flow measure 在无流动介质的情况下,检查流量计的读数是否为零或在流量计本身规定的允许范围内。 3.5分界流量transition gas flow rate 低于该流量要采用扩展误差限的流量值。 3.6实流校准系数flow calibration factor 将流量计进行实流校准测试,并将测试结果按照一定修正方法得出

的流量计系数。 3.7最大瞬时压力maximum incidental pressures 在短时间内,计量系统能够承受安全装置极限内的最大工作压力。 3.8流量计算机flow computer 计算和指示标准参比条件下的流量等参数的装置。 3.9转换装置conversion device 由一台流量计算机和各个传感器组成的装置。用于以压力、温度和气体组成或以密度或以发热量为参数进行标准参比条件下体积流量和质量流量及能量流量的转换。 4运行操作内容 4.1超声波流量计运行前的准备 4.1.1流量计的安装应符合设计和说明书的要求;天然气的流量、压力、温度范围符合流量计铭牌的规定; 4.1.2流量计、温度变送器、压力变送器具有有效的检定/校准证书; 4.1.3流量计前后阀门,调压阀、放空阀应关严; 4.1.4流量计法兰连接处应无泄漏,各个探头应牢固连接,探头连接信号线路应无松脱; 4.1.5流量计信号处理单元(SPU)单元供电应正常; 4.1.6流量计配套的温度变送器、压力变送器供电应正常,压力变送器阀门应全开; 4.1.7流量计算机工作应正常; 4.1.8在线分析仪上传数据应正常。 4.2超声波流量计运行操作与监护

天然气的流量计量相关标准

天然气的流量计量(二) ——天然气计量国际标准及其它规范简介 孙淮清 在天然气计量的相关标准中,流量计量标准是主要的,另外它还应包括天然气密度,组成,发热量,压缩因子等相关参数的测量和计算标准。此外,还有仪器仪表,设计及安全等标准。天然气计量涉及到设计、建设、投产、操作、维修、检验、检定以及安全环保等各个方面,因此其相关标准是很广泛的。 1. 国际标准化组织(ISO)等天然气计量相关标准的情况 1)流量方面 制订天然气流量计量标准的ISO技术委员会为TC30<封闭管道流体流量测量技术委员会>和TC28<石油和润滑油技术委员会>,国际法制计量组织(OIML)为TC8<流体量的测量技术委员会>,他们制订的有关标准和国际建议有: ISO 5167:2000 用差压装置测量流体流量,共分四部分,包括总则、孔板、喷嘴和文丘里喷嘴、文丘里管等。 ISO 9300:1990 采用临界流文丘里喷嘴的气体流量测量 ISO 9951:1993 封闭管道中气体流量测量-涡轮流量计 ISO 10790:1994 封闭管道中流体流量测量-科里奥利质量流量计 ISO/TR 12765:1998 封闭管道中流体流量测量-传播时间法超声流量计 ISO/TR 5168:1998 流体流量测量-不确定度的估计 ISO/TR 7066-1:1997 流量测量装置校准和使用方面不确定度的估计-第一部分:线性校准关系 ISO 7066-2:1988 流量测量装置校准和使用方面的不确定度的估计-第二部分:非线性校准关系 R6:1989 气体体积流量计一般规范 R31:1995 膜式气体流量计 R32:1989 旋转活塞式气体流量计和涡轮气体流量计 2)天然气方面 制订天然气的ISO技术委员会为TC193<天然气技术委员会>,

