数字功放中电感测试结果

数字功放中电感测试结果
数字功放中电感测试结果

对于数字功放现在研究和产品比较多。但是都比较杂乱。像电感在上面的影响是很关键的。这里实验了三种常用电感作了对比。

板子采用L20D ,频率设置为490K 。测试是电感滤波后的PWM 正弦波

1 采用常见的国产红色环电感106-

2 铁心。最早是由法国生产。现在多数是国内生产。

看测试结果。波形失真比较明显。有较大的振荡。

2:采用了老T 送给我的手工绕制进口铁硅铝电感。三线并绕。

由于这个体积特别大,只有焊在背面了。

3:采用MIDEN公司生产HPFS1719A-220M的数字功放专用电感器。全屏蔽结果。

从测试可以看出,基本上很理想没有明显大的振荡。

HC500L全自动电容电感测试仪

感谢您选用本公司的产品! 您现在参考的是全自动电容电感测试仪说明书。在使用本产品之前,请您详细阅读本说明书,并特别注意以下注意事项: 1、测量时必须将钳形表置于OFF档。 2、测量时必须将测试电压输出开关置于“通”位置。 3、为获得正确的容量值,必须在测量前设置与电容器铭牌相同的电压值。 4、如果怀疑仪器精度有问题,请用仪器随机配置的参考电容器进行检查。 5、在测量小电容小电感时,钳形表的位置对测量值有影响,请将钳形表置 于最佳位置,并保持钳口完整闭合。

目录 一、概述 0 二、技术参数 0 三、工作原理 (1) 四、仪器面板 (2) 五、接线方法 (3) 1、并联电容器测量 (3) 2、电抗器电感测量 (4) 3、电感测量注意事项 (4) 六、操作步骤 (5) 1、参数设置 (5) 2、测量开始 (6) 3、保存数据 (8) 4、打印操作 (9) 5、查询数据 (10) 七、配套清单 (11) 八、贮存及运输 (11)

HC-500L 全自动电容电感测试仪 一、概述 全自动电容电感测试仪针对变电站现场测量并联电容器组中的单个电容器电容值时存在的问题而专门研制的,它着重解决了以下问题: (1)现场测量单个电容器需拆除连接线,不仅工作量大而且易损坏电容器。 (2)电容表输出电压低而导致故障检出率低。 (3)测量电抗器的电感。 该仪器具有测量工作量小、快捷简便、性能稳定、测量准确、故障检出率高等特点。此外,它的电流测量单元还可兼作CVT、避雷器等电器设备的测量之用,具有一机多能的功效。 本型号测试仪特点 (1)量程自动转换; (2)储存7168个测试数据; (3)大屏幕液晶(320×240 LCD)显示, 汉字菜单操作提示; (4)实现波形和测量处理数据同屏显示,使测试过程更直观; (5)具有设置、校正和调试功能。 二、技术参数 1、电容量量程:0.2μF~2,000μF; 容量范围:5~20,000 kvar; 测量精度:0.2μF~2μF ±1%读数±0.02μF; 2μF~2,000μF ±1%读数±2个字; 2、电感量程:1mH~9.99H;测量精度:±1.5%读数±2个字 3、输出测量电压:AC 26V/500VA;50Hz; 4、显示方式:大屏幕液晶示屏全汉字输出,TPμp-40面板式热敏打印机

简易数字式电阻、电容和电感测量仪设计

简易数字式电阻、电容和电感测量仪设计报告 摘要:本系统利用TI公司的16位超低功耗单片机MSP430F149和ICL8038精密函数发生器实现对电阻、电容和电感参数的测量。本系统以自制电源作为LRC数字电桥和各个主要控制芯片的输入电源,并采用ICL8038芯片产生高精度的正弦波信号流经待测的电阻、电容或者电感和标准电阻的串联电路,通过测量电阻、电容或者电感和标准电阻各自的电压,利用电压比例计算的方法推算出电阻值、电容值或者电感值。利用MSP430F149单片机控制测量和计算结果,运用自校准电路提高测量精度,同时用差压法,消除了电源波动对结果的影响。测量结果采用12864液晶模块实时显示。实验测试结果表明,本系统性能稳定,测量精度高。 关键词:LRC 数字电桥、电压比例法、液晶模块、MSP430F149、电阻电容电感测量 一、设计内容及功能 1.1设计内容 设计并制作一台简易数字式电阻、电容和电感参数测量仪,由测量对象、测量仪、LCD 显示和自制电源组成,系统模块划分如下图所示: 测量对象 LCD显示 电阻/电容/电感 简易的数字电阻、电容和电感测量仪 自制电源 1.2 具体要求 1. 测量范围 (1)基本测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。 (2)发挥测量范围:电阻10Ω~10MΩ;电容50pF~10μF;电感50μH~1H。 2. 测量精度 (1)基本测量精度:电阻±5% ;电容±10% ;电感±5% 。 (2)发挥测量精度:电阻±2% ;电容±8% ;电感±8% 。 3. 利用128*64液晶显示器,显示测量数值、类型和单位。 4. 自制电源 5. 使用按键来设置测量的种类和单位 1.3系统功能 1. 基本完成以上具体要求 2. 使用三个按键分别控制R、C、L的测试 3. 采用液晶显示器显示测量结果 二、系统方案设计与选择 电阻、电容、电感测试仪的设计目前有多种方案可以实现,例如、使用可编程逻辑控制器(PLC)、振荡电路与单片机结合或CPLD与EDA相结合等等来实现。在设计前本文对各种方案进行了比较:

数字功放电路设计

数字功放电路设计 在很多个人计算机或小家电音响数字功放设计中,电源部分由市电经整流、滤波和稳压电路等处理后供给,电路复杂,而且体积大而重。本方案音响功放采用了SWITCH-MODE POWER SUPPLY,使得供电变的简单灵活更实用,且低成本,低功耗,体积小,效率高,设计灵活使用方便的数字功率放大技术。 图1 1、方案设计 图1是功放电路原理图,功能模块上主要有:供电部分,信号输入部分、信号处理功率放大部分、输出部分最后由扬声器或喇叭输出的解决方案。为实

