岩质平面顺层滑坡形成机制与稳定性分析

岩质平面顺层滑坡形成机制与稳定性分析
岩质平面顺层滑坡形成机制与稳定性分析

滑坡稳定性定量分析法(最新)

打造最便宜 滑坡稳定性定量分析方法 目前,滑坡稳定性分析和工程治理主要是依据工程地质类比、自然历史分析、工程地质力学分析、极限平衡力学计算、弹塑性有限元计算等进行的,且在一定的程度上都有一定的实效性和可靠性。滑坡是一个复杂的、非线性的动态系统,且大型滑坡规模大、机制复杂、破坏性强,不仅失稳影响范围广,而且防治难度高、治理措施复杂。采用工程地质类比、历史反演和地质力学分析,需弄清地层结构、地质构造、地壳演化历史等问题。通过对滑坡形成的地质环境条件、影响因素、变形破坏及形成机制等特征的综合性分析,滑坡堆积体在天然状态下处于稳定状态, 在连续降雨、暴雨影响下处于基本稳定状态。在连续降雨、暴雨及地震等影响下处于欠稳定状态。 一、传统的稳定系数法。 稳定系数预测法是最早的滑坡空间预测方法,它是基于极限平衡法理论提出来的,是将有滑动趋势范围内的边坡土体沿某一滑动面切成若干竖条或斜条,在分析条块受力的基础上建立整个滑动土体的力 或力矩平衡方程,并以此为基础确定边坡的稳定安全系数。这些方法均假设土体沿着一个潜在的滑动面发生刚性滑动或转动。简化的极限平衡法有瑞典法,Bishop法、Spencer法,Janbu法, Sarma法等。通过计算滑坡体的安全系数Fs,来预测边坡的稳定性。 Fs=F抗滑力/F下滑力 当Fs<1.0,不稳定状态; 当Fs=1.0,临界状态; 当Fs>1.0,稳定状态。 二、数值分析方法。 ①有限单元法 有限元法是目前使用最广泛的一种数值分析方法。优点是部分地考虑了边坡岩体的非均质和不连续性,可以给出岩体的应力、应变大小与分布;避免了极限平衡分析法中将滑体视为刚体而过于简化的缺点;能近似地从应力应变去分析边坡的变形破坏机制,分析最先、最容易发生屈服破坏的部位和需要首先进行加固的部位等。但是对于大的变形和位移不连续问题的求解还不理想。 ②离散单元法 离散单元法是处理结构控制型岩体工程问题较成熟方法。该程序不但允许有限位移和离散体的转动及脱离,而且在计算过程中可以自动判别块体之间可能出现新的接触关系,因此它可以方便地实现对复杂结构体变形破坏的模拟,可以将所研究的区域划分为一个个多边块体单元,单元之间通过接触关系,建立位移和力的相互作用规律,通过迭代使得每一个块体都达到平衡状态。在稳定分析中,它的功能在于反映岩块之间接触的滑移、分离和倾翻等大位移的同时,又能计算岩块内部的变形与应力,该法的另一个优点是利用显式时间差分解求解动力平衡方程,可方便地求解非线性大位移和动力稳定。 ③统计分析方法。 这是目前国内外研究人员研究滑坡稳定性使用较多的一类方法。统计分析方法建立在对滑坡影响因子和滑坡分布关系的分析之上,因此,它能最大程度反映滑坡分布与致灾因子之间的关系,使地质灾害危险性评价更加趋近于客观现实。包括信息量法、多元统计方法、聚类分析方法等。 三、瑞典法的基本理论 瑞典圆弧滑动法是条分法中最古老而又最简单的方法。除了假定滑裂面是个圆柱面外, 在求条底反力时忽略了条间力的作用, 且在求安全系数时仅考虑对同一点的力矩平衡。其安全系数方程为:

边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价。 9.1 边坡的变形与破坏类型 9.1.1 概述 随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。 因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。 在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的