弯管流量计及其应用

弯管流量计及其应用 崔桂生 (内蒙古包头市雄狮化工有限责任公司 014100) 0 前言 包头市雄狮化工有限责任公司现生产能力为3万t/a合成氨。原造气半水煤气流量采用缩流取压圆盘孔板流量计计量, P=4kPa,煤气总管为 530 6。变换气流量采用环室孔板流量计计量, P=4kPa,管道 273 8。 随着生产能力的不断提高,为降低系统管道阻力,2001年大修期间公司决定将造气半水煤气总管更改为 630 6,变换气出口管道改为 377 8。由于管道的改变,原有流量计的取压装置也无法使用,所以必须进行更换。但公司要求新配套流量仪表压力损失要小、计量准确可靠,且投资要少。 1 几种主要流量仪表比较 结合具体情况我们进行了筛选分析,重点考察了孔板流量计、均速管流量计、涡街流量计及弯管流量计。 孔板流量计能够保证测量值准确可靠,且投资不高,但其最大的缺点就是为保证较高的精度,设计时的差压值要尽可能选的高一些,造成压力损失大,不符合我们的要求。 均速管流量计压力损失较小,但由于造气半水煤气及变换气所含粉尘、水分等较大,易引起流量计测量管的管道粘污堵塞。为此,还必须增加蒸汽冲洗管道,定期反向吹除压管内沉积物,否则将无法长期正常工作。 涡街流量计是新型的低压差流量计。缺点是只有工艺管道内径与流量计的直径相一致时工艺管道的实际流量与涡街流量计的量程范围才相符合。但在实际工艺管道设计时考虑今后企业生产规模扩大或降低系统阻力等因素,工艺管道较实际流量所需要的要大,甚至出现大管道小流量的现象,从而导致仪表不能正常工作,测量误差较大。要避免这种情况,必须根据工艺管道的实际流量选择仪表的量程和通径,必要时还需对工艺管道缩管,以保证测量精度。这也不符合我们要求。 弯管流量计是一种新型的差压式流量计。但传统的差压式流量计是利用流体通过管道内的节流元件产生差压的。而弯管流量计没有任何内插的节流件,其实质就是1个90的标准弯头,利用流体通过弯管时的惯性离心力在弯管内外侧产生的微差压来进行测量,故压力损失较小,指示准确可靠,长期稳定运行,为此我们最终选择了弯管流量计代替原来的孔板流量计。 2 弯管流量计的工作原理 当流体通过弯管时,由于弯管的约束作用,使流体在弯管内作类似的圆周运动,从而产生惯性离心力。该离心力的大小与流体的流速、密度以及作圆周运动的曲率半径等因素有关。其中流体的密度可通过温度、压力等参数计算确定,弯管传感器的曲率半径是已知的,因此弯管传感器产生的离心力大小就与流体的流速具有单一的函数关系。而离心力的大小可以通过测量弯管内外侧的差压确定,这样可计算出流体的流速。将流速与管道的截面积和流体的密度相乘,即可确定流体的流量。 3 弯管流量计的组成 (1)取压部分:90弯管传感器、取压阀、三阀组; (2)变送部分:差压变送器、压力变送器、温度变送器、温度传感器; (3)主机部分:实现人机对话,对温度、压力、差压、流量等参数的设定和显示。A型及B型机配有打印机。

流量测量中常用的流体参数

流量测量中常用的流体参数 对工业管道流体流动规律的研究、流量测量计算以及仪表选型时,都要遇到一系列反映流体属性和流动状态的物理参数.这些参数,常用的有流体的密度、粘度、绝热指数(等熵指数)、体积压缩系数以及雷诺数、流速比(马赫数)等;这些物理参数都与温度.压力密切相关。流量测量的一次元件的设计以及二次仪表的校验,都是在一定的压力和温度条件下进行的。若实际工况超过设计规定的范围,即需作相应的修正。 一、流体的密度 流体的密度( )是流体的重要参数之一,它表示单位体积内流体的质量。在一 般工业生产中,流体通常可视为均匀流体,流体的密度可由其质量和体积之商求出: = (1-2) 式中 m——流体的质量,kg; V——质量为m的流体所占的体积,m3 密度的单位换算见表1—3。

各种流体的密度都随温度、压力改变而变化.在低压及常温下,压力变化对液体密度的影响很小,所以工程计算上往往可将液体视为不可压缩流体,即可不考虑压力变化的影响.但这只是一种近似计算。而气体,温度、压力变化对其密度的影响较大,所以表示气体密度时,必须严格说明其所处的压力、温度状况. 工业测量中,有时还用“比容”这一参数。比容数是密度数的倒数,单位为m3/kg。 二、流体的粘度 流体的粘度是表示流体内摩擦力的一个参数。各种流体的粘度不同,表示流动时的阻力各异。粘度也是温度、压力的函数.一般说来,温度上升,液体的粘度就下降,气体的粘度则上升.在工程计算上液体的粘度,只需考虑温度对它的影响,仅在压力很高的情况下才需考虑压力的影响。水蒸气及气体的粘度与 压力、温度的关系十分密切.表征流体的粘度,通常采用动力粘度( )和运动粘度(v),有时也采用恩氏粘度(°E). 流体动力粘度的意义是,当该流体的速度梯度等于l时,接触液层间单位面积上的内摩擦力.流体的动力粘度也可理解为两个相距1m、面积各为1m2的流体层以相对速度1m/s移动时相互间的作用力,即