现上述目的,本方案提出用9v或1 2 V直流稳压电源即通用的S W I T C H-MODE POWER SUPPLY供电。输入端是直接从数码信号源如PC音频输出端、CD唱机、DVD影碟机、DVD Audio以及LCD或DTV数码电视等输入的数码音频信号,而不是经过ADC模数转换或DAC数模转换处理的音乐模拟信号。所述功率放大电路主要由,供电电路、信号输入、功放IC处理以及信号输出组成。 输出部分由扬声器或喇叭组成。本方案所要达到的效果是:通过电路分析信号输入与数字音源的无缝结合、能有效降低信号间传递干扰,由于采用无负反馈的放大电路、低通滤波器等处理,可以将输出滤波器的截止频率设计得较高,从而保证在20Hz-20kHz内得到平坦的幅频特性和很好的相频特性,使得整个频段内无相对相移,声场定位准确。另外,由于它不需传统音响功放的静态电流消耗,所有能量几乎都是为音频输出而储备,加之无模拟放大、无负反馈的牵制,故具有更好的“动力”特征,即"动态特性"好。除此之外,如附图2所示:LC滤波器的差分实现,它们为滤波器提供相反极性的脉冲,其中滤波器包含两个电感器、两个电容器和扬声器。 2、具体实施方式及应用 如附图1所示:本方案的音响功放的信号流向如下所述:右声道信号(SP_IN_R)由R5,C2的RC串联电路送入功放IC的RINP脚,经IC处理一路由BSRP脚输出给由C13,L2,C17组成的LC低通滤波电路,最后输出给终端SP_OUT_R+;另一路由BSRN脚输出给由C16,L3,C18组成的LC低通滤波电路,最后输出给终端SP_OUT_R-;右声道地信号由RINN脚进入。左声道信号(SP_IN_L)由R6,C4的RC串联电路送入功放IC的LINP脚,经IC处理一路由BSLP脚输出给由C6,L6,C10组成的LC低通滤波电路,最后输出给终端SP_OUT_-;另一路由BSLN脚输出给由C9,L7,C11组成的LC低通滤波电路,最后输出给终端SP_OUT_L+;右声道地信号由RINN脚进入。图2是功放的低通滤波器电路图。

电感测量仪

FS500L电感测试仪 一、简介 FS500L电感测量仪具有简单实用的分选功能,此功能的参数设置简便易行,结果显示直观,可以满足人们使用单位的进货检验和电感生产线的快速分选测量要求。该电感测试仪采用桥式电路结构,标准电感器和被试电感器作为桥式电路的两臂。当进行电感器电感值测量时,测试电压同时施加在标准电感器和被试电感器上,处理器通过传感器同采集流过两者的电流信号并进行处理后得被试电感器的电感值。 由于采用标准电感器、被试电感器同步采样技术,可不受电源电压波动的影响;加之测量过程是全自动进行的,避免了手动操作引起的误差,因此具有稳定性好、重复性好,准确可靠的特点。 功能 1、不拆线测量并联及集合式器单只电容量或整组电容量。 2、不拆线测量电抗器、阻波器的电感。 3、不拆线测量变压器的入口电容、发电机入口电容等。 4、具有并联(放电)电阻值测量功能 5、能弥补电容表输出电压低而导致故障检出率低的问题。 6、同步显示电压及电流波形和相位,计算被测电容器功率损耗。 三、参数 1、输出电压:0-20V,自动调节 2、测量范围:电容:0.01uF-4000uF 电感: 1mH-20H 电阻:50mΩ-20kΩ 电流:50mA-10A 电压: 0-20V

电容量范围:0~20,000 kvar 3、测量精度:电容:±(1%+2字) 电感:±(1%+2字) 电流:±(0.5%+2字) 电压:±(0.5%+2字) 电容量:±(1%+2字) 4、分辨率:电压:0.1mV 电流:0.1mA 电容:0.1nF 电感:0. 1mH 5、外形尺寸320×240×130mm3 6、仪器重量4kg 7、工作温度:-15℃~ +45℃ 8、充电电源:交流160V~260V 9、绝缘:⑴、电压、电流输入端对机壳的绝缘电阻≥100M?。 ⑵、工作电源输入端对外壳之间承受工频2kV(有效值),历时1分钟实验。

电容电感测试仪的功能特点以及技术参数

电容电感测试仪的功能特点以及技术参数 电容电感测试仪针对变电站现场测量并联电容器组中的单个电容器电容值时存在的问题而专门研制的。 它着重解决了以下问题: 现场测量单个电容器需拆除连接线,不仅工作量大而且易损坏电容器。 电容表输出电压低而导致故障检出率低。 测量电抗器的电感。 该仪器具有测量工作量小、快捷简便、性能稳定、测量准确、故障检出率高等特点。此外,它的电流测量单元还可兼作CVT、避雷器等电器设备的测量之用,具有一机多能的功效。 “预防电容器装置事故的技术措施”中规定:对高压并联电容器部分,应定期进行电容器组单台电容器电容量的测量,推荐使用不拆连接线的测量方法,避免因拆装连接线导致套管受力而发生套管漏油的故障。 常州市汇高电子有限公司是一批具有相当理论基础和丰富实践经验的中、高级科技人员于2006年组建成立的高新技术企业,公司长期致力于电子测量仪器的开发、设计、制造,积极引进国际先进技术,消化吸收,开发出了热敏电阻测试仪、压敏电阻测试仪、铁心测试仪、宽频LCR数字电桥、高精度电容电感测试仪、多路温度巡检仪等几十种测量仪器,高、中、低挡兼备,质量可靠。下面由常州市汇高电子来给大家讲述一下电容电感测试仪的功能特点。 量程自动转换; 储存7168个测试数据; 大屏幕液晶(320×240 LCD)显示, 汉字菜单操作提示; 实现波形和测量处理数据同屏显示,使测试过程更直观; 具有设置、校正和调试功能。 仪器技术参数 电容量量程:0.2μF~2,000μF; 容量范围:5~20,000 kvar; 测量精度:0.2μF~2μF ±1%读数±0.02μF; 2μF~2,000μF ±1%读数±2个字; 电感量程:1mH~9.99H;测量精度:±1.5%读数±2个字 输出测量电压:AC 26V/500VA;50Hz; 显示方式:大屏幕液晶示屏全汉字输出,TPμp-40面板式热敏打印机 外形/ 重量:370×370×220 mm / 16 kg 工作条件: a. 环境温度:0℃~+40℃,相对湿度:≤90% b. 电源:AC 220V±10%;50Hz;

