圆锥曲线大题20道(含标准答案)

圆锥曲线大题20道(含标准答案)
圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+

=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>?OB OA (其

中O 为原点). 求k 的取值范围.

解:(Ⅰ)设双曲线方程为12222=-b

y a x ).0,0(>>b a

由已知得.1,2,2,32222==+==

b b a

c a 得再由

故双曲线C 的方程为.13

22

=-y x (Ⅱ)将得代入13

222

=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得?????>-=-+=?≠-.

0)1(36)31(36)26(,

0312

222

k k k k

即.13

1

22<≠

k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319

,31262

2>+>?--=-=

+B A B A B A B A y y x x OB OA k

x x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x

.1

37

3231262319)1(2

2222

-+=+-+--+=k k k k k k k 于是

解此不等式得即,01393,213732222>-+->-+k k k k .33

1

2<

1

2<

故k 的取值范围为).1,3

3()33,1(?-

- 2..已知椭圆C :22a x +22

b

y =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线

l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .

(Ⅰ)证明:λ=1-e 2;

(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.

(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是

2222222.

,

,1,).,0(),0,(b a c c b y c x b y a

x a ex y a e a +=?????=-=?????=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a e

a

a b e a c AB AM λλ=+-=得

即22

1e a a

b e a

c e a

-=???????==-λλλ解得

证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a e

a

-

设M 的坐标是00(,),x y

00(,)(,),a a

AM AB x y a e e

λλ=+=由得

所以???

??

=-=.

)1(00a y e a x λλ

因为点M 在椭圆上,所以,122

220=+b

y a x

即.11)1(,1)()]1([2

2222222

=-+-=+-e e b a a e a

λλλλ所以 ,0)1()1(2224=-+--λλe e

解得.1122

e e -=-=λλ

(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,

.||2

1

1c PF = 设点F 1到l 的距离为d ,

,1||1|0)(|||21221c e

ec a e a c e d PF =+-=+++-==

.112

2e e

e =+-

所以.3

2

1,3122=-==

e e λ于是

即当,3

2

时=

λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,

则0000010.

22y x c

e y x c e a -?=-?+??+-?=+??,2022

023,12(1).1e x c e e a y e ?-=??+?-?=?+?解得

由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([22222

2

2c e a e c e c e =+-+++- 两边同时除以4a 2

,化简得.1

)1(22

2

2e e e =+- 从而.3

12=

e 于是3

2112=-=e λ 即当3

2

=

λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i 、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a )3( ,)3(-+=++=,且4=+b a

.

(Ⅰ)求点),(y x P 的轨迹C 的方程;

(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]

4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,

OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;

(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明2

2

μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学

知识解决问题及推理的能力. 满分12分.

(1)解:设椭圆方程为

)0,(),0(122

22c F b a b

y a x >>=+ 则直线AB 的方程为c x y -=,代入122

22=+b y a x ,化简得

02)(22222222=-+-+b a c a cx a x b a .

令A (11,y x ),B 22,(y x ),则.,22

222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得

,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,

.2

3

,

0)()2(3212121c x x x x c x x =

+∴=++-+∴ 即2322

22c

b

a c a =+,所以3

6.32222a b a c b a =

-=∴=, 故离心率.3

6==

a c e (II )证明:(1)知2

2

3b a =,所以椭圆12222=+b

y a x 可化为.332

22b y x =+

设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=

???+=+=∴.

,

2121x x y x x x μλμλ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(2

21212

22

22

2

12

12

b y y x x y x y x =+++++λμμλ① 由(1)知.2

1,23,232

22221c b c a c x x ===

+ [变式新题型3]

抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.

(1)求抛物线的方程;

(2)若FP ?FQ =0,求直线PQ 的方程;

(3)设AP =λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ .

.6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP j ?=,且3

,3

OF FP t OM OP j ?==+ . (I )设443,t OF FP θ<<求向量与 的夹角的取值范围;

(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且|

|,)13(,||2OP c t c OF 当-==取最小值时,求椭圆的方程.

7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-,

0MA AP ?=. (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;

(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.

8.已知点C 为圆8)1(2

2=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且

.2,0AM AP AP MQ ==?

(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q

的轨迹交于不同两点F ,H ,O 是坐标原点,

4

3

32≤?≤OH OF ,求△FOH 的面积

已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ?? ???

三点.

(Ⅰ)求椭圆E 的方程;

(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.