新型流量计综述汇总

新型流量计概述 XXX 摘要: 流量测量是研究物质量变的科学,质和量的互变规律是事物联系与发展的基本规律,因此,其测量对象已不限于传统意义上的管道流体,凡是需要掌握流体流动的地方都有流量测量的问题。 工业生产过程是流量测量与仪表应用的一大领域,流量与温度、压力和物位一起统称为过程控制中的四大参数,人们通过这些参数对生产过程进行监视与控制。对流体流量进行正确测量和调节是保证生产过程安全经济运行、提高产品质量、降低物质消耗、提高经济效益、实现科学管理的基础。在整个过程检测仪表中,流量仪表的产值约占1/5~1/4。 在流量测量中,测量流速是测定流量的一个常用方法,流体在管道中流动时,在一个截面上的各点流速情况与流体的流动状态有密切的关系,选择适当的流动状态进行流速测量对于保证测量精度有重要的意义。 用来检测管内流速的方法或仪器主要有: 1)节流式检测方法:利用节流件前后的差压与流速之间的关系,通过差压值获得流体的流速; 2)变面积式检测方法:它是基于力平衡原理,通过在锥形管内的转子把流体的流速转换成转子的位移,相应的流量检测仪表称为转子流量计; 3)电磁式检测方法:导电流体在磁场中运动产生感应电势,感应电势的大小正比于流体的平均流速; 4)旋涡式检测方法:流体在流动中遇到一定形状的物体会在其周围产生有规则的旋涡,旋涡释放的频率正比于流速。 5)涡轮式检测方法:流体对置于管内涡轮的作用力,使涡轮转动,其转动速度在一定流速范围内与管内流体的流速成正比; 6)声学式检测方法:根据声波在流体中传播速度的变化可获得流体的流速; 7)热学式检测方法:利用加热体被流体的冷却程度与流速的关系来检测流速,基于此方法的流量仪表主要有热线风速仪等。 关键词:新型流量计速度式流量计容积式流量计质量流量计 正文: 1.前言 随着科学技术的进步,越来越多的流量计被设计与制造出来,用以测定被测流体。 流量计是指示被测流量在选定的时间间隔内流体总量的仪表。按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。 体积流量计分为: (1)速度式流量计,包括:转子流量计、涡轮流量计、涡街流量计、电磁流量计、超声波流量计、堰式流量计等 (2)容积式流量计,包括:椭圆齿轮流量计、活塞式流量计、腰轮流量计、皮膜式流量计等

弯管流量计计算公式

弯管流量计计算公式 弯管流量计与传统的孔板流量计一样,同属于差压式流量计的范畴,只是弯管流量计产生差压的方式与孔板流量计不同。孔板是利用流体的缩放原理产生差压的,而弯管传感器是利用流体的惯性原理产生差压的。当流体通过弯管时,由于受弯管的约束流体被迫作类似的圆周运动,流体在作圆周运动时产生的离心力作用于弯管的内外两侧,使弯管传感器内外两侧之间产生一个压力差,该压力差的大小与流体的密度、平均流速、管道的曲率半径、管道内径有关,其表达式为 其中v—流体值弯管中的平均流速; R—弯管中心曲率半径; D—弯管的内径 ΔP—流体通过弯管传感器时产生的差压值; —介质的密度; Q—管道内流体的流量