功放供电电路设计

射频功放设计规范和指南

II

目录 前言 ...........................................................................................................................错误!未定义书签。第一章射频功放设计步骤 (5) 1.1定设计方案 (5) 1.1.1 GSM及PHS基站系统 (5) 1.1.2 CDMA及WCDMA基站系统 (7) 1.2选择确定具体线路形式及关键器件 (9) 1.2.1射频放大链路形式与关键器件选择及确定 (9) 1.2.2控制电路的确定 (12) 1.3进行专题实验或一板实验 (13) 1.4结构设计及PCB详细设计 (13) 1.5进行可生产性、可测试性的设计与分析 (13) 第二章功放设计中的检测及保护电路 (14) 2.1引起功放失效的原因 (14) 2.2功放保护电路设计类型 (15) 2.3功率放大器的保护模型 (16) 2.4功放的状态监测 (17) 2.5状态的比较判断 (18) 2.6保护执行装置 (19) 2.7保护电路举例分析 (19) -1-

第三章功放中增益补偿电路的实现 (21) 3.1模拟环路增益控制 (21) 3.2数字环路增益控制 (21) 3.3温度系数衰减器 (22) 第四章功放供电电路设计 (23) 4.1功放电路的供电形式 (23) 4.1.1 LDMOS器件供电电路 (23) 4.1.2 GaAs器件供电路。 (25) 4.2电源偏置 (26) 4.3布局 (26) 4.4电容的选用 (26) 第五章输入输出匹配及功率合成技术 (28) 5.1用集总参数元件进行阻抗匹配电路的原理及设计实例 ............................ 错误!未定义书签。 5.1.1输入阻抗中含感性特性的匹配设计.................................................. 错误!未定义书签。 5.1.2输出阻抗中含容性特性的匹配设计.................................................. 错误!未定义书签。 5.2用分布参数来进行阻抗匹配........................................................................ 错误!未定义书签。 5.3功率合成技术................................................................................................ 错误!未定义书签。 5.3.1功率分配和合成单元。...................................................................... 错误!未定义书签。第六章功放设计中的前馈技术 .. (40) 6.1前馈技术 (40) 6.2实现方案 (43) 6.2.1方案介绍 (43) 6.2.2主功放模块(MAM) (45) 6.2.3误差放大器模块 (46) -2-

基于单片机电阻电容电感测试仪

1 前言 1.1 设计的背景及意义 目前,随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电阻,电容,电感的大小。因此,设计可靠,安全,便捷的电阻,电容,电感测试仪具有极大的现实必要性。 通常情况下,电路参数的数字化测量是把被测参数传换成直流电压或频率后进行测量。 电阻测量依据产生恒流源的方法分为电位降法、比例运算器法和积分运算器法。比例运算器法测量误差稍大,积分运算器法适用于高电阻的测量。 传统的测量电容方法有谐振法和电桥法两种。前者电路简单,速度快,但精度低;后者测量精度高,但速度慢。随着数字化测量技术的发展,在测量速度和精度上有很大的改善,电容的数字化测量常采用恒流法和比较法。 电感测量可依据交流电桥法,这种测量方法虽然能较准确的测量电感但交流电桥的平衡过程复杂,而且通过测量Q值确定电感的方法误差较大,所以电感的数字化测量常采用时间常数发和同步分离法。 因为测量电阻,电容,电感方法多并具有一定的复杂性,所以本次设计是在参考555振荡器基础上拟定的一套自己的设计方案。是尝试用555振荡器将被测参数转化为频率,这里我们将RLC的测量电路产生的频率送入AT89C52的计数端端,通过定时并且计数可以计算出被测频率再通过该频率计算出各个参数。 1.2 电阻、电容、电感测试仪的发展历史及研究现状 当今电子测试领域,电阻,电容和电感的测量已经在测量技术和产品研发中应用的十分广泛。 电阻、电容和电感测试发展已经很久,方法众多,常用测量方法如下。电阻测量依据产生恒流源的方法分为电位降法、比例运算器法和积分运算器法。比例运算器法测量误差稍大,积分运算器法适用于高电阻的测量。传统的测量电容方法有谐振法和电桥法两种。前者电路简单,速度快,但精度低;后者测量精度高,但速度慢。随着数字化测量技术的发展,在测量速度和精度上有很大的改善,电容的数字化测量常采用恒流法和比较法。电感测量可依据交流电桥法,这种测量方法虽然能较准确的测量电感但交流电桥的平衡过程复杂,而且通过测量Q值确定电感的方法误差较大,所以电感的数字化测量常采用时间常数发和同步分离法。 在我国1997年05月21日中国航空工业总公司研究出一种电阻、电容、电感在线测量方法及装置等电位隔离方法,用于对在线的电阻、电容、电感元件实行等电位隔离,其特征在于,(1>将一个运算放大器的输出端与其反相输入端直接连接,形成一个电压跟