10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。

(Ⅰ)设点P 分有向线段AB 所成的比为λ,证明);QB QA (QP λ-⊥

(Ⅱ)设直线AB 的方程是x —2y+12=0,过A 、B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程。

10.已知平面上一定点(1,0)C -和一定直线: 4.l x =-P为该平面上一动点,作,PQ l ⊥垂足为Q ,

0)2()2(=-?+→

→→→PC PQ PC PQ .

(1) 问点P在什么曲线上?并求出该曲线方程;

(2) 点O是坐标原点,A B 、两点在点P的轨迹上,若1OA OB OC λλ+=+(),求λ的取值范围.

11.如图,已知E 、F 为平面上的两个定点6||=EF ,10||=FG ,且EG EH =2,HP ·0=GE ,

(G 为动点,P 是HP 和GF 的交点)

(1)建立适当的平面直角坐标系求出点P 的轨迹方程;

(2)若点P 的轨迹上存在两个不同的点A 、B ,且线段AB 的中垂线与EF

(或EF 的延长线)相交于一点C ,则||OC <5

9

(O 为EF 的中点).

12.已知动圆过定点()1,0,且与直线1x =-相切. (1)求动圆的圆心轨迹C 的方程;

(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ?=?若存在,求出

G

P

H

直线l 的方程;若不存在,说明理由.

13.已知)0,1(),0,4(N M 若动点P 满足||6NP MP MN = (1)求动点P 的轨迹方C 的方程;

(2)设Q 是曲线C 上任意一点,求Q 到直线0122:=-+y x l 的距离的最小值. 19.如图,直角梯形ABCD 中,∠?=90DAB ,AD ∥BC ,AB=2,AD=

23,BC=2

1 椭圆F 以A 、B 为焦点且过点D ,

(Ⅰ)建立适当的直角坐标系,求椭圆的方程;

(Ⅱ)若点E 满足AB EC 2

1

=,是否存在斜率

与的直线l k 0≠M 、F 交于椭圆N 两点,且

||||NE ME =,若存在,求K 的取值范围;若不存在,说明理由。

解(1)已知双曲线实半轴a 1=4,虚半轴b 1=25,半焦距c 1=62016=+, ∴椭圆的长半轴a 2=c 1=6,椭圆的半焦距c 2=a 1=4,椭圆的短半轴2b =204622=

-,

∴所求的椭圆方程为

+362x 120

2

=y (2)由已知)0,6(-A ,)0,4(F ,设点P 的坐标为),(y x ,则

),,4(),,6(y x FP y x AP -=+=由已知得 22

213620(6)(4)0x y x x y ?+=?

?

?+-+=?

则018922

=-+x x ,解之得623-==x x 或,

由于y>0,所以只能取23=x ,于是325=y ,所以点P 的坐标为??

?

??325,

239分 (3)直线063:=+-y x AP ,设点M 是)0,(m ,则点M 到直线AP 的距离是2

6

+m ,于是626-=+m m , 又∵点M 在椭圆的长轴上,即 66≤≤-m 2m ∴= ∴当2=m 时,椭圆上的点到)0,2(M 的距离

22

2

2

2

2549

(2)4420()15992

x d x y x x x =-+=-++-=-+

又66x -≤≤∴当2

9

=x 时,d 取最小值15

2.解:(1)由3

4sin |

|||cos ,sin 34||||,sin ||||2

132θθθ

θt FP OF FP OF FP OF FP OF =??==???=由得,

得.34tan t

=θ…………………………………………………………………3分

],0[3

tan 1344πθθ∈<<∴<< t ∴夹角θ的取值范围是(

3,

π)

………………………………………………………………6分

C B

D A

(2)).0,(),,(),,(0000c OF y c x FP y x P =-则设

2000000(,)(,0)()(31)3143||||232OFP

OF FP x c y c x c c t c x c

S OF y y c

?∴?=-?=-==-∴==?=∴=±

…………………………………………………………………………………………8分

22

22004343

||(3)(

)2326OP x y c c c c

∴=+=+≥?=………………10分 ∴当且仅当)32,32(,,62||,2,3

43±===

OP OP c c

c 此时取最小值时即 )3,2()1,0()32,32(33

=+=

∴OM 或)1,2()1,0()32,32(3

3-=+-=OM …………12分 椭圆长轴

12,48)03()22()03()22(222222==∴=-+++-+-=b a a

或2

17

1,217117

1)01()22()01()22(222222+=

+=

∴+=--+++--+-=b a a 故所求椭圆方程为

112162

2=+y x .或12

17

12

17922=+++y x …………14分 解: (Ⅰ)∵ OP →·OQ →

=0,则x 1x 2+y 1y 2=0, ……………………1分

又P 、Q 在抛物线上,

∴y 12=2px 1,y 22=2px 2,

∴y 122p ·y 222p

+y 1y 2=0, y 1y 2=-4p 2

, ∴|y 1y 2|=4p 2,……………………3分

又|y 1y 2|=4,∴4p 2=4,p=1. ……………………4分 (Ⅱ)设E(a,0),直线PQ 方程为x =my +a ,

联立方程组 ???x =my +a y 2=2px

,……………………5分

消去x 得y 2-2pmy -2pa =0,……………………6分

∴ y 1y 2=-2pa , ① ……………………7分 设F(b,0),R(x 3,y 3),同理可知:

y 1y 3=-2pb , ② ……………………8分 由①、②可得

y 3y 2=b

a

, ③ ……………………9分 若 TR →=3TQ →

,设T(c,0),则有

(x 3-c,y 3-0)=3(x 2-c,y 2-0),

∴y 3=3y 2 即 y 3

y 2

=3, ④ ……………………10分

将④代入③,得 b =3a . ……………………11分

又由(Ⅰ)知,OP →·OQ →

=0,

∴ y 1y 2=-4p 2,代入①,

得-2pa =-4 p 2∴ a =2p,……………………13分 ∴b =6p,

故,在x 轴上,存在异于E 的一点F(6p,0),使得TR →=3TQ →

.………………14分 注:若设直线PQ 的方程为y =kx +b ,不影响解答结果. (Ⅰ)解:设P (,)x y 则

(,)A AP x x y =-(,)B PB x y y =--……………………………………………...2分

由AP PB =- 得 2A x x =,2B y y =……………………………………………..4分 又(,2)A MA x =(,)A AP x x y =- 即(2,2)MA x =,(,)AP x y =-……………6分 由0MA AP ?= 得 2

(0)x y y =≥……………………………………………………..8分 (Ⅱ)设11(,)E x y ,22(,)F x y

因为'y x = ,故两切线的斜率分别为1x 、2x ……………………………10分

由方程组22(2)x y y k x ?=?=+? 得2

240x kx k --=122x x k +=124x x k ?=- (12)

当12l l ⊥时,,

121x x ?=-,所以 1

8

k =

所以,直线l 的方程是 1

(2)8

y x =+…………

解:(Ⅰ)∵2MF x ⊥轴,∴21||2MF =,由椭圆的定义得:11

||22

MF a +=,--------2分

∵2211||(2)4MF c =+,∴22

11(2)424

a c -=+,-----------------------------------4分

又32e =

得2

234

c a =∴22423,a a a -=0a >2a ∴=

∴2

2

2

2

114

b a

c a =-=

=,-------------------------------6分 ∴所求椭圆C 的方程为2

214

x y +=.------------------------------------------------7分 (Ⅱ)由(Ⅰ)知点A(-2,0),点B 为(0,-1),设点P 的坐标为(,)x y 则(2,)PA x y =---,(2,1)AB =-, 由PA AB m ?=-4得-424x y m -+=-,

∴点P 的轨迹方程为2y x m =+------------------------------------9分 设点B 关于P 的轨迹的对称点为00'(,)B x y ,则由轴对称的性质可得:000011

1,2222

y y x m x +-=-=?+, 解得:004423

,55

m m x y ---=

=

,------------------------------11分 ∵点00'(,)B x y 在椭圆上,∴224423()4()455m m ---+=,整理得2230m m --=解得1m =-或 3

2

m =

∴点P 的轨迹方程为21y x =-或3

22

y x =+,-------------------------------------------13分

经检验21y x =-和3

22

y x =+都符合题设,

∴满足条件的点P 的轨迹方程为21y x =-或3

22

y x =+.---

解(Ⅰ)依题意,可设直线AB 的方程为m kx y +=,代入抛物线方程y x 42

=得

.0442=--m kx x ①

设A 、B 两点的坐标分别是(x 1,y 1)、(x 2,y 2),则x 1、x 2是方程①的两根。 所以.421m x x -=

由点P (0,m )分有向线段AB 所成的比为λ, 得

012

1=++λ

λx x , 即.21x x -=λ

又点Q 是点P 关于原点的以称点,

故点Q 的坐标是(0,--m ),从而).2,0(m QP =

),(),(2211m y x m y x QB QA +-+=-λλ

=).)1(,(2121m y y x x λλλ-+--

])1([2)(21m y y m QB QA QP λλλ-+-=-?

=])1(44[22

122212

1m x x

x x x x m ++?+

=2

212144)(2x m

x x x x m +?

+

=2

21444)(2x m

m x x m +-?+

=0,

所以).(QB QA OP λ-⊥ (Ⅱ)由?

?