深切顺层岩质边坡的抗滑桩支护效果分析

文章编号:0451-0712(2008)12-0004-04 中图分类号:U416.1 文献标识码:A 深切顺层岩质边坡的抗滑桩支护效果分析 龚文惠1,刘志华2,潘 登1 (11华中科技大学土木工程与力学学院 武汉市 430074;21葛洲坝集团第五工程有限公司 宜昌市 443002) 摘 要:顺层滑坡问题在我国西部工程建设中较为突出和普遍。利用有限元法,针对沪蓉西高速公路深切顺层岩质边坡问题,对抗滑桩支护前后边坡的应力场、位移场及稳定性进行模拟分析。对结果的分析比较表明:抗滑桩支护结构可有效地抑制顺层边坡的变形和滑动,明显提高边坡的整体稳定系数,对维护顺层边坡的整体稳定性具有良好的效果。 关键词:抗滑桩;顺层边坡;稳定性;有限元法 20世纪30年代初,抗滑桩的使用始于美国,后在欧美地区和苏联、日本等国家的铁路路基及边坡工程中得到大量应用。1954年,我国铁路部门采用钢筋混凝土抗滑桩治理宝成线史家坝4号隧道北口左侧顺层坍塌。1967年,成昆铁路的修建对抗滑桩的应用与发展起了较大的影响,首次成功地实现了新型的挖孔抗滑桩支挡结构,为我国滑坡整治增添了一种切实可行的新手段[1,2]。抗滑桩结构防治滑坡的基本原理,是在边坡中适当位置设置一系列钢筋混凝土桩,使桩尖穿过可能的滑面进入下部稳定滑床,凭借桩身的强度和滑面以下锚固部分桩周岩体的弹性抗力来平衡滑面以上的滑体下滑力的水平分量,从而使边坡保持稳定。目前,抗滑桩的种类很多,诸如钢轨桩、组合钢轨桩、混凝土钢轨桩、钢筋混凝土桩、滑面钢筋混凝土锚固柱、门型钢架桩和预应力锚索桩等[2,3]。 近年来,在我国西部的公路、铁路和水利建设工程中,常常遇到深切顺层岩质边坡问题。顺层岩质边坡的破坏往往具有突然性,且下滑迅速,特别是中厚型构造的顺层滑坡一般层间剪切力和下推力大,破坏后果严重,而采用锚杆支护一般很难达到理想效果[4]。抗滑桩作为一种较有效的加固顺层边坡的结构形式,在西部建设工程中得到越来越多的应用。由于顺层滑动面通常接近较理想的平面,采用抗滑桩支护时,抗滑桩在滑动面处主要承受剪力作用,不仅其结构设计计算简便,且具有桩位选择灵活、施工方便、安全可靠等优点。但由于抗滑桩支护工程的成本较高,因此其加固技术和效果备受工程界关注[5]。 本文利用有限元法[6~8],针对沪蓉西高速公路突出而普遍的深切顺层岩质边坡问题,对抗滑桩支护前后边坡的应力、应变、位移及稳定性进行模拟分析和比较,从而对抗滑桩支护的效果进行综合评价。 1 工程概况 沪蓉国道主干线湖北宜昌~恩施段公路地处复杂的丘陵低山区,沿线山体自然坡度较陡,有近150km的边坡为顺层边坡,其中大部分为深切顺层路堑边坡。如果设计和施工过程中的加固和支护处理措施不力,就可能造成这些边坡的顺层滑动,其破坏范围广、危害影响大,不仅直接影响工程建设的工期和成本,而且对公路的安全和质量造成严重的威胁和长期的隐患。因此,深切顺层路堑边坡的稳定性分析及治理,是确保工程安全和降低建设费用的一个重要环节,也是工程成败的关键技术之一。 本文以K448+991处顺层岩质路堑高边坡为例,对抗滑桩的支护效果进行分析。 111 工程地质条件 该顺层路堑边坡的开挖接近于山腰,山体自然坡角约为30°,岩层产状为340°∠40°。路堑开挖高度为3618m,开挖面积为362198m2。根据40m深钻孔资料表明,边坡岩体为弱-微风化灰白色白云质灰岩,微晶质结构,呈中厚层状构造,层厚约为018~2m, 基金项目:湖北省自然科学基金资助项目,项目编号2005ABA303 收稿日期:2008-04-14  公路 2008年12月 第12期 H IGHWA Y D ec12008 N o112

滑坡稳定性分析知识讲解

滑坡稳定性分析

习题一岩村滑坡稳定性评价 一、目的 学会滑坡机理分析、稳定性定价和定量计算的基本方法,了解滑带土抗剪强度指标选择的基本途径,掌握滑坡防治工程要点。 二、滑坡概况 l、自然地理 岩村滑坡位于四川盆地某城市市中区,地处长江和佳江的交汇地带,呈半岛状,土地资源十分紧张。在经济建设迅速发展的80年代,市中区斜坡土地得到了大量的利用,交通线路不断改进,高层建筑逐渐增多。但与此同时滑坡灾害事件也日趋严重,岩村滑坡就是灾害之一。 该地区属于亚热带气候,温暖潮湿,雨量充沛,多年平均降雨量在1200mm以上,并常有暴雨出现。长江和嘉陵江是市中区两大地表水系,水位年平均变化幅度达20m以上,平均低水位158m,高水位181m,1981年为百年一遇的特大洪水,水位达193m。三峡工程按175m高程修建大坝,使该地区最高洪水位达205m左右。 2、地质概况 滑坡区基岩地质构造属川东隔档式褶皱中的一复向斜内部,岩层产状平缓,倾角10°以下,倾向在SW200°~270°范围变化。无明显的断裂构造,优势节理产状:75°∠82°;346°∠81°,263°∠85°。 基岩地层为侏罗系泥岩砂岩互层,为内陆河潮沉积,呈紫红色。相对坚硬的砂岩组成了滑坡区的上部平台状地形,泥岩及崩积物则组成斜坡主体。崩积物主要由砂岩块石及泥岩风化粘土组成,厚度分布特点是斜坡上部薄,中前部相对较厚。人工堆石为近期在砂岩体中开挖地下洞室而堆弃于斜坡后部的基岩大块石。

滑坡区属河流侵蚀、剥蚀的低山丘陵地貌,斜坡顶部为平台,河谷岸坡的坡度由上至下逐渐变缓,在纵剖面上呈内凹的地形。 下伏基岩相对不透水,为弱含水层。据洞室调查,基岩洞室绝大多数为干洞,偶见裂隙有渗水现象。斜坡地带入渗的地表水则汇集于基岩顶面,形成崩积层中的上层滞水。 该地区新构造运动不强烈,属受活断裂包围的稳定地块,地震基本烈度为Ⅵ度。 3、滑坡特征 滑坡主滑方向为NW方向,后缘有一系列NE-SW方向的拉张裂缝,居民建筑物受到严重影响。据调查,人工洞室开挖于1970-1980年之间,地面裂缝最早发现在1981年。1981年四川盆地普降暴雨,江河水位达百年一遇特大水位。滑坡的活动已严重威胁经由滑坡区的主干公路的正常通车。滑坡现处于蠕滑阶段,且在每年的雨季,位移明显增大。 表1-1钻孔地质描述

边坡稳定性分析资料讲解

边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价。 9.1 边坡的变形与破坏类型 9.1.1概述 随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报