从以上可知,只要准确测量出压力差,在进行运算的同时再考虑到温度、压力对于介质密度的影响进行必要的温度补偿,就能准确的测量介质的流量。 ①弯管传感器(与管路焊接或法兰连接):输出差压信号。 ②差压变送器:将弯管传感器输出的差压信号转换为4-20mA电流信号。 ③流量转换器:通过接收差压变送器、温度、压力变送器信号。计算并显示流量、 温度、压力、热量等参数。 ④三阀组:差压变送器和引压管之间的连接体。 ⑤根阀:选用二通阀(针阀或球阀)。 ⑥盘式冷凝器:高温介质(蒸汽)测量时用于介质的降温。 ⑦三通旋塞阀:排污、反吹。 ⑧引压管:差压变送器与根阀连接用。 ⑨压力变送器:被测介质(蒸汽、气体)压力变化较大时选用。

⑩温度变送器:被测介质(蒸汽、气体)温度变化较大时选用,测量饱和蒸汽时可以选择压力变送器或温度变送器其中一种,对流量补偿即可。用于供热量计量时,选用2只温度变送器。

浅议测量天然气的流量计选择

龙源期刊网 https://www.360docs.net/doc/564785507.html, 浅议测量天然气的流量计选择 作者:王若明 来源:《中国石油和化工标准与质量》2013年第19期 【摘要】实际上,天然气计量测量的是天然气的流量,检测于天然气流动的过程当中。测量的准确度在很大程度上取决于流量计的选择、整套测量系统的合理设计、安装和操作等。本文将针对测量天然气流量计的几种常见类型进行分析,并提出在选择上应注意的问题,以供广大同行参考。 【关键词】测量天然气流量计选择 我国富含着大量的资源,其中广阔的松辽地区天然气蕴藏量也非常的丰富,中石化东北油气分公司在探区内资源量达8000多亿方,远景广阔。天然气凭借其高效、清洁等优势特点,成为化工原料、城市燃气的首选。而在天然气工业发展当中,对其有着巨大影响意义的就是天然气的流量计量。流量计量的重要作用主要体现在两个方面,首先是天然气供需双方进行贸易结算的重要凭证,另一方面还是天然气开发过程中对气井综合评价的一项重要技术指标。鉴于此,不论是在企业的生产过程,还是在经营管理过程当中,都必须认识到流量计量的重要性,将其作为一项重要的日常技术工作。 1 几种天然气流量计使用的探讨 目前,中石化东北油气分公司在进行天然气流量计量过程中,常用的流量计主要有四种,分别是差压式流量计、涡轮流量计、旋进旋涡流量计、超声流量计。每种流量计的原理、特点都不尽相同,所适用的环境也存在一定的差异,下面对此进行具体的探讨。 1.1 标准孔板流量计 标准孔板流量计包括标准节流装置、计量直管段、差压压力温度检测装置及流量计算单元等。这种流量计在上世纪50年代之前,是唯一的流量计,拥有很长的历史,而且已经在长时间的实践当中积累了丰富的经验,因此具有了完善的标准规范,品种规格相对齐全。标准孔板流量计凭借国际上长期的试验研究和实践中所积累的丰富经验,使得其早在上世纪30年代就已经开始实行仪表校验,并在实践中得到了广泛的推广。我国制定了国家标准《用标准孔板流量计测量天然气流量》(GB/T21446-2008),其中包含了对测量的一般要求、安装要求、孔板的结构形式和技术要求、检验要求、测量原理和方法等,从而为天然气流量计量提供了标准依据。流量计的标定,各省市以及授权的技术检定机构都配有相应的配套标准设备,方便开展周期检定。缺点是量程比小,不宜于小流量、峰谷差较大的天然气测量。 1.2 涡轮流量计