?=+-=,

0122,42

y x y x 得点A 、B 的坐标分别是(6,9)、(--4,4)。 由y x 42

=得241x y =

, 1

,2

y x '= 所以抛物线y x 42

=在点A 处切线的斜率为6

3x y ='=。

设圆C 的方程是2

2

2

)()(r b y a x =-+-,

则??

???-=---++=-+-,3169

.)4()4()9()6(2222a b b a b a 解之得 .2

125

)4()4(,223,23222=-++==-=b a r b a

所以圆C 的方程是2

125

)223()23(22=

-++y x , 解:(1)由(2)(2)0PQ PC PQ PC +?-=,得:2

2

40PQ PC -=,………(2分)

设(,)P x y ,则2

2

2

(4)4(1)0x x y ??+-++=??,化简得:22

143x y +=,………(4分)

点P 在椭圆上,其方程为22

143x y +=.………(6分) (2)设11(,)A x y 、22(,)B x y ,由(1)O

A O

B O

C λλ+=+得:0CA CB λ+=,所以,A 、B 、C 三点共线.且0λ>,

得:1122(1,)(1,)0x y x y λ+++=,即:12

12

1x x y y λλλ=---??

=-?…(8分)

因为2211143x y +=,所以2

22(1)()143x y λλλ----+=①………(9分) 又因为2222143x y +=,所以22

222()()43

x y λλλ+=②………(10分) 由①-②得:2222(1)(1)14x λλλλ+++=- ,化简得:2352x λ

λ

-=,………(12分)

因为222x -≤≤,所以35222λ

λ

--≤≤. 解得:

133λ≤≤所以λ的取值范围为1,33??????

.

解:(1)如图1,以EF 所在的直线为x 轴,EF 的中垂线为y 轴, 建立平面直角坐标系。----------------------------------------1分 由题设EG EH =2,0=?EG HP

∴||||PE PG =,而a

PG PE PF 2||||||==+-------------3分 ∴点P 是以E 、F 为焦点、长轴长为10的椭圆,

故点P 的轨迹方程是:

116

252

2=+y x -----------------4分 (2)如图2 ,设),(11y x A ,),(22y x B ,)0,(0x C , ∴21x x ≠,且||||CB CA =,--------------------------------6分 即=+-21201)(y x x 2

2202)(y x x +- 又A 、B 在轨迹上,

∴116252

12

1=+y x ,116

252

22

2=+y

x 即2

12

125

1616x y -

=, 2

22

225

1616x y -

=---------------8分 代入整理得:

)(259)(22

122012x x x x x -=?-

∵21x x ≠,∴50

)

(9210x x x +=.---------------------10分

∵551≤≤-x ,552≤≤-x ,∴101021≤+≤-x x . ∵21x x ≠,∴101021<+<-x x ∴59590<<-

x ,即||OC <5

9

.---------------1 (Ⅰ)以AB 中点为原点O ,AB 所在直线为x 轴,建立直角坐标系,如图 则A (-1,0) B(1,0) D(-1,

2

3

) (1分) 设椭圆F 的方程为)0(122

22>>=+b a b

y a x (2分)

得??

?

????+==??

? ??+-1123)1(222

2

22b a b a (4分) P

B

G

E

A

x

H F

O

y

C 图2

得3410417422224==∴>=+-b a a a a

所求椭圆F 方程 13

42

2=+y x (6分)

(Ⅱ)由)2

1

,0(21E AB EC 得=

显然)0(≠+=⊥k m kx y l AB l 方程设时不合条件

代入01248)43(13

42222

2=-+++=+m kmx x k y x 得 (7分)

l 与椭圆F 有两不同公共点的充要条件是

0)124)(43(4)8(222>-+-=?m k km (8分)

即03422>+-m k 设、

y x M ),(11),(),(0022y x P ,MN y x N 中点 MN PE NE ME ⊥=等价于|

|||

20

22104344382k km

x k km x x x +-=∴+-=

+= (9分) 2

00436k

m

m kx y +=+= (10分) k

x y MN PE 12100-=-

⊥得 (11分) 得 k

k

km k m 143421

4362

2-=+--+ 得 2432k m +-= (12分) 代入 0234340

2

22

>???