HTGR-H全自动电容电感测试仪操作方法

https://www.360docs.net/doc/565918179.html, HTGR-H全自动电容电感测试仪HTGR-H全自动电容电感测试仪操作方法 3.1 界面介绍 首先将AC220V电源线连接至仪器面板电源插座,打开面板上电源开关,仪器进入开机欢迎画面,系统初始化完成后仪器进入主界面,如图3.1所示。该界面有6个选项,点击图标进入相应子界面。 3.2 系统设置 点击界面上的“系统设置”图标,进入系统设置界面(如图3.2)。在该界面中,进行时间设置和背光设置。 1.时间设置:首先点击相应时间图标,然后点击时间设置栏右边的“+”或“-”,时间修改完成后,点击“设置”图标,时间设置修改完成。 2.背光设置:点击背光设置栏右边界面上的“+”或“-”,即可完成背光设置,屏幕同步显示修改后的背光亮度。 点击“返回”按钮,返回主界面。

https://www.360docs.net/doc/565918179.html, HTGR-H全自动电容电感测试仪 图3.1主界面 图3.2 系统设置界面 3.3 测量设置 进行电容测试或电感测试之前,用户需要根据被试品参数设置相应的测量参数,点击主界面中的“测量设置”图标进入测量设置界面(如图3.3)。在此界面,包含“设置电压等级”、“添加电压等级”、“设置等效方式”和“系统信息”四个标题栏。

https://www.360docs.net/doc/565918179.html, HTGR-H全自动电容电感测试仪 1.设置电压等级:点击“《”或“》”按钮选择需要的电压等级,同时“系统信息”栏中会相应提示“切换电压等级完成”。点击“设置”按钮完成设置,同时“系统信息”栏中会相应提示“设置电压等级成功”。“当前/总数”显示当前选定的电压等级在总的电压等级数中的排序号。点击“删除”即删除当前选定的电压等级,同时“系统信息”栏中会相应提示“删除成功”。如无需要的电压等级值,用户可在“添加电压等级”栏添加所需要的电压等级,在“请输入”选项框中输入需要的电压等级值,点击“添加”按钮即可完成,同时“系统信息”栏中会相应提示“添加自定义电压等级成功!”。 2.设置等效方式:系统默认的等效方式为“串联方式”。如当前显示的等效方式为“串联方式”,点击后系统自动切换到“并联方式,如当前显示的等效方式为“并联方式”,点击后系统自动切换到“串联方式”,同时“系统信息”栏中会相应显示当前选定的等效方式。点击“设置”按钮完成设置,同时“系统信息”栏中会相应提示“设置等效方式成功”。 点击“返回”按钮返回主界面。

仪器检定-电容电感测试仪

前言 一、衷心感谢您使用本公司的产品,您因此将获得本公司全面的技术支持和服务保障。 二、本使用说明书适用于*****介损测试仪。 三、当您在使用本产品前,请仔细阅读本使用说明书,并妥善保存以备查考。 四、请严格按说明书要求步骤操作,使用不当可能危及人身安全。 五、在阅读本说明书或仪器使用过程中如有疑惑,可向我公司咨询。 使用本仪器前,请仔细阅读操作手册,保证安全是用户的责任 本手册版本号: 20121215 本手册如有改动,恕不另行通知。

目录 一、仪器概述 (2) 二、安全措施 (2) 三、可测试参数 (3) 四、性能特点 (3) 五、技术指标 (4) 六、测量方式及原理 (5) 七、常见设备的接线方法 (6) 八、仪器功能简介 (9) 九、仪器操作步骤 (10) 十、现场试验注意事项 (12) 十一、仪器检定 (14) 十二、变频测量讨论 (14) 十三、仪器的装箱清单 (15)

******介损测试仪说明书 一、仪器概述 介损测量是绝缘试验中很基本的方法,可以有效地发现电器设备绝缘的整体受潮劣化变质,以及局部缺陷等。在电工制造、电气设备安装、交接和预防性试验中都广泛应用。变压器、互感器、电抗器、电容器以及套管、避雷器等介损的测量是衡量其绝缘性能的最基本方法。*******介损测试仪突破了传统的电桥测量方式,采用变频电源技术,利用单片机、和现代化电子技术进行自动频率变换、模/数转换和数据运算;达到抗干扰能力强、测试速度快、精度高、全自动数字化、操作简便;电源采用大功率开关电源,输出45Hz和55Hz纯正弦波,自动加压,可提供最高10千伏的电压;自动滤除50Hz干扰,适用于变电站等电磁干扰大的现场测试。广泛适用于电力行业中变压器、互感器、套管、电容器、避雷器等设备的介损测量。 二、安全措施 1、使用本仪器前一定要认真阅读本手册。 2、仪器的操作者应具备一般电气设备或仪器的使用常识。 3、本仪器户内外均可使用,但应避开雨淋、腐蚀气体、尘埃过浓、高温、阳光直射等场所使用。 4、仪表应避免剧烈振动。 5、对仪器的维修、护理和调整应由专业人员进行。 6、在任何接线之前必须用接地电缆把仪器接地端子与大地可靠连接起来。 7、由于测试设备产生高电压,所以测试人员必须完全严格遵守安全操作规程,防止他人接触高压部件和电路。直接从事测试的人员必须完全了解高压测试线路,及仪器操作要点。非从事测试人员必须远离高压测试区,测试区必须用栅栏或绳索、警视牌等清楚表示出来。 8、仪器的调整维修和维护,必须在不加电情况下进行,如果必须加电,则操作者必须非常熟悉本仪器高压危险部件。 9、保险管损坏时,必须确保更换同样的保险,禁止更换不同型号保险或将保险直接短路使用。

全自动电容电感测试仪的基本概述及工作原理

全自动电容电感测试仪的基本概述及工作原理 GB50150-1991与Q/CSG10007-2004规定:高压并联、串联电容器和交流滤波电容器的电容值偏差不超过额定值的-5%~+10%;电容值不应小于出厂值的95%;耦合电容器和电容分压器的电容值,每节电容值偏差不超出额定值的-5%~+10%,电容值与出厂值相比,增加量超过+2%时,应缩短试验周期。 随着城农电网改造的进行,电容器补偿装置得到前所未有的发展,新开发的产品也相继投入运行。但随之而来的是电容器事故率的大幅上升,尤其是电容器装置多年不见的爆炸着火事故亦多次发生,并出现过严重的群伤事故。无功补偿装置专家工作组组织专家对事故进行认真分析、研究后,认为事故率的上升除制造厂的产品质量下降外,很重要的另一个原因是:无功补偿技术管理和运行人员新老交接,又无可操作的反事故措施可用。 鉴于目前电力行业对电容器测试的需要,我公司结合目前市场上各类不拆线电容器测量仪的优缺点,悉心研究开发出免拆线 YTC720A电容电桥测试仪。此仪器最大的特点是“免拆线,抗干扰,高精度,不易损”,大大提高工作效率,保障检测运行。 工作原理:

在被测电容支路有对被测电容的电压、电流取样的取样电路,取样电路的输出端分别接放大电路,从电压放大电路输出的电压信号和从电流放大电路输出的电流信号通过鉴相器输出相位差信号,与电压信号和电流信号通过A/D转换器后,输入CPU计算而得到被测电容值。因为采用了移动的电流取样单元,而使得无需拆除连接线就可以直接测量电容值。 加之测量过程档位是自动进行选择,避免了手动操作引起的误差,因此具有稳定性好、重复性好,准确可靠的特点。 湖北仪天成电力设备有限公司是专业生产销售电力检测设备的技术型厂家,尤其是所生产的YTC720A电容电感测试仪,广受业界好评,我们承诺,凡我公司产品,三月包换,三年质保,终身保修!

数字功放的设计概要

本科生毕业论文(设计) 题目: 数字功放的设计 姓名: 江丹 学院: 专业: 班级: 学号: 指导教师: 2014 年5月 25 日

目录 引言 (2) 1功放简介与发展现状 (3) 1.1 功放的种类 (3) 1.1.1 A类功率放大器 (3) 1.1.2 B类功率放大器 (3) 1.1.3 AB 类功率放大器 (3) 1.1.4 D类功率放大器 (4) 1.2数字功放的发展现状 (4) 2 数字功放的基本原理及电路组成 (5) 2.1 数字功放的工作原理 (5) 2.2 数字功放的电路组成 (6) 3 各模块电路设计 (7) 3.1 前置放大电路 (7) 3.2 三角波产生电路 (8) 3.3 比较器电路 (9) 3.4 驱动电路 (10) 3.5 功放与低通滤波电路 (11) 3.6 直流稳压电源 (13) 4 功能仿真与数据分析 (12) 4.1各电路仿真结果 (12) 4.1.1前置放大信号 (12) 4.1.2 三角波信号 (13) 4.1.3 PWM码 (13) 4.1.4 经过功放管的PWM码 (13) 4.4.5还原出的音频信号 (14) 4.2 数据计算与分析 (14) 4.2.1 电压放大倍数 (14) 4.2.2 效率 (14) 4.2.3 通频带宽度 (15) 5数字功放干扰抑制 (15) 6 D类功放的发展与技术展望 (16) 6.1 D类功放的不足 (16) 6.2 D类功放的最新发展——T类功率放大器 (16) 结论 (17) 致谢 (18) 参考文献 (18) 附录 (19)

数字功放的设计 电子信息工程专业学生 摘要:在日常生活中,我们已经感受到了电子技术给我们带来的便捷。在我们使用的各类电子设备中,数字功放正发挥着其不可替代的作用。所以设计出功能优异的数字功放已经是各大电子器件制造商的迫切任务。本文从数字功放的基本原理出发,着重介绍了它的各个电路组成部分。利用Multisim软件对所设计的电路进行功能仿真,并且达到了预期的效果。在实际电路中,针对其产生的电磁干扰提出了一些抑制方法。最后数字功放的发展趋势进行了简要描述。 关键词:PWM码门驱动电路滤波电路电磁干扰 引言 随着科学技术的不断发展,各种各样的电子产品层出不穷,例如笔记本电脑、移动通信终端、音箱等。这些事物的出现极大的丰富了我的日常生活,给我们的工作带来了很多便捷。然而,要使这些产品正常工作,数字功放是不可或缺的。数字功放其功放管的工作在导通和截止状态,如果输入信号使功放管处在导通状态,此时在理想状态下晶体管的内阻近似为零,所以管子两端没有压降,自然就不会产生功率消耗;如果输入信号使晶体管处在截止状态,那么晶体管的内阻就为无穷大,流经管子的电流就为零,也没有功率消耗。所以,晶体管在控制电路工作时是不会消耗功率的,这正是功放管能够达到比较高的效率的原因之一。正是由于数字功放的优越性能,所以它被广泛应用于电子设备中。因此,设计出符合要求的数字功放就显得格外重要。 1功放简介与发展现状 1.1 功放的种类 1.1.1 A类功率放大器 A类功放又称为甲类功放,如图1.1(a),对于此放大器的功率输出管,必须将其Q值设置在直流负载线的中点部分,因为这部分的线性最佳。这样输人信号在正负两个半周期内都能够使放大管在线性放大状态下工作,这时其导通角为360°。随之带来的问题就是能量转换效率很低,电路的最高效率也只有25%,并且需要两种晶体管交替互补才能使整个周期都处在放大状态,也不可避免地产

D类数字功率放大器

3.3 D类数字功放 D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。早先在音响领域里人们一直坚守着A类功放的阵地,认为A类功放声音最为清新透明,具有很高的保真度。但A类功放的低效率和高损耗却是它无法克服的先天顽疾。后来效率较高的B类功放得到广泛的应用,然而,虽然效率比A类功放提高很多,但实际效率仍只有50%左右,这在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。所以,如今效率极高的D类功放,因其符合绿色革命的潮流正受着各方面的重视,并得到广泛的应用。 3.3.1 D类功放的特点与电路组成 1.D类功放的特点 (1)效率高。在理想情况下,D类功放的效率为100%(实际效率可达90%左右)。B类功放的效率为78.5%(实际效率约50%),A类功放的效率才50%或25%(按负载方式而定)。这是因为D类功放的放大元件是处于开关工作状态的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。 (2)功率大。在D类功放中,功率管的耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合,输出功率可达数百瓦。 (3)失真低。D类功放因工作在开关状态,因而功放管的线性已没有太大意义。在D 类功放中,没有B类功放的交越失真,也不存在功率管放大区的线性问题,更无需电路的负反馈来改善线性,也不需要电路工作点的调试。 (4)体积小、重量轻。D类功放的管耗很小,小功率时的功放管无需加装体积庞大的散热片,大功率时所用的散热片也要比一般功放小得多。而且一般的D类功放现在都有多种专用的IC芯片,使得整个D类功放电路的结构很紧凑,外接元器件很少,成本也不高。 2.D类功放的组成与原理 D类功放的电路组成可以分为三个部分:PWM调制器、脉冲控制的大电流开关放大器、低通滤波器。电路结构组成如图3.22所示。