等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边坡已高达300—500m,而水电 工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。 因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。 在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的问题。如果岩坡由于力过大和强度过低,则它可以处于不稳定的状态,一部分岩体向下或向外坍滑,这一种现象叫做滑坡。滑坡造成危害很大,为此在施工前,必须做好稳定分析工作。 岩坡不同于一般土质边坡,其特点是岩体结构复杂、断层、节理、裂隙互相切割,块体极不规则,因此岩坡稳定有其独特的性质。它同岩体的结构、块体密度和强度、边坡坡度、高度、岩坡表面和顶部所受荷载,边坡的渗水性能,地下水位的高低等有关。 岩体内的结构面,尤其是软弱结构面的的存在,常常是岩坡不稳定的主要因素。大部分岩坡在丧失稳定性时的滑动面可能有三种。一种是沿着岩体软弱岩层滑动;另一种是沿着岩体中的结构面滑动;此外,当这两种软弱面不存在时,也可能在岩体中滑动,但主要的是前面两种情况较多。在进行岩坡分析时,应当特别注意结构面和软弱层的影

滑坡稳定性分析

习题一岩村滑坡稳定性评价 一、目的 学会滑坡机理分析、稳定性定价和定量计算的基本方法,了解滑带土抗剪强度指标选择的基本途径,掌握滑坡防治工程要点。 二、滑坡概况 l、自然地理 岩村滑坡位于四川盆地某城市市中区,地处长江和佳江的交汇地带,呈半岛状,土地资源十分紧张。在经济建设迅速发展的80年代,市中区斜坡土地得到了大量的利用,交通线路不断改进,高层建筑逐渐增多。但与此同时滑坡灾害事件也日趋严重,岩村滑坡就是灾害之一。 该地区属于亚热带气候,温暖潮湿,雨量充沛,多年平均降雨量在1200mm以上,并常有暴雨出现。长江和嘉陵江是市中区两大地表水系,水位年平均变化幅度达20m以上,平均低水位158m,高水位181m,1981年为百年一遇的特大洪水,水位达193m。三峡工程按175m高程修建大坝,使该地区最高洪水位达205m左右。 2、地质概况 滑坡区基岩地质构造属川东隔档式褶皱中的一复向斜内部,岩层产状平缓,倾角10°以下,倾向在SW200°~270°范围变化。无明显的断裂构造,优势节理产状:75°∠82°;346°∠81°,263°∠85°。 基岩地层为侏罗系泥岩砂岩互层,为内陆河潮沉积,呈紫红色。相对坚硬的砂岩组成了滑坡区的上部平台状地形,泥岩及崩积物则组成斜坡主体。崩积物主要由砂岩块石及泥岩风化粘土组成,厚度分布特点是斜坡上部薄,中前部相对较厚。人工堆石为近期在砂岩体中开挖地下洞室而堆弃于斜坡后部的基岩大块石。 滑坡区属河流侵蚀、剥蚀的低山丘陵地貌,斜坡顶部为平台,河谷岸坡的坡度由上至下逐渐变缓,在纵剖面上呈内凹的地形。

下伏基岩相对不透水,为弱含水层。据洞室调查,基岩洞室绝大多数为干洞,偶见裂隙有渗水现象。斜坡地带入渗的地表水则汇集于基岩顶面,形成崩积层中的上层滞水。 该地区新构造运动不强烈,属受活断裂包围的稳定地块,地震基本烈度为Ⅵ度。 3、滑坡特征 滑坡主滑方向为NW方向,后缘有一系列NE-SW方向的拉张裂缝,居民建筑物受到严重影响。据调查,人工洞室开挖于1970-1980年之间,地面裂缝最早发现在1981年。1981年四川盆地普降暴雨,江河水位达百年一遇特大水位。滑坡的活动已严重威胁经由滑坡区的主干公路的正常通车。滑坡现处于蠕滑阶段,且在每年的雨季,位移明显增大。 表1-1钻孔地质描述 表1-2岩土体物理力学性质指标 表1-3滑带土抗剪强度指标实验值

岩石边坡稳定性分析方法_贾东远

文章编号:1001-831X(2004)02-0250-06 岩石边坡稳定性分析方法 贾东远1,2,阴 可1,李艳华3 (1.重庆大学土木工程学院,重庆 400045;2.秦皇岛市建筑设计院,河北秦皇岛 066001; 3.河北农经学院工业工程系,河北廊坊 065000) 摘 要:通过综述岩石边坡稳定性分析方法及其研究的一些新近展,并具体从极限平衡法、数值计算方法、流变分析、动力分析等方面进行详细论述,对岩石边坡稳定性分析中涉及到的岩体参数取值、计算模型、各种方法的优缺点等方面进行了探讨,最后提出对岩石边坡稳定性分析的建议。 关键词:岩石边坡;稳定性;极限平衡;数值计算 中图分类号:TU457 文献标识码:A 前言 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果,现分别对其中主要的研究方向和成果作简要介绍并分析各自特点和适用条件,为岩石边坡稳定性分析的工程应用和理论研究提供参考意见。 1 岩体参数及计算模型 极限平衡、数值计算等计算方法在岩石边坡稳定性分析中得到广泛应用,其中如何选择计算所需的工程岩体力学参数成为关键的问题。对于重大工程,可通过现场大型岩体原位试验取得岩体力学参数,但由于时间和资金限制,原位试验不可能大量进行,因而该方法仍有一定的局限性。另外,选取岩性特别均匀的试样几乎是不可能的,多数情况下,是用经验公式来确定岩体抗剪强度参数。但是,经验公式是以一定数量的室内和现场实验资料为依据,通过回归分析求出的,而未能把较多的地质描述引入其中。各个经验公式计算同一岩体的参数时,普遍存在因经验程度不同而确定出的抗剪强度相差较大。由于这些原因,许多文献提出了用其它方法来确定岩体的抗剪强度参数[1-4]。其中张全恒(1992)[1]讨论了确定岩体结构面抗剪强度参数常规方法存在的问题,提出了经验公式和实验相结合的试件法;何满潮(2001)[2]根据工程岩体的连续性理论,提出了根据室内完整岩块试验参数,结合野外工程岩体结构特点进行计算机数值模拟试验,从而确定工程岩体力学参数的方法;周维垣(1992)[3]提出确定节理岩体力学参数的计算机模拟试验法,该方法基于节理裂隙岩体的野外勘察资料,建立岩体损伤断裂模型,在计算机上模拟试验过程,获得所需数据;杨强等(2002)[4]在样本有限的情况下,采用可靠度理论,求出某保证率下的岩体抗剪强度值。 岩体作为复杂的地质体,其力学特性是多种因素共同作用的结果,如形成过程、地质环境和工程环境等。为了能将所有控制因素作为一个整体来考虑,而不仅局限于定量因素,许多文献利用人工 第24卷 第2期2004年6月 地 下 空 间 UNDERGROUND SPACE Vol.24 No.2 Jun.2004 收稿日期:2003-12-11(修改稿) 作者简介:贾东远(1975-),男,河北唐山人,硕士,主要从事岩土工程设计、检测方面的工作。