? ??+-+>?k k 得

4

1

4

34022<

<+

,0()0,21(0

?-∈≠k k k 取值范围为故 (14分)

解法2, 设),(),(2211y x 、N y x M

得???????=+=+

134

13

42

2222

121y x y x ①—② 得

0)(3

1)(4122212221=-+-y y x x ①

2

12

1

21212

143y y x x x x y y x x ++?-=--≠得

000043)

,(y x k y x P MN ?-=得中点 得004

3

x ky -=③ (9分)

MN PE NE ME ⊥=即||||

k x y 121

00-=-

得2

0k x ky +-=④ (11分)

由③、④得 2

3

,

200-==y k x

且P (x 0,y 0)在椭圆F 内部

得4

1

13

494422

<

<+k k

得 (13分) 又)2

1

,0()0,21(0?-∈∴≠k k k 取值范围为 (14分)

圆锥曲线经典练习题及答案(供参考)

圆锥曲线经典练习题及解答 大足二中 欧国绪 一、选择题 1. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的4 1 ,则该椭圆的离心率为 (A )31 (B )21(C )32(D )4 3 2. 设F 为抛物线C :y 2=4x 的焦点,曲线y =k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = (A ) 12 (B )1 (C )3 2 (D )2 3.双曲线C:22 221(0,0)x y a b a b -=>>的离心率为2C 的 焦距等于( ) A. 2 B. 4.已知椭圆C :22 221(0)x y a b a b +=>>的左右焦点为F 1,F 2,离心率为3,过F 2的直线l 交C 与A 、B 两点,若△AF 1B 的周长为C 的方程为( ) A. 22132x y += B. 22 13x y += C. 221128x y += D. 221124 x y += 5. 已知双曲线)0,0(122 22>>=-b a b y a x 的一条渐近线平行于直线,102:+=x y l 双曲 线的一个焦点在直线l 上,则双曲线的方程为( ) A.120522=- y x B.152022=-y x C.1100325322=-y x D.125 310032 2=-y x 6.已知F 为抛物线2 y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ?=(其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是( ) A 、2 B 、3 C D 7.抛物线2 4 1x y = 的准线方程是( ) (A) 1-=y (B) 2-=y (C) 1-=x (D) 2-=x

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案 一、选择题: 1、双曲线 22 1102x y -=的焦距为( ) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( ) A . 2 3 B .3 C .27 D .4 3.已知动点M 的坐标满足方程|12512|132 2-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 4.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( ) A. 1或5 B. 1或9 C. 1 D. 9 5、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三 角形,则椭圆的离心率是( ). A. B. C. 2 D. 1 6.双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A . 163 B .83 C .316 D .3 8 7. 若双曲线22 21613x y p -=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( ) (A)2 (B)3 (C)4 8.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对

圆锥曲线极点极线问题

圆锥曲线的极点与极线在高考中的应用 刘定勇 (安徽省宁国中学 ,242300) 圆锥曲线的极点与极线理论在高考中应用较多,原因有二:其一,有高等数学背景,结论非常完美;其二,运用高中知识解决问题,能够考查学生思维、计算多方面能力. 文[1]给出了两个较为简洁的结论: 命题1 椭圆122 22=+b y a x ,点()00,y x P 对应的极线12020=+b y y a x x . 双曲线122 22=-b y a x ,点()00,y x P 对应的极线12020=-b y y a x x . 抛物线px y 22=,点()00,y x P 对应的极线000=+-px y y px . 命题 2 圆锥曲线中极线共点于P ,则这些极线相应的极点共线于点P 相应 的极线.反之亦然.称为极点与相应极线对偶性. 以上结论在文[2]中有证明. 如图给出椭圆的极点与对应极线的简图: 题1、(2010湖北文15).已知椭圆12 :22 =+y x C 的两焦点为12,F F ,点()00,y x P 满足2 2 00012 x y < +<,则|1PF |+2PF |的取值范围为_______,直线1200=+y y x x 与椭圆C 的公共点个数_____. P 在椭圆内 P 在椭圆外

解析:第一个问题,依题意知,点P 在椭圆内部.画出图形,由数形结合可得范围为 [)22,2. 第二个问题,其实是非常容易做错的题目.因为()00,y x P 在椭圆12 :22 =+y x C 的内部,所以很多学生误以为直线与椭圆一定有两个交点,但直线 12 00=+y y x x 并不经过()00,y x P .还有学生看到 12 00=+y y x x 这样的结构,认为是切线,所以判断有一个公共点. 事实上,1200=+y y x x 是()00,y x P 对应的极线,()00,y x P 在椭圆12 :22 =+y x C 的内部,由命题2画出相应极线,此直线与椭圆不可能有交点,故交点数为0个.如果能够 用极点与极线理论,本题能够快速解决.而常规方法只能联立方程用判别式判断了. 题2、(2010重庆文21)已知以原点O 为中心,F 为右焦点的双曲线C 的离 心率2 e = (Ⅰ)求双曲线C 的标准方程及其渐近线方程; (Ⅱ)如题图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中 21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐 近线分别交于G 、H 两点,求OH OG ?的值. 解析:(I )C 的标准方程为.14 22 =-y x C 的渐近线方程为.2 1x y ± = (II )如图,直线44:11`=+y y x x l 和 44:122=+y y x x l 上显然是椭圆4422=+y x 的两条切线,由题意点),(E E y x E 在直线44:11`=+y y x x l 和44:122=+y y x x l 上,MN 即是由E 点生成的椭圆的极线.因此直线 MN 的方程为.44=+y y x x E E MN 的方程求出后剩下工作属常规计算.