毕业设计论文 数字功放

XXXXXXXXXXXXXX 毕业设计(论文)说明书 作者:学号: 05307081 学号: 05305238 学号: 05306088 系部:电气工程系 专业:应用电子技术 题目:D类音频功率放大器的设计 指导者: 评阅者: 2008年 5 月

摘要 数字功率放大器具有模拟功率放大器不可比拟的优势,代表着音响技术数字化的新台阶。本系统以高效率D类功率放大器为核心,输出开关管采用高速VMOSFET管,连接成互补对称H桥式结构,最大不失真输出功率大于1W,平均效率可达到70%左右。D类放大器包括脉宽调制器和输出级。 本文首先介绍了声音的基本特性、音响放大器的技术指标、放大器分类和D 类放大器的工作原理,接着进行了D类功放的仿真分析,包括PWM波的形成、频谱分析等等;然后根据D类功放的设计要素,设计了基于MAXIM公司的10W立体声/15W单声道集成芯片MAX9703/MAX9704的D类放大器,并对D类功放的发展与技术展望进行了描述。 在本文里,对放大器的各个模块包括放大电路、比较器电路、三角波产生电路、驱动电路等进行了设计和仿真,且达到了预先设定的指标。 关键词:D类放大器脉宽调制高速开关电路低通滤波

目录 1 引言 (5) 2 音响的基础知识 (7) 2.1 声音的基本特性 (7) 2.2 音响的结构及参数 (7) 2.3 放大器的技术指标 (7) 3 放大器的简介 (9) 4 D类功放的原理及仿真 (13) 4.1 D类功放的工作原理 (13) 4.2 D类功放的EDA仿真 (15) 4.2.1 EDA仿真概述 (15) 4.2.2 D放大器原理仿真概述 (16) 4.2.3 输入信号抽样――PWM波的形成仿真 (17) 4.2.4 输出信号PWM波的频谱仿真分析 (17) 4.3 D类功放的优点 (18) 5 D类功放的硬件设计 (19) 5.1 D类功放的设计原理 (19) 5.2 D类功放的设计要素 (22) 5.2.1 输出晶体管尺寸选择 (22) 5.2.2 输出级保护 (22) 5.2.3 音质处理 (23) 5.2.4 EMI处理 (25) 5.2.5 LC滤波器设计 (26) 5.2.6系统成本 (27) 5.2.7 散热注意事项 (27) 5.3 D类功放电路分析与计算 (31) 5.3.1脉宽调制器(PWM) (31) 5.3.2 前置放大器 (33) 5.3.3 驱动电路 (34) 5.3.4 高速开关电路 (35) 5.3.5 低通滤波 (40) 6 MAX9703/MAX9704单声道/立体声D类音频功率放大器 (44) 6.1 概述 (44) 6.2 MAX9703/MAX9704详细说明 (44)

数字功放和模拟功放优缺点

数字功放和模拟功放优缺点 数字功放取代模拟功放是趋势,数字功放有模拟功放无法比拟的优点,从理论上讲,如果能找到一个理想的开关元件,数字功放的效率可以做到100%。然而,迄今为止没有一家公司有这种理想开关元件。难免产生一小部分损耗。会因MOS的RDS不同而损耗会不一样。但是不管怎样,它的效率可以达到90%以上,这是模拟功放无法达到的。 一、数字功放和模拟功放的效率 把音频信号调制一个较高的固定频率上,再解调音频信号的过程,这就是数字功放的基本原理。它的最大优点就是效率高,这样可以用很小功率的电子器件就可以制做出很大的功率。小功率,1W-3W的功放而言,在同样的测试条件下,AB类功放与D类功放的效率各为AB=15% D=75%。在输出1W的情况下,AB 类要消耗6.7W功率。但D类只消耗1.33W功耗。在输出10W的功放,AB类功放要消耗40W功率。而D类只消耗12.5W。而且D类功放所产生的2.5W热可由PCB设计时散热,省掉了散热器。在大功率输出的情况下100W-500W的D类功放可以使用很小的散热器。D类功放在大功率功放中的优势更为明显。 二、D类功放的成本 D类功放还体现在成本方面的优势。高效率可以大大节省电源成本。不管是线性电源还是开关电源都是以功率来计算单价的。如2X15W的功率来计算,D类放大器的总功率约为30/80%=37.5W. 模拟功放的功率为30W/45%=66.7W。数字功放电源的价格成本省近1半。 D类功放主要器件成本也很低。如100W功放来计算,用IR的方案,IRS2092不到7元钱,MOS管也不到7元。这2个主要器件加起来不超过20元。而

模拟功放的大散热器就超出这个价格。D类保护电路更全,D类功放内部一般设有保护触发电路,可以省掉继电器,省掉机械触点,节省成本,减少故障点。同时因数字功放发热少,在大功率功放中可以省掉机箱后面的风扇。 三、过载能力与功率储备 数字功放的过载能力远高于模拟功放,模拟功放三极管工作在线性区,当过载后,三极管会饱和,出现谐波失真。而数字功放MOS管是工作在饱和区,截止区,因些不会引起失真。MOS管是电压器件,瞬态响应好。四、交越失真和失配失真 模拟功放有过零失真,这是由于三极管在小电流时的非线性特性而引起的在输出波形正负交接处的失真(小信号时三极管会在截止区,无电流通过,导致输出严重失真)而D类功放,MOS工作在开关状态,不会产生交越失真。 模拟功放存在推挽管特性不一致而造成输出波形不一样引起失真。在制做大功率功放时往往要配对,这增加了生产的难度。而数字功放对2个MOS的特性一致性要求不严。 五、功放和喇叭的匹配 由于模拟功放中的功放管内阻较大,所以在匹配不同阻值的喇叭时,模拟功放的工作状态会因负载阻抗不同而受到很大影响。而数字功MOS管RDS内阻很小,几毫欧,几十毫欧,最大在200毫欧以下。相对负载喇叭阻抗(4R,8R,16R)完全可以忽略不计。因些不存在阻抗匹配问题。 六、数字功放有很好的开关机降噪电路。 数字功放内部PWM信号,电压控制更方便,可以很简单的做到开,关机降噪电路。关闭、延时开启PWM,小信号电压控制。而模拟功放要做到