滑坡稳定性分析计算

对最不利滑移横断面进行各种工况稳定性分析计算,计算过程如下: 一、天然工况 滑坡剩余下滑力计算 计算项目:滑坡推力计算 1 ===================================================================== 原始条件: 滑动体重度= 19.000(kN/m3) 滑动体饱和重度= 25.000(kN/m3) 安全系数= 1.250 不考虑动水压力和浮托力 不考虑承压水的浮托力 不考虑坡面外的静水压力的作用 不考虑地震力 坡面线段数: 6, 起始点标高 4.000(m) 段号投影Dx(m) 投影Dy(m) 附加力数 1 13.600 0.700 0 2 12.250 7.000 0 3 2.000 0.000 0 4 12.000 8.000 0 5 24.500 0.500 0 6 127.000 27.000 0 水面线段数: 1, 起始点标高 0.000(m) 段号投影Dx(m) 投影Dy(m) 1 0.000 0.000 滑动面线段数: 5, 起始点标高 0.000(m) 段号投影Dx(m) 投影Dy(m) 粘聚力(kPa) 摩擦角(度) 1 12.000 0.600 10.000 14.500 2 9.900 1.300 10.000 14.500 3 28.000 9.000 10.000 14.500 4 8.400 2.800 10.000 14.500 5 117.000 29.000 10.000 14.500 计算目标:按指定滑面计算推力 -------------------------------------------------------------- 第 1 块滑体

滑坡勘查中滑坡稳定性分析实例

滑坡勘查中滑坡稳定性分析评价实例 中国建筑材料工业地质勘查中心河南总队吴德运 关键词:滑坡稳定性安全系数稳定状态 滑坡地质灾害每年均会给社会造成较大的人员伤亡和财产损失,滑坡的产生受多种引发因素影响,往往也是多种因素叠加的结果。如何准确分析滑坡的稳定性是治理滑坡的关键。本文是以一个滑坡实例,评价滑坡稳定性的分析过程。 1 滑坡区自然条件及地质环境条件 1.1 自然条件 该滑坡处于中纬度带,属亚热带季风气候区,多年平均降雨量1100mm,最大年降雨量1522.4mm,最小年降雨量694.8mm。5~9月为雨季,其降雨量占全年降雨量的70%以上。一小时最大降雨量达75.2mm,一日最大降雨量达193.3mm。 1.2 地质环境 1.2.1 地形地貌 滑坡区属鄂西中低山地貌单元。由于地壳长期间歇性抬升,形成山高坡陡、河谷深切的地貌特征。 1.2.2 地层岩性 滑坡区分布的地层有: 第四系:残坡积碎石土、残坡积堆积土。 三叠系中统:中厚至厚层微晶白云质灰岩、泥灰岩、中厚层泥质条带灰岩、肉红色中厚层亮晶鲕状灰岩及灰绿色泥岩。岩层产状总体向北东向倾,倾角为35o-70°之间。 1.2.3 水文地质条件 受地层岩性结构和地质构造影响,滑坡区内地下水主要以三叠系中统岩溶裂隙水和第四系松散岩孔隙水的形式赋存。 2.滑坡基本特征及类型 2.1 滑坡地形地貌 滑坡区地形南高北低,地形总坡度15o-20o,为侵蚀构造低山区。滑坡区最低点标高330m,最高点滑坡后缘,标高364m,相对高差34m。