圆锥曲线大题(有答案)

三、解答题 1.( 2013年上海市春季高考数学试卷 (含答案))本题共有2个小题,第1小题满分 已知椭圆C 的两个焦点分别为 只(1,0)、F 2(1, 0),短轴的两个端点分别为 B (1) 若RBB2为等边三角形,求椭圆c 的方程; ujir (2) 若椭圆C 的短轴长为2 ,过点F 2的直线I 与椭圆C 相交于P 、Q 两点,且F 1P 2 2 【答案】[解](1)设椭圆C 的方程为x 2 y 2 1(a b 0). a b a 2b 2 4 2 1 根据题意知。… ,解得a 2 4, b 2 ' a 2 b 2 1 3 3 2 2 故椭圆C 的方程为X y 1. 4 1 3 3 2 ⑵ 容易求得椭圆C 的方程为X y 2 1. 2 当直线I 的斜率不存在时,其方程为x 1,不符合题意; 当直线I 的斜率存在时,设直线I 的方程为y k(x 1). 设 P(X 1,yJ ,Q(X 2, y 2),则 unr uuir uir uur 因为F 1P F 1Q ,所以F 1P FQ 0,即 4分,第2小题满分9分. B 2 uur FQ ,求直线I 的方程? y k(x 由x 2 2 — y 2 1)x 2 4k 2x 2(k 2 1) 0. x X 2 4k 2 2k 2严 2(k 2 2k 1) uir uuir (X 1 1,yJ, FQ (X 2 1小) 1) 得(2k 2 1

解得k 2 1 ,即k 7 所以,a 2. 又由已知,c 1, 所以椭圆C 的离心率e C 1 2 a V 2 2 2 X 2 由 知椭圆C 的方程为—y 1. 设点Q 的坐标为(x,y). ⑵ 当直线l 与x 轴不垂直时,设直线l 的方程为y kx 2 . 因为M,N 在直线I 上,可设点M,N 的坐标分别为(石,心 2),(x 2,kx 2 2),则 2 2 (k 1)x 1x 2 (k 2 1)(x 1 x 2) k 1 7 k 2 1 2 k 2 1 0, 故直线l 的方程为x 7y 1 0 或 x 7y 2. (2013年高考四川卷(理)) 2 已知椭圆 C : x 2 a 2 y 2 1,(a b 0)的两个焦点分别为 R( b 1,0),F 2(1,0),且椭圆 (I )求椭圆 C 的离心率; (n )设过点 A(0,2)的直线 I 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且 1 ,2 2 | AQ|2 | AM | 2 ,求点 Q 的轨迹方程? |AN |2 【答案】解:2a PF 1 PF 2 (1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于 0,1 , 0, 1两点,此时Q 点坐标为 0,2

圆锥曲线单元测试题含复习资料

圆锥曲线与方程单元测试(高二高三均适用) 一、选择题 1.方程x = ( ) (A )双曲线 (B )椭圆 (C )双曲线的一部分 (D )椭圆的一部分 2.椭圆14222=+a y x 与双曲线122 2=-y a x 有相同的焦点,则a 的值是 ( ) (A )12 (B )1或–2 (C )1或12 (D )1 3.双曲线22 221x y a b -=的两条渐近线互相垂直,那么该双曲线的离心率是 ( ) (A )2 (B )3 (C )2 (D ) 2 3 4、已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 为 ( ) A 、1 B 、2 C 、3 D 、4 5、过抛物线x y 42 =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A 、有且仅有一条 B 、有且仅有两条 C 、有无穷多条 D 、不存在 6、一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2)是椭圆上一点,且1122|||||| PF F F PF 、、成等差数列,则椭圆方程为 ( ) A 、22186x y += B 、221166x y += C 、22184x y += D 、22 1164 x y += 7.设0<k <a 2, 那么双曲线x 2a 2–k – y 2b 2 + k = 1与双曲线 x 2a 2 – y 2 b 2 = 1有 ( ) (A )相同的虚轴 (B )相同的实轴 (C )相同的渐近线 (D )相同的焦点 8.若抛物线y 2= 2p x (p >0)上一点P 到准线及对称轴的距离分别为10和6, 则p 的值等于 ( ) (A )2或18 (B )4或18 (C )2或16 (D )4或16 9、设12F F 、是双曲线2 214 x y -=的两个焦点,点P 在双曲线上,且120PF PF ?=u u u r u u u u r ,则12||||PF PF ?u u u r u u u u r 的 值等于 ( ) A 、2 B 、 C 、4 D 、8 10.若点A 的坐标为(3,2),F 是抛物线x y 22 =的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为 ( )