如何设计出理想的D类数字功放

数字功放仍需模拟功夫 —如何设计出理想的D类放大器? 在多通道和数字音源时代,采用D类放大器以简化前级线路、提高功放效率从而降低对电源及散热的要求,这已是大势所趋。但D类功放虽然也被称作数字化功放,但在电路设计上绝不像纯粹的数字电路那么简单,也不是直接采用一两块芯片就可以大功告成的。以数字手段实现模拟功能,仍然需要考虑许多模拟方面的因素,但考虑的因素和角度与传统的线性功放又有很大差异。本文除了介绍D类放大器的基本原理和好处之外,还着重讲解了输出级设计、功放管选择、电源、电磁兼容,以及电路板布局方面需要注意的一些问题,这些实用知识有助于设计师减少走弯路的麻烦。 D类放大的好处 凭借诸如极佳的功率效率、较小的热量以及较轻的供电电源等优点,D类放大器正在音频世界掀起风暴,这一点儿也不令人惊奇。的确,随着技术的成熟以及其所达到越来越好的声音重现效果,看起来继续使用D类放大器向市场渗透是一个颇有把握的赌注,以往在这个市场上只有传统的线性(A类、B类或AB类)功率放大器能够提供令人满意的性能。 环绕声格式的不断进步加速了这种趋势。由于越来越多的家庭和车内娱乐系统、DVD播放器以及AV接收机需要驱动六个或更多的扬声器,线性放大器及其电源的尺寸增大了,并且产生了更多的热量。例如,Dolby Digital(杜比数字)格式要求六个独立的输出级,而更新推出的Dolby Digital EX要求更多的8声道。鉴于此,D类放大技术的优势显得比以往更加突出。 输出级数模转换机制 所有D类系统的共同特点及其超群的功率效率的奥秘就在于输出级(通常是MOSFET)的电源器件总是要么全通要么全关。这与线性放大器形成对比,线性放大器输出晶体管的导通状态随时间变化。晶体管消耗的功率是其压降与流过电流之积(P=IV),通常占到线性放大器消耗的总功率的50%或更多。在D类系统中不是这样。由于所有输出晶体管要么压降为零(处于“通”状态)要么流过的电流为零(处于“关”状态),理论上根本不会损失能量。回到现实世界中,安装在数以百万计的微处理器之上的冷却风扇表明即使是纯数字系统也会以发热的形式浪费能量,D类放大器达到的功率效率在85至90%之间。 不过,如何使一个天生只能产生方波的开关器件再现音乐中多种多样的波形呢?某些类型的高频“数字”信号可以通过低通滤波产生平滑的“模拟”输出。最广泛使用的就是脉宽调制(PWM:pulse width modulation)技术,其中矩形波的占空比与音频信号的振幅成正比。通过与一个高频锯齿波比较,可以很容易地将模拟输入转换为PWM(参见图1)。

数字功放、D类功放、模拟功放区别

一、数字功放与D类功放的区别 常见D类功放(PWM功放)的工作原理:PWM功放只能接受模拟音频信号,用内部三角波发生器产生的三角波和它进行比较,其结果就是一个脉宽调制信号(PWM),然后将PWM信号放大并还原成模拟音频信号。因此,PWM功放是用脉冲宽度对模拟音频幅度进行模拟的,其信息的传递过程是模拟的、非量化的、非代码性的。并且由于目前器件性能的限制,PWM功放不可能采用太高的采样频率,在性能指标上尚达不到Hi-Fi级的水平。而数字功放采用一些宽度固定的脉冲来数字地量化、编码模拟音频信号,使音频信号的还原更为真实。 二、数字功放和模拟功放的区别 数字功放由于工作方式与传统模拟功放完全不同,因此克服了模拟功放固有的一些缺点,并且具备了一些独有的特点。 1. 过载能力与功率储备 数字功放电路的过载能力远远高于模拟功放。模拟功放电路分为A类、B类或AB类功率放大电路,正常工作时功放管工作在线性区;当过载后,功放管工作在饱和区,出现谐波失真,失真程度呈指数级增加,音质迅速变坏。而数字功放在功率放大时一直处于饱和区和截止区,只要功放管不损坏,失真度不会迅速增加,如图1所示。 图1 全数字功放与普通功放过载失真度比较 由于数字功放采用开关放大电路,效率极高,可达75%"90%(模拟功放效率仅为30%"50%),在工作时基本不发热。因此它没有模拟功放的静态电流消耗,所有能量几乎都是为音频输出而储备,加之前后无模拟放大、无负反馈的牵制,故具有更好的“动力”特性,瞬态响应好,“爆棚感”极强。 2. 交越失真和失配失真 模拟B类功放在过零失真,这是由于晶体管在小电流时的非线性特性而引起的在输出波形正负交叉处的失真(小信号时晶体管会工作在截止区,无电流通过,导致输出严重失真)。而数字功放只工作在开关状态,不会产生交越失真。

CL_I电容电感测试仪说明书

CL-I电容电感测试仪 使用说明书 苏州华电电气股份有限公司

目录 一、产品介绍 (1) 1.1 技术指标 1.2 功能特点 二、操作指导 (2) 2.1 面板说明 2.2 测量操作 三、现场测试 (4) 3.1 接线 3.2 注意事项 四、仪器附件 (5) 五、维修及售后服务 (6)