2.2 滑坡空间形态 该滑坡为覆盖层滑坡,平面形态呈舌形,地形上为围椅状,滑坡两边周界清晰。滑坡体北低南高,主滑坡轴线长86m,前缘宽98m,标高330m ,后缘宽66m,标高364m。滑坡的面积为0.732×104m2,总体上是前厚后薄,中间厚两侧薄的态势,滑体平均厚度为5m,体积约3.66×104m3。 滑坡主滑方向为311度,滑体坡度15~30度,中部滑坡平台呈舒缓波状,中部靠后缘出现陡坎。 2.3 滑坡物质组成及结构特征 (1)滑体 滑体物质组成主要为第四系崩坡积碎块石夹粉质粘土,黄褐-黄灰色,稍密-中密,碎块石直径一般为0.4-0.8m,最大达1.2m,成分主要为泥灰岩、灰岩,其含量约占70%。滑体厚度一般为2.3-6.7m。 (2)滑带 滑带主要成分为粉质粘土夹砾石,灰黄-褐黄色,粉质粘土呈可塑状,含量约70%,具有挤压条纹状构造,砾石成份为泥灰岩、灰岩,呈次棱角状-次圆状,直径2~20mm。部分砾石表面见擦痕,表面具滑感。 (3)滑床 滑床为三叠系中统泥灰岩,强~中风化程度,浅灰-黄灰色,中厚层~厚层状构造,岩石较为破碎,地层倾向为19~40度,倾角41~75度,岩石节理裂隙发育,裂隙面倾角为60~75度,裂隙面均较平直,略具起伏,稍粗糙,多为泥质、铁质充填,部分为钙质充填。 2.4 滑坡水文地质 本滑坡地下水主要为第四系覆盖层松散岩类孔隙水和基岩裂隙水。 覆盖层孔隙水水量贫乏,赋水性弱,主要接受大气降水次为农作物灌溉渗入补给。地下水沿基岩面排泄,或渗入下伏基岩裂隙中。基岩浅部裂隙发育,含裂隙水,赋水性弱,动态变化大。补给主要靠覆盖层地下水渗入,排泄主要受微地貌控制,流量小。 2.5 滑坡岩土物理力学性质 2.5.1滑体岩土物理力学性质 滑体主要由第四系崩坡积碎块石夹粘性土组成,碎石含量达70%以上,受取样条件限制,滑体中采取的原状样土工试验所作的物理力学指标仅能代表碎石土中所夹粉

边坡稳定性分析

边坡稳定性分析 内容摘要 目前,边坡失稳的防治仍然是一项很艰巨的任务,对边坡的稳定性分析及处治技术进行深入研究具有重要的意义。论文首先简要阐述了边坡工程稳定性分析及处治技术研究的意义,介绍了边坡工程稳定性分析的一些常用方法,并结合笔者的实践经验,提出了边坡工程处治对策。 边坡稳定分析是岩土工程中的重要研究课题。边坡稳定性分析的观点变化是随着人类理论方面的突破和实践经验的积累而变化的。总的来说,边坡稳定性分析是一个逐步由定性分析向定量、半定量分析发展的过程,并且可视化程度越来越高。文章从定性分析、定量分析、不确定分析等角度介绍了几种主要的边坡稳定性分析方法 关键词:边坡;边坡稳定性;边坡失稳;稳定性分析;处治对策 1

边坡稳定性分析 目录 内容摘要 (1) 1绪论 (4) 1.1 边坡稳定性概念 (4) 1.1.1 边坡体自身材料的物理力学性质 (4) 1.1.2 边坡的形状和尺寸 (5) 1.1.3 边坡的工作条件 (5) 1.1.4 边坡的加固措施 (5) 1.2 边坡的稳定性表示方法 (5) 1.3 边坡破坏 (6) 2 边坡的分类 (6) 3 边坡稳定性的影响因素 (7) 3.1 潜在影响因素 (7) 3.1.1 地形因素 (7) 3.1.2 地质材料因素 (7) 3.1.3 地质构造因素 (8) 3.2 诱发影响因素 (8) 3.2.1 环境因素 (8) 3.2.2 人为因素 (9) 4 边坡稳定性的分析方法 (10) 4.1 定性分析方法 (10) 4.1.1 工程地质类比法 (10) 4.1.2 地质分析法(历史成因分析法) (10) 4.1.3 图解法 (10) 4.1.4 边坡的分析数据库和专家系统 (11) 4.2 定量分析方法 (11) 4.2.1 极限平衡法 (11) 2