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练 1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式 (Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解: (Ⅰ)由题意知,(A a . 因为OA t =,所以2 2 2a a t +=.由于0t > 由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为 1c t +=. 又因点A 在直线BC 上,故有 1a c +=,将(1)代入上式,得1a c =, 解得2c a =+ (Ⅱ)因为(2D a +,所以直线CD 的斜率为 1CD k = ===-. 所以直线CD 的斜率为定值. 2.设F 是抛物线2 :4G x y =的焦点. (I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u r g ,延长AF ,BF 分别交抛物线G 于点C D ,,求 四边形ABCD 面积的最小值. 2.解:(I )设切点2 004x Q x ?? ???,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为 2000()42x x y x x -=-. 即2 04 24x x y x =-. 因为点(0)P -4,在切线上. 所以2 044 x -=-,2 016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,. 由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.

圆锥曲线基础测试题大全

(北师大版)高二数学《圆锥曲线》基础测试试题 一、选择题 1.已知椭圆 116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2. 椭圆32x 2+16 y 2 =1的焦距等于( )。 A .4 B 。8 C 。16 D 。123 3.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( ) A . 116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 4.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 5.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于 ( ) A .2 B .3 C .2 D .3 6.抛物线x y 102=的焦点到准线的距离是 ( ) A .25 B .5 C .2 15 D .10 7. 抛物线y 2=8x 的准线方程是( )。 (A )x =-2 (B )x =2 (C )x =-4 (D )y =-2 8.已知抛物线的焦点是F (0,4),则此抛物线的标准方程是( ) (A )x 2=16y (B )x 2=8y (C )y 2=16x (D )y 2=8x 9.经过(1,2)点的抛物线的标准方程是( ) (A )y 2=4x (B )x 2= 21y (C ) y 2=4x 或x 2=2 1 y (D ) y 2=4x 或x 2=4y 10.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-±

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

(完整版)圆锥曲线知识点+例题+练习含答案(整理)

圆锥曲线 一、椭圆:(1)椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。 其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。 注意:||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; (2)椭圆的标准方程、图象及几何性质: 3.常用结论:(1)椭圆)0(122 22>>=+b a b y a x 的两个焦点为21,F F ,过1F 的直线交椭圆于B A ,两 点,则2ABF ?的周长= (2)设椭圆)0(122 22>>=+b a b y a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线 交椭圆于Q P ,两点,则Q P ,的坐标分别是 =||PQ 二、双曲线:

(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。 其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。 注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。 ||221F F a =表示两条射线;||221F F a >没有轨迹; (2)双曲线的标准方程、图象及几何性质: 中心在原点,焦点在x 轴上 中心在原点,焦点在y 轴上 标准 方程 )0,0(122 22>>=-b a b y a x )0,0(122 22>>=-b a b x a y 图 形 顶 点 )0,(),0,(21a A a A - ),0(),,0(21a B a B - 对称轴 x 轴,y 轴;虚轴为b 2,实轴为a 2 焦 点 )0,(),0,(21c F c F - ),0(),,0(21c F c F - 焦 距 )0(2||21>=c c F F 222 b a c += 离心率 )1(>= e a c e (离心率越大,开口越大) 渐近线 x a b y ± = x b a y ± = 通 径 22b a (3)双曲线的渐近线: ①求双曲线122 2 2 =-b y a x 的渐近线,可令其右边的1为0,即得022 2 2 =-b y a x , 因式分解得到0x y a b ±=。 ②与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222y x ; (4)等轴双曲线为222t y x =-2

人教版高二数学选修2-1第二章圆锥曲线测试题以及详细答案

高二圆锥曲线单元测试 姓名: 得分: 一、选择题: 1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 2.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( ) A. 1或5 B. 1或9 C. 1 D. 9 3、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形, 则椭圆的离心率是( ). A. B. C. 2 D. 1- 4.过点(2,-1)引直线与抛物线2 x y =只有一个公共点,这样的直线共有( )条 A. 1 B.2 C. 3 D.4 5.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =?满足,则点P 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线 D .抛物线 6.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 7、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对 8.方程02 =+ny mx 与)02+mx 的曲线在同一坐标系中的示意图应是( ) C