热示踪法测量流体流量的研究

!""!年#月第#$卷第#期 西安石油学院学报%自然科学版& ’()*+,-(./01,+234*(-3)56+7404)43%8,4)*,-9:03+:3;<040(+& ’,+=!""! >(-=#$8(=# 收稿日期?!"""@"A @!B 作者简介?沈跃%#C B #@&D 男D 北京人D 高级工程师D 主要从事电子与传感器技术在石油工业中的应用研究=文章编号?#""#@E F B #%!""!&"#@""E A @"G 热示踪法测量流体流量的研究 HI J K L M N O PQ R I S T U V M J Q I U W S T L N XY Z[R I M \J T [M J ]N O PHI Q R U X 沈跃D 朱宏良D 陈世廉 % 石油大学应用物理系D 山东东营!E $"B !& 摘要?介结了一种热示踪法测量流体流量的原理及热示踪流量计的设计方法=该方法利用脉冲状热流体通过固定距离所用时间来间接测量流体流量?首先由一个热激励器在周围流体中产生脉冲状热流团D 热流团随流体运动过程中经过一个特殊的温度传感器阵列时D 流体的温差将引起传感器的信号突变D 形成标记脉冲^通过判断标记脉冲出现的时间可以确定流体平均流速D 进而得到流体流量=针对引起流量测量误差的原因进行了分析并提出了相应的改进建议和实际应用要求=通过室内模拟实验表明D 该方法适用于层流状流体D 尤其适用于较高粘度流体的流量测量=关键词?热示踪^流量测量^粘度^传感器^测量方法 中图分类号?_‘C F "a #!b E 文献标识码?c 常规流量测量方法D 如涡轮流量计d 弯管流量计等在遇到较高粘度流体时D 由于流体粘附的影响会引起很大的测量误差D 甚至无法进行测量=热示踪法测量流体流量依据于流体的层流流动状态D 用一个热激励器定时为流体提供热脉冲D 形成作为检测标记的脉冲热流D 通过检测热流形成的流体温差脉冲D 从而确定流体流速D 可以较好地解决流体粘附问题^通过高灵敏度温度传感器及特殊的测温电路D 在脉冲热流与流体温度仅高于!e 的情况下D 可以有效地实施测量= f 测量原理 在流体流经的管道中心放置一个远红外热激励器D 用于产生脉冲热流D 在下游一段距离放置由高灵敏测温元件组成的温度传感器阵D 当受热流体经过温度传感器时D 流体温差将引起传感器的信号突变D 形成信号脉冲D 设管道中心流体流速为g h i j k l D 测流体流量mh no i j k l D 其中?n p 比例系数D o p 管道截面积D ip 热激励器与温度传感器之间的距离D k l p 热流体运移时间= f a f 流体热响应特性 在脉冲状热功率作用下D 设受热流体体积为q h n #o "g r k D 由流体热平衡方程sh m t r k h uv s %wp w "&r k %#& 测流体温升 r wh wp w "h s r k uv s h s n #o "v s g x %!&式%!&中D sp 脉冲热功率D y^n #p 比例系数^o "p 受热流体等效面积D 5!^x p 流体密度D z {j 5F ^v s p 流体比热D ’j z {|}^g p 流体流速D 5j 7^r k p 脉冲作用时间D 7^流体流速越低D 温升越大=f a ~系统时间模型 从电脉冲信号作用于功率开关管产生加热电流到温度传感器接收到流体温差信号形成脉冲标记为止D 整个过程所用的时间分为$段D 即k h k #b k !b k F b k G b k E b k B b k $D 其中?k #为>‘!9模拟开关管导通时间%"7级&^k !为热激励器中电流建立时间% "7级&^k F 为热激励器热响应时间%与热激励器的热容及导热速度有关&^k G 为流体热响应时间%与流体热容及流速有关&^k E 为被加热流体包到达温度传感器所用的渡越时间^k B 为测温元件的响应时间% 与元万方数据

管道流量测量方法

管道流量测量方法 [技术摘要]一种管道流量称及测量方法,属流量测量技术领域。用于解决测量管道内混合流体的质量流量及质量浓度的技术问题。其特别之处是:构成中包括换能器、超声波流量计、压力变送器、称量传感器、智能显示仪和称量管,称量管至少配置一个称量传感器,在称量管的两端各设有一段波纹管与其形成挠性连接,两波纹管的另一端分别连通前后固定管,前后固定管分别连通流体输送管道,前后固定管固定在基础支架上,所述压力变送器和换能器均设置在流体输送管道上,各测量元件连接智能显示仪。本发明所提供的管道流量称及测量方法,解决了管道中高温介质、粘稠液体、煤粉、水煤浆等混合流体质量流量与质量浓度的测量难题,其理论依据可靠、测量值准确、结构合理、易于实现。 气体质量流量上下游温度分布二次差动测量方法、传感器、及流量计 [技术摘要]本发明涉及一种气体质量流量上下游温度分布二次差动测量方法、传感器、及流量计。包括加温元件,对称设置在加温元件两侧的温度检测元件,即上游温度检测元件和下游温度检测元件,其特征在于所述的加温元件与恒功率源激励相连,上