岩质边坡稳定性设计与监测分析

岩质边坡稳定性设计与监测分析 发表时间:2019-05-23T11:29:32.640Z 来源:《防护工程》2019年第3期作者:王平 [导读] 边坡稳定性问题一直是道路工程中的重点问题,而且边坡一旦失稳,造成的损失和伤害不可估量,因此对它的监测与研究工作势在必行。 中冶沈勘秦皇岛工程设计研究总院有限公司河北省秦皇岛市 066004 摘要:边坡稳定性问题一直是道路工程中的重点问题,而且边坡一旦失稳,造成的损失和伤害不可估量,因此对它的监测与研究工作势在必行。文中结合边坡地质条件,详细分析了边坡锚杆拉力的变化,使用多点位移计对边坡的变形进行长期的跟踪监测,对锚杆应力计和多点位移计的监测数据进行总结和反馈。分析结果表明:文中边坡的锚杆拉力及坡内多点位移均趋于稳定,说明该边坡整体上处于相对稳定的状态,提出的锚杆设计方法是成功的。断面的坡顶位置在雨季最为危险,在雨季存在发生滑动的风险,应作为重点监测对象。连续降雨对边坡的稳定性有重要影响。降雨会增加边坡的锚杆拉力和坡内位移。随着雨季结束,锚杆内力和坡内位移会逐渐下降并趋于稳定。 关键词:边坡;锚杆应力计;多点位移计;稳定性分析 锚杆由于其安全可靠、施工简单、成本较低,已成为当前边坡支护工程中最基本的组成部分之一,在各类边坡支护工程中得到广泛应用。它实质上是位于岩土体内部并与岩土体形成一个新的复合体。通过锚杆杆体的纵向拉力作用,克服岩土体抗拉能力远远低于抗压能力的缺点,从而使得岩土体自身的承载能力大大加强。锚杆加固边坡时,依赖其与周围岩土体相互作用传递锚杆拉力,限制岩土体变形与发展,改善岩土体的力学参数和应力状态,以使边坡保持稳定。由于边坡地质条件和锚杆荷载传递机理都很复杂,而前期的工程实地勘测不能完全准确揭示边坡的地质情况,因此对实际边坡工程的变形特征和应力状态进行检测,为认识边坡稳定性提供途径。部分学者基本是通过对锚杆受力的数值分析,来研究锚杆对边坡稳定性的影响。某市一个靠海边坡位置较为特殊,使用锚杆应力计和多点位移计的结合对该边坡稳定性进行综合评价有一定的借鉴意义。 1边坡稳定性监测方法 从目前来看,对人工边坡的整体监测可分为三大类: (1)地面监测:监测手段主要有,三角网、沉降水准和视准线测量以及收敛计、倾斜仪监测; (2)地下监测:监测手段主要有,钻孔倾斜仪、多点位移计、地下水位孔、渗压计等; (3)支护结构物监测:监测手段主要有,钢筋计、预应力锚索测力计、土压力盒、测缝计等。此外根据不同工程具体特点,尚有一些简易观测手段,如:量水堰、简易测桩、平硐底部浇低标号素混凝土观测变形和地面地质巡视等,并有部分工程边坡监测与地震监测相结合进行及常规仪与全球定位系统相结合。“八五”国家科技攻关项目《岩质高边坡勘测及监测技术方法研究》已经研制出4种先进的仪器设备和5种新的技术方法,即钻孔彩色电视孔壁成像系统、直接横波测井研究偶极子井下声系和声波仪、钻孔多点渗压仪及压模系统、岩质高边坡快速摄像微机地质素描成图、层析成像技术、近坝库段安全监测技术、边坡监测数据处理预报软件研究、高精度大地测量监测自动化系统。这些新技术和新方法已达到世界先进水平。 2边坡稳定性计算 本工程为某市某道路扩建工程,道路全长约8km,规划为城市主干道。本路段南面临海,北侧靠山,地理位置较为特殊,设计范围内有多段边坡需进行护坡处理。C坡岩质较差,易发生破坏,故以C坡作为研究对象。C坡原始山体坡度为25°左右,坡长约178m,高度为7.3~18.8m,属岩石坡面。岩性为安山岩、硅化安山岩,可见斑状结构,块状构造。裂隙发育,发育为压扭性断裂,断裂走向N65°E,倾向NW,倾角60°~70°,宽度100~135m,延伸长度大于500m。断裂两侧岩石较破碎,风化蚀变较强,主要为高岭土化、褐铁矿化,岩石含水性差。坡体在震动和强降雨条件下有形成滑塌的可能,总体评价稳定性较低。坡体自上而下分为杂填土、强风化安山岩、中风化安山岩3个岩土层。依据《建筑边坡工程技术规范》(GB50330-2002),采用平面滑动法,对现状边坡临空面进行稳定性验算,边坡工程安全等级为二级,边坡稳定安全系数KS=1.30。 3监测结果分析。 3.1锚杆应力计分析 该边坡各处共安装了15个锚杆应力计,其应力测量值却相差悬殊,变化规律也各不相同。各锚杆应力状态与锚杆所处位置的地质、工程条件以及锚杆长度有密切关系。本文选取C2、C3、C4等3个典型断面进行分析。发现所有锚杆从2013-05-30到2014-06-27这一年多的时间里,锚杆应力逐渐上升。而在2014-06-27到2015-04-16的时间里,锚杆应力虽然基本在持续增长中,但增速缓慢,逐渐趋于稳定。 处于边坡顶部的C2C1锚杆内力最大,处于边坡中部的C2C2锚杆内力次之,处于边坡下部的C2C3锚杆应力计出现问题,没能连续测到数据。根据前两个测量数据来看,C2C2锚杆内力应该最小。C2C1锚杆内力最大时达到29kN,应力达到59MPa。此时对应20144年9月5日。根据天气记录,7月份、8月份、9月份,该市进入夏季,雨量充沛。2014年7月23日至2014年9月5日之间,雨水天气达到16d之多。特别是2014年7月25日,天气状况是大到暴雨。9月5日之前的9月2日、9月3日也是连续中雨。这种雨水天气最有可能引起断裂结构面发生滑动。由C2C2锚杆可见,2014年9月5日C2C1锚杆内力突然增加,然后随着雨季过去,层间滑移状态减弱,C2C1锚杆内力也逐渐下降。C2C2锚杆内力也于2014年10月27日突然增加,随后逐渐下降。 但总体上,锚杆应力后期逐渐稳定下来,稳定在20kN附近,说明C2断面趋于稳定。仍然是处于边坡顶部的C3C1锚杆内力最大,处于边坡中部的C3C1锚杆内力次之,处于边坡下部的C3C3锚杆内力最小。这与C2断面测量结果类似。但也有不同之处,C3C1锚杆拉力最大值为18kN,比C2C1锚杆拉力低得多。另外不同之处是,该市气候进入夏季,经过7月份、8月份、9月份雨水的作用,2014年9月5日之后的锚杆拉力值继续增加,没有下降的趋势,一直持续到2015年4月16日,锚杆内力才开始下降。 4结论 (1)岩质高边坡的稳定性监测主要包括地面监测、地下监测和支护结构物监测三个部分,随着科技的进展,新的高科技手段如钻孔彩色电视孔壁成像系统、直接横波测井研究偶极子井下声系和声波仪、钻孔多点渗压仪及压模系统、岩质高边坡快速摄像微机地质素描成图、