二、填空题: 9.对于椭圆191622=+y x 和双曲线19 72 2=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同.其中正确命题的序号是 ; 10.若直线01)1(=+++y x a 与圆022 2 =-+x y x 相切,则a 的值为 ; 11、抛物线2 x y -=上的点到直线0834=-+y x 的距离的最小值是 ; 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 ; 13、椭圆13 122 2=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上, 那么|PF 1|是|PF 2|的 ; 14.若曲线 15 42 2=++-a y a x 的焦点为定点,则焦点坐标是 。 三、解答题: 15.已知双曲线与椭圆 125922=+y x 共焦点,它们的离心率之和为5 14,求双曲线方程.(12分) 16.P 为椭圆 19 252 2=+y x 上一点,1F 、2F 为左右焦点,若?=∠6021PF F (1)求△21PF F 的面积; (2)求P 点的坐标.(14分) 17、求两条渐近线为02=±y x 且截直线03=--y x 所得弦长为 3 3 8的双曲线方程.(14分) 18、知抛物线x y 42 =,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.(12分) 19、某工程要将直线公路l 一侧的土石,通过公路上的两个道口 A 和B ,沿着道路AP 、BP 运往公路另一侧的P 处,PA=100m ,PB=150m ,∠APB=60°,试说明怎样运土石最省工? 20、点A 、B 分别是椭圆 120 362 2=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。 (1)求点P 的坐标; (2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到M 的距离d 的最小值。

新课标高考《圆锥曲线》大题专题含答案

新课标高考《圆锥曲线》大题专题含答案

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考江西卷(理)) 过点2,0) 引直线l 与曲线2 1y x = +相交于 A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线 l 的斜 率 等 于 ( ) A .y E B B C CD =++3 B .3 C .3± D .32 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 双曲线 2 214 x y -=的顶点到其渐近线的距离等于 ( ) A .25 B .4 5 C 25 D 453 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 已知中心在原 点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程 是 ( ) A .22 145 x -= B .22 145 x y -= C . 22 125 x y -= D . 22 125 x -=

4 .(2013年高考新课标1(理)) 已知双曲线C : 22 2 21x y a b -=(0,0a b >>)的离心率为52 ,则C 的渐近 线 方 程为 ( ) A .14y x =± B .13 y x =± C . 12 y x =± D .y x =± 5 .(2013年高考湖北卷(理)) 已知04π θ<<,则双曲线 22 122:1 cos sin x y C θθ -=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦 距相等 D .离心率相等 6 .(2013年高考四川卷(理)) 抛物线2 4y x =的焦点到双曲线 2 21 3 y x -=的渐近线的距 离 是 ( ) A .12 B .3 2 C .1 D 3

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

圆锥曲线历年高考题附答案解析

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2 b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆 x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A .43 B .75 C .85 D .3 4.(2006高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006卷)曲线221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006高考卷)若抛物线2 2y px =的焦点与椭圆22 162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设

圆锥曲线综合测试题

圆锥曲线综合测试题 班别 座号 成绩 一、选择题(每小题5分,共60分。) 1.双曲线1322 2=-y x 的离心率为 ( ) A .13 2 B .13 3 C .102 D .103 2.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( ) A .(-2,1) B .(1,2) C .(2,1) D .(-1,2) 3. 已知1F 、2F 为双曲线C:14x 2 2=-y 的左、右焦点,点P 在曲线C 上,∠21PF F =060, 则P 到x 轴的距离为( )A .55 B .155 C .2155 D .15 20 4. 已知动点(,)M x y 的坐标满足方程2222 558()()x y x y ++--+=,则M 的轨迹 方程是( ) A.221169x y += B.221169x y -= C. 2210169()x y x -=> D. 22 10169()y x y -=> 5.设椭圆22221(0)x y a b a b +=>>的离心率为1 e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( ) A.必在圆 222x y += B.必在圆 22 2x y +=上 C.必在圆 22 2x y +=外 D.以上三种情形都有可能 6. 设双曲线)0,0(122 2 2>>=-b a b y a x 的虚轴长为2,焦距为32,则双曲线的渐近线方 程为( )A x y 2±= B x y 2±= C x y 22± = D x y 21 ±= 7.已知等边△ABC 中,D 、E 分别是CA 、CB 的中点,以A 、B 为焦点且过D 、E 的椭圆和双曲线的离心率分别为1e 、2e ,则下列关于1e 、2e 的关系式不正确的是( )

相关文档
最新文档