游温度检测元件和下游温度检测元件分别与差动运算电路的两个信号输入端相连,所述的差动运算电路的输出端连接有中央处理单元。具有如下优点:通过对上下游温度变化差值进行二次差动运算,保证对低速段线性度影响较小;气体质量流量的流速和输出电压的关系曲线的饱和点往后推,量程扩大,提高了量程范围和线性度;测量精度高,灵敏度高;采用MEMS技术实现了低功耗、高频响,大幅降低芯片的热惯性。 [9-BG95212]联合式湿蒸汽流量、干度测量装置及其测量方法 [技术摘要]本发明公开了一种联合式湿蒸汽流量、干度测量装置及其测量方法,该装置由经过标定的标准孔板、经典文丘利管作为一次测量元件,高精度压力传感器、智能型差压变送器转换并传输标准信号,标准4~20mA信号经I/V转换成1~5V电压信号,进入高速数据采集卡,最后在中央处理器中根据压力信号调用汽、水性质的IAPWS-IF97计算公式模块计算出饱和水、饱和蒸汽的密度及比焓、汽化潜热,从而算出湿蒸汽的干度、质量流量、载热量,同时对质量流量、载热量进行累积运算,重要参数适时存储于数据库,作为历史数据以备后期调用,系统通过D/A通道输出干度、累积流量,供中央处理器使用,本发明与以往的IF-67计算公式相比计算精度提高10倍以上,且重复计算精度高,而运算速度提高4~12倍。

天然气超声波流量计的应用

天然气超声波流量计的应用 (2007-12-7) 摘要:阐述了天然气超声波流量计的特点和待解决的问题,分析了实流测试的结果。关键词:天然气;超声波流量计;标定;实流测试 Application of Natural Gas Ultrasonic Flowmeter FENG Bao-ting1.TANG Suo-chen2 (1.Tianjin Construction Management School,Tianjin 300250,China;2.Second Sales Branch of Tianjin Gas Group Co.,Ltd.,Tianjin 300191,China) Abstract: The characteristics of natural gas ultrasonic flowmeter and the problems to be in need of solution are described, and the result of practical flow measurement is analyzed. Key words:natural gas;ultrasonic flowmeter;calibration; practical flow measurement 天然气流量测量的准确性直接影响到燃气企业的经济效益,随着我国燃气行业的发展,超声波流量计在天然气领域的应用前景看好[1、2]。我国于2001年制订了国家标准GB/T 18604—2001《用气体超声波流量计测量天然气流量》。为了验证超声波流量计的性能,我们对超声波流量计进行了系统测试,并在实地进行了测量试验,为超声波流量计在我国燃气行业中的推广使用积累经验。 1 超声波流量计的特点 根据超声波流量计对信号检测的原理,可将其分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、空间滤法及噪声法等。超声波流量计特别适用于大口径管道流量的测量,主要有以下优点:①可进行非接触式测量;②测量时无流动阻扰,无压力损失;③可测量非导电性液体。实地测试与现场应用也证明超声波流量计具有准确度高、重复性好、量程宽、抗干扰能力强、维修工作量少、能测量双向流等优点。 由于天然气流量测量涉及面广,随着应用对象的不同,对其在不同场合有不同的要求。尽管超声波流量计有许多优点,但还不可能完全替代其他类型流量计。特别是在标