一、产品介绍 CL-I电容电感测试仪是专门用来测量电容、电感器组在不用断开连线的情况下的电容、电感值,特别适用于发、变电站内已投运的电力电容、电感器组。 1.1技术指标 电容测量范围误差 0.01μF~1.0μF ±0.05μF 1.0μF~100.0μF ±(1%读数+0.2%满度) 100.0μF~2000.0μF ±(1%读数+0.2%满度) 最小分辨率: 0.001uF 电感测量范围误差 0.2mH~20mH ±0.05mH 20mH~200mH ±(2%读数+0.2%满度) 200mH~10H ±(2%读数+0.2%满度) 最小分辨率: 0.001mH 电阻测量范围误差 0.5Ω~5Ω±0.05Ω 5Ω~500Ω±(1%读数+0.2%满度) 500Ω~2000Ω±(1%读数+0.2%满度) 最小分辨率: 0.001Ω 电源(市电) 电压:220V±22V (AC) 频率:50Hz±0.5Hz 输出试验电压 1

0.5VAC、1.0VAC、2.0VAC、5VAC、25VAC工频 使用环境条件 温度:-10°C~50°C 湿度:≤90%RH 不结露 体积重量 体积:500mm×350mm×200mm 重量:≤15kg 钳表口径 不小于68mm 1.2功能特点 ◆操作简单,选择测量电容、电感、电阻 只需要通过简单的接线和按键操作就可以完成用户需要的试验设定,测 量过程由仪器自动控制完成,测试结果由液晶全汉字显示,简便、直观。 ◆保护提示 钳表检查提示 接线错误提示 ◆配备微型打印机,测量结束,可手动打印测试数据 二、操作指导 2.1面板说明 1.电源插座(连接220V电源,带3A保险丝) 2.仪器电源开关 3.试验电压输出开关 4.液晶显示屏 2

数字功放的原理与制作

数字功放的原理与制作 一、数字功放原理解析 数字功放,顾名思义就是将数字信号进行功率放大。数字信号通常用"0"来代表低电平,"1"代表高电平,从而组成一连串的方波信号。由于数字信号只有高低电平之分,因此,当用功放管对其进行放大时,功放管完全可以工作在开关状态,而不是放大状态,这样就大大减小了管子静态功耗,提高了效率。 为了实现数字功放,必须将模拟信号转化为数字信号,在这里通过M8L内部自带的十位模数转换器转换即可,然后用M8L的OCR1A和OCR1B引脚产生占空可变的脉冲串,即PWM。PWM信号是以一个固定频率为基础的,为了产生不同的模拟电平,可以通过改变这个脉冲串的占空比实现。要输出高的模拟电平,就增大占空比,反之减小。这样,通过PWM 就将模拟信号转换为数字信号。将PWM信号通过功放管进行进一步放大,再通过低通滤波器就可以产生模拟电平了。50%的占空比输出电源电平的一半,75%的占空比会产生75%电源电平。模拟滤波器可以是一个简单的无源的RC滤波器。滤波器滤除频率比较高的PWM信号,留下模拟信号。在用作数字功放驱动扬声器时,如果不是为了特殊的需要,为了最大限度地提高输出功率,可以不用低通滤波器滤波,因为扬声器就像个低通滤波器,它对高频的PWM信号是不会响应的。通常扬声器的响应频率范围为20Hz~20 kHz,远小于PWM信号的频率。 二、电路工作原理 电路原理图如图1所示,电路分为四个部分,包括前置放大、A/D与PWM转换、功率放大及滤波等。

1.前置放大电路 LM358组成同向放大电路,音频信号从LM358同向输人端输入,放大增益由R2和R1的阻值大小决定,电压放大倍数:Av=l+R2/R1。R3、R4和R5组成分压电路,当没有信号输入时,同向输入端的电压为2.5 V,经过C4、R2和R1组成的交流负反馈电路,输出端电压仍为2.5V。当有信号输入时,同向输入端的电压随着音频信号的变化而变化,经过C4、R2和R1组成的交流负反馈电路,输出电压Vout=Vin*Av。输出信号将以2.5V为轴,上下变动。由于工作电压为+5V,为了保证波形不失真,输入信号的峰值应小于2.5V/Av。LM358为单电源双运放,增益频带宽为1MHz,也可双单源工作。LM358的引脚图如图2所示。 2.A/D与PWM转换 这是电路的重要组成部分,由单片机M8L完成。M8L功能齐全、接口丰富。它有6通道A/D,包括4路10位A/D和2路8位A/D。片中的2个PWM通道可实现任意小于16位相位和频率可调的脉宽调制输出。M8L的PWM有3种工作模式:快速PWM模式、相位可调PWM模式和相位频率可调PWM模式。本电路采用的是快速PWM模式。M8L内部A/D转换是通过逐次逼近的方法将输入的模拟电压转换成一个10位的数字量。最小值代表GND,最大值代表AREF引脚上的电压再减去1LSB。通过写ADMUX寄存器也可以把AVCC或内部2.56V的参考电压连接到AREF引脚。在AREF上外加电容可以对片内参考电压进行解耦以提高噪声抑制性能。笔者采用的是8倍时钟分频,工作在连续A/D转换模式,每次A/D 转换时间需要13个ADC时钟,此时的A/D转换速率为16MHz/8/13=153.8kHz。为了提高ADC的抗干扰能力,ADC使用10位精度采样,然后将得到的值除以4作为OCR1A的值,OCR1B则为OCR1A 的补码,即255-OCRlA。 快速PWM模式可用来产生高频的PWM波形。快速PWM模式与其他PWM模式的不同之处是其单边斜坡工作方式。计数器从BOTTOM计到TOP,然后立即回到BOTTOM重新开始。对于普通的比较输出模式,输出比较引脚OC1x在TCNT1与OCR1x匹配时置位,在TOP时清零;对于反向比较输出模式,OCRlx 的动作正好相反。由于使用了单边斜坡模式,快速PWM模式的工作频率比使用双斜坡的相位修正PWM 模式高一倍。此高频操作特性使得快速PWM模式十分适合于功率调节,整流和DAC应用。高频可以减小

相关文档
最新文档