某滑坡稳定性分析

清平水库瓦窑堡滑坡稳定性分析 杨荣科,辜明清 (四川省水利水电勘测设计研究院勘察分院,四川郫县611731) 摘要:瓦窑堡滑坡是位于清平水库坝址上游左岸的一个大型古滑坡,水库蓄水后的滑坡稳定性评价是水库区重大工程地质问题之一。根据大量的勘察试验资料,分析了滑坡的成因和形成机制,利用反演计算进行了滑坡稳定分析评价。 关键词:滑坡;抗剪强度;稳定性;清平水库 1引言 瓦窑堡滑坡是位于清平水库枇杷岩坝址上游1.4 km左岸的大型滑坡,水库蓄水后该滑坡的稳定性是近坝库岸的主要工程地质问题。分析滑坡的工程地质条件,针对滑坡形成机制,采用反演进行稳定性评价,是对古滑坡稳定性评价较适用的方法。 2滑坡基本特征和工程地质条件 瓦窑堡滑坡地面高程884~1 155 m。据地表地质测绘,滑坡体长约450 m,宽290~450 m,厚30~65 m,体积约364×104 m3。滑坡体在平面上呈“板斧”形,两侧以冲沟为界,下游侧缘冲沟切割至滑坡床基岩,沟深3~10 m,沿滑面无地下水点出露,见图1。滑坡后缘地形坡度30°~45°,并见张开5~15 cm 的拉裂缝;中部地形平缓,坡度12°~30°,呈阶梯形;前缘剪切口明显,与2al)接触。滑坡体总体地形坡向N60°~70°W。 河床砂卵石(Q 4 )中厚层灰岩,下部滑坡区出露的地层主要有:二叠系上统长兴组(P 2c 常夹碳质页岩;龙潭组(P )上部为碳质页岩夹煤层,下部为厚3.4~6.5 m的 2l )为中厚层灰岩夹泥质灰岩;地表分布第四系坡粘土岩;二叠系上统茅口组(P 1m 积层(Q 4 dl )。滑坡地段在构造上位于照壁山倒转向斜核部附近,有近 )从滑坡后缘一带通过。瓦窑堡断裂走向北东,倾南北向断裂之瓦窑堡断裂(F 5 向北西,倾角54°左右,延伸约24 km,上、下盘均为灰岩,滑坡一带下盘为龙潭组之碳质页岩。断层破碎带一般厚10~40 cm,由断层角砾、挤压破碎透镜体等组成。

土质滑坡稳定性分析

土质滑坡稳定性分析 影响滑坡稳定性的因素有很多,其中对滑坡稳定性影响较大的因素有降雨和地震,不同条件下滑坡的稳定性是不同的。文章以圆弧条分法分析了汶川地震灾区某滑坡的稳定性,结合现场的工程地质勘察,计算了滑坡的安全系数,分析不同条件下滑坡的稳定性,并给出相应的处理意见。 标签:滑坡稳定性;地震;降雨;稳定性分析 引言 5.12汶川地震发生后,诱发了为数众多的崩塌、滑坡、泥石流等次生地质灾害,这些重大地质灾害隐患点险情紧迫、危害巨大、危险程度高,严重危及着城区居民生命财产安全。文章结合地震区的某土质滑坡,运用圆弧条分法,分析了在自重、降雨、地震不同的情况下滑坡的稳定性[1-5]。 1 地质环境条件 1.1 地形地貌 勘查区位于白龙江南侧,属河谷地貌,位于白龙江一级阶地上。微地貌位于凸出的五山岭山脊两侧,总体地势中部高,东西两侧低,西侧(左侧)地形较平缓,东侧(右侧)地形起伏大。该滑坡前缘位于一冲沟的丘间梯田,沟底部分地段基岩出露,地面高程为611.50~618.00m;滑坡后缘为五山岭山脊的平坝边缘,地面高程为631.70~631.90m,相对高差约为13.00~20.00m,地势较为平缓。整体坡度角一般为20~30°。 1.2 地层岩性 勘查区基岩出露较差,仅在滑坡左侧冲沟边有出露。主要出露地层为第四系人工填土、冲洪积粉质粘土、卵石土及志留系黄坪组下段千枚岩(Shn1),现就与工程密切的地层由新至老简述如下: (1)第四系。第四系松散土层主要为冲洪积粉质粘土及卵石土层(Q4al+pl)。冲洪积粉质粘土,厚度一般约3m,最厚段可达6.50m,主要分布于五山岭山顶及两侧斜坡一带;冲洪积卵石土层,厚度较大,一般20~30m,分布于整个勘查区。 (2)基岩。工作区内基岩主要为志留系黄坪组下段(Shn1),其岩性主要为千枚岩,岩体较破碎,表层风化较严重,强度较低。 1.3 地质构造及地震