天然气流量计量各种方法和其优缺点简介

天然气流量计量各种方法和其优缺点介绍 天然气流量计量的方法非常多的,有很多种流量计都可以测量天然气。那么我们就仔细的研究一下每一种方法,每一种流量计的优点及缺点。 一、电磁流量计 1、优点 (1)电磁流量计可用来测量工业导电液体或浆液。 (2)无压力损失。 (3)测量范围大,电磁流量变送器的口径从2.5mm到2.6m。 (4)电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。 2、缺点 (1)电磁流量计的应用有一定局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。另外在高温条件下其衬里需考虑。 (2)电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度,不同流体介质具有不同的密度,而且随温度变化。如果电磁流量计转换器不考虑流体密度,仅给出常温状态下的体积流量是不合适的。 (3)电磁流量计的安装与调试比其它流量计复杂,且要求更严格。变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。在安装变送器时,从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。安装地点不能有振动,不能有强磁场。在安装时必须使变送器和管道有良好的接触及良好的接地。变送器的电位与被测流体等电位。在使用时,必须排尽测量管中存留的气体,否则会造成较大的测量误差。 (4)电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。 (5)供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。如100mm口径仪表内径变化1mm会带来约https://www.360docs.net/doc/564785507.html,2%附加误差。 (6)变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。为了准确测量流量,必须消除各种干扰信号,有效放大流量信号。应该提高流量转换器的性能,最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择励磁方式和频率,可以排除同相干扰和正交干扰。但改进的仪表结构复杂,成本较高。 (7)价格较高 二、超声波流量计 1、优点 (1)超声波流量计是一种非接触式测量仪表,可用来测量不易接触、不易观察的流体流量和大管径流量。它不会改变流体的流动状态,不会产生压力损失,且便于安装。 (2)可以测量强腐蚀性介质和非导电介质的流量。 (3)超声波流量计的测量范围大,管径范围从20mm~5m. (4)超声波流量计可以测量各种液体和污水流量。 (5)超声波流量计测量的体积流量不受被测流体的温度、压力、粘度及密度等热物性参数的影响。可以做成固定式和便携式两种形式。 2、缺点 (1)超声波流量计的温度测量范围不高,一般只能测量温度低于200℃的流体。

流量流速的测定及常见流体测速仪

流量流速的测定及常见流体测速仪 如何测定流体的流速和流量对于流体力学来说是一门非常重要的研究,如今,有关流体的测量与我们的生活息息相关。由于实际流动非常复杂,实验研究和流体测量仍然是检验理论分析和数值计算结果最终的具有说服力的方法。那么该如若测定流量及流速呢? 对于流体流量的测定,有以下几种常见的仪器。 1.文丘里管流量计 文丘里管由渐缩管、中间的喉部断面和渐扩管组成,渐缩管内速度增加,压力下降,渐扩管内动能又转变为压力能,速度减小,压力增加。因为压力与流速有关,所以可以用来测流量。如图7.7所示,以管道轴线为基准面,1和2两断面间伯努力方程为 g v p z g v p z 222222211 1++=++γγ 代入连续性方程,得: 2121v A A v = 喉部理想流速为: ??????+-+-=γγ22112 122()(2)(11p z p z g A A v 文丘里管能够精确测量管道内流体流量,除了安装费用外,文丘里管唯一的不足是在管路中增加一个摩擦损失。事实上,所有损失都发生在渐扩管中,即图中2和3断面间,一般为静压差的10%到20%。 为了测量精确,在文丘里管前面应该至少有管道直径的5~10倍的直管段。所需要的直管段长度取决于进口断面的条件。随管径比率增加,进口断面处流动影响增大。压力差测量应该用管道周围的环形测压管,并保证在两个断面处有适当的开孔数。 对于一个给定的文丘里管,除特殊给定外,通常假设雷诺数超过l05,μ值根据实验确定,称为文丘里管系数。它的值约在0.95~0.98之间。文丘里管长期使用后μ可能下降l%~2%。

2.节流式流量计 结构简单,无可动部件;可靠性较高;复现性能好;适应性较广,它适用于各种工况下的单相流体,适用的管道直径范围宽,可以配用通用差压计;装置已标准化。 安装要求严格;流量计前后要求较长直管段;测量范围窄,一般范围度为 3 : 1;压力损失较大;对于较小直径的管道测量比较困难 ;精确度不够高(±1%~ ±2%)。 1-节流元件 2-引压管路3-三阀组 4-差压计 测量原理及流量方程: 2222222111 u p u p +=+ρρ 1u 1ρ24D π =2u 2ρ2 4d 'π 21p p 、—截面1和2上流体的静压力; 21u u 、—截面1和2上流体的平均流速; D 、d '—截面1和2上流束直径; 对于可压缩流体,考虑到节流过程中流体密度的变化而引入流束膨胀系数进行修正,采用节流件前的流体密度,由此流量公式可更一般的表示为:

超声波流量计在天然气流量计量上的应用

[收稿日期]2002-09-10 [作者简介]李立新(1968-),男,四川绵阳人,助理工程师,毕业于电子科技大学,从事仪表检定及计量管理工作。超声波流量计在天然气流量计量上的应用 李立新 (中石化新星石油公司西南石油局川西采输处,四川德阳 618000) [摘 要]文章介绍了超声波流量计的工作原理、构成、功能、安装要求及其在天然气计量上的应用情况,阐明了超声波流量计在天然气计量上的应用效果和注意事项。[关键词]超声波流量计;天然气计量;应用效果[中图分类号]TB93 [文献标识码]B [文章编号]1002-1183(2003)02-0042-03 天然气计量是天然气开发与管理中的一项重要工作。近几年来,我们先后采用孔板差压流量计、涡街流量计、旋进旋涡流量计、腰轮流量计等,但由于管网中杂质的影响,造成这些流量计易堵,维修较困难,无法连续计量;孔板差压流量计受一次仪表和二次仪表精度的限制,以及人为因素的影响,导致其产量偏离真实值,且量程比较小。随着计量技术的发展,英斯卓美(Instromet)公司把人工智能技术引入到超声传感器中,并研制成功了高速数字处理电路,利用全新的数字超声技术取代了落后的模拟超声技术,实现了真正的高精度气体流量测量。1 工作原理 英斯卓美超声气体流量计是通过检测流体流动对超声束(或超声脉冲)的影响以测量体积流量的仪表。在流体管道中安装有两个能发送和接收超声脉冲的换能器,其安装方式使得一个换能器发出的超声脉冲能够被另一个换能器接收,这就形成了声道。两个换能器轮流发射和接收脉冲,超声脉冲相对气体是以声速传播。顺流时的超声脉冲传播得要快些,而逆流时超声脉冲传播得要慢些。其平均流速计算公式为: V m = L 2cos H (1t D -1t U )式中 V m 为平均流速,m/s;L 为声道长度,m;t D 为顺流时的超声脉冲传播时间,s;t U 为逆流时的 超声脉冲传播时间,s;H 为表示被测介质流动方向的矢量与声道的夹角,(b )。2 超声体积流量计的构成 英斯卓美超声体积流量计由Checksonic-s 超声流量计主体、流量计算机MODEL793-4、Rose -mout3144、3051型温度、压力变送器等部分组成。 (1)超声流量计主体 超声流量计主体包括一根测量短管、一组(或多组)超声换能器、一个SPU (信号处理单元)、压力变送器。压力变送器和超声换能器安装在短管上,压力、温度变送器经温度转换器转换成两线制数字信号输出,并与换能器输出的信号分别接在信号处理单元(SPU)上,经处理后连接到流量计算机。 (2)智能式压力变送器 Rosemount3051智能式压力变送器是具有高精度、微电子处理技术的压力仪表系列,使用亚电硅传感器,能完成绝压测量,采用01地址编程,采用两线制,HART 协议通信,量程比30B 1,具有模数和数模转换功能。可集成化接入该系统及远距离进行诊断,输出4~20mA 电流。 (3)智能式温度变送器 Rosemount3144智能式温度变送器是具有高精度、微电子处理技术的温度仪表系列,是一个单传感器输入的温度变送器,采用目前最新的数字技术,确保最佳精度,采用02地址编程,采用两线制,HART 协议通讯,具有模数和数模转换功能,可集成化接入该系统及远距离进行诊断,输出4~20mA 电流。 (4)流量计算机 该流量计算机是高精度Checksonic-s 超声流量计的补充,能提供较高的精确度和可靠性。气体成份数据的输入可以有两种方式:一种是输入固定值,如果气体气质成份改变,可及时进行修改;另一种输入 # 42#Industrial Measurement 2003No 12 计量装置及应用MEASUREMENT EQUIPMENT AND APPLICATION

相关文档
最新文档