边坡稳定性分析

第一章 1简述边坡的概念,构成要素及分类?边坡:构成工程边界的倾斜的地坡面;边坡由坡顶、坡肩、坡面、坡脚、坡底、坡高、坡脚要素构成;边坡按成因可分为自然边坡和人工边坡;按材料可分为土质边坡和岩质边坡。2简述导致滑坡的因素?①应力过大:破坏了坡体力学平衡;②强度过低:导致坡面抗剪强度不足;③地质缺陷:岩坡主要是地质界面,土坡主要是孔隙; ④地下水:减小地质界面抗剪强度和土粒粘结力,产生静动水压力;⑤爆破震动:动力效应的影响;⑥人为破坏:切断了坡脚,降低了抗滑力;⑦地下开采:对疏水稳坡有利,对岩移失稳不利;⑧不利产状:裂隙等不利产状导致滑坡。3常见的边坡滑塌模式?平面滑动、楔体滑坡、圆弧滑坡、倾倒破坏4边坡滑塌的识别方法有哪些?弹性力学计算法、刚体极限平衡分析法、极射赤平投影识别法、石根华关键块体识别法5边坡稳定性安全系数?安全系数是指抗滑力与致滑力的比值。大于1表示致滑力小于抗滑力,可能不会成为实际滑塌体;等于1称为临界或极限状态;小于1,肯定称为实际滑塌体。6简述边坡稳定型设计思路?①工程地质勘察,包括工程地质和水文地质;②滑塌模式识别,识别潜在滑塌体和滑塌模式;③稳定性分析,计算潜滑体安全系数;④采取稳坡措施:包括疏干排水、削坡减载、机械加固等;⑤接受局部滑坡:进行监测、预报并计算危害、损失、影响;⑥最终决策:对④⑤进行比较,使经济效益,社会效益最优。第二章1简述工程地质调查内容?主要内容包括:收集原始资料、现场踏勘、结构面详查、深部和外围补充钻探、工程地质资料的综合分析(包括断层填图及节理统计)。2简述水文地质调查内容?场地水文地质、地下水赋存状态和运动规律、地下水渗流规律、场地水文条件的识别、修改补充矿坑地质特征及边坡综合平面图。3节理或结构面的统计方法有哪些? 结构面主要是断层,一般以填图法统计,内容包括断层结构、产状、厚度、破碎或 充填物及其胶结性渗水性等; 节理统计数量多,规模小,主要的统计方 法有:统计表或方框图、玫瑰花图、极点 密度等值线,极限赤平投影图等。 4节理或结构面的详查内容有哪些?① 测点和测线的位置和坐标②间断面产状 ③间断面延伸长度和开口宽度④间断面 弯曲程度或平直度⑤间断面干湿度⑥相 距间断面间距⑦间断面两壁间充填物和 粗糙度⑧间断面两壁的岩性 第三章1结构面抗剪强度测试方法有哪 些?⑴室内剪切实验①直剪仪②三轴剪 力仪③楔型剪⑵原位剪切实验 第四章1岩坡单平面滑动的几何条件? 滑动面走向与坡面平行或近似平行 (20°) 滑动面倾角β大于滑动面内摩擦角ψ而 小于坡面角α 滑体两侧有结构面,对滑体侧向阻力很 小,可忽略不计 2单平面滑动的假设条件? 滑动面和坡顶张裂隙的走向与坡面走向 平行;坡顶张裂隙是垂直的;滑动面水压 力分布从坡脚到张裂隙按三角分布; 滑体自重W、滑面的静水压(浮托)力U、 张裂隙中静水压力V均作用在滑体重心; 滑面抗剪强度遵循库仑定律; 受力分析研究对象为单位长度的滑体切 片。第五章1楔体滑动的几何条件?两组 相交结构面的交线的倾向和边坡倾向一 致;交线倾角大于滑动面内摩擦角小于坡 面角;组合交线穿过坡顶和坡面。2楔体 滑动的研究步骤?识别潜滑体-滑楔; 确定滑楔的空间形态和几何尺寸;识别滑 楔冲水情况及抗剪性能;滑楔稳定性分 析,受力分析及安全系数计算。 3滑楔和平面滑动都是由结构面引起的 破坏,简述两者的不同?两者的滑动模式 不一样,滑楔是沿着两结构面的交线向下 滑动,而平面滑动是沿结构面向下滑动, 因此他们的受力情况也不一样。 第六章1简述圆弧滑动的基本假设?平 面应变问题,取单位厚度切片计算;滑面 为圆弧面,滑体为圆柱体;滑体滑动时做 刚性移动。2圆弧滑动的分析方法有哪 些?瑞典圆弧法、毕肖普法、摩擦圆法、 简布法1何为路堑边坡?按材料分为哪 几类?在道路沿线由开挖山体或填方路 基形成的边坡称为路堑边坡按材料可分 为岩石路堑、石质土路堑、土质路堑。 2影响路堑边坡稳定性的因素有哪些? 边坡高度、倾角;岩土体性质;工程地质 (地质构造)岩石的风化、破碎程度;地 面水、地下水;施工方法及地震作用。 3路堑边坡设计应收集哪些基础资料? 岩土体的名称及性质;地质构造,各种软 弱面(断层、节理、层理、片理)的产状 及其与路线的关系; 岩石风化和破碎程度; 地下水和地面水的影响; 当地地质条件相似的自然极限山坡和人 工开挖边坡的坡度;施工方法与工艺;废 土的地点和废土堆的位置等。 4深路堑边坡的断面形式有哪几种?直 线形、折线形(上陡下缓形、上缓下陡形)、 台阶形5深路堑边坡的设计内容有哪 些?选择边坡横断面形状;确定边坡坡 度;设计必要的坡面防护工程;合理处理 废土。6何种条件下进行深路堑边坡设 计?当挖方路基的工程地质、水文地质条 件不良或边坡较高,特别是土质边坡高度 超过20m,石质土边坡高度超过20~30m、 岩质边坡高度超过30m,应进行专门的深 路堑边坡设计。 第八章1影响废石场稳定的因素有哪 些?废石堆的稳定主要取决于堆积散体 的物理力学性质、基底岩土层的承载能 力、废石场的水文地质条件及排土工艺 等。2简述废石场稳化措施有哪些?合理 调排土岩性分布;疏干排水;基底处理; 合理选择排土工艺、 3何为泥石流?可分为几类? 泥石流是指在山地沟谷或山区河谷中,由 于暴雨、冰雪融水等激发的,暂时性急水 流与大量土石相互作用的特殊洪流现象。 按物质组成分为泥流、泥石流、水石流; 按结构类型分为黏性泥石流、稀性泥石

相关文档
最新文档