三角形

三角形
三角形

店上联校北村小学学案(学生用)

姓名科目数学年级五课型新授课课题三角形面积的计算时间编号5-2-1 学习目标:

1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

2.培养观察能力、动手操作能力和类推迁移的能力.

3.培养勤于思考,积极探索的学习精神.

教学重点:理解三角形面积计算公式,正确计算三角形的面积.

教学难点:理解三角形面积公式的推导过程.

检测:一、自学检测

1、两个完全一样的三角形能拼成一个(),拼成的()的底等于三角形的(),高等于三角形的(),面积是每个三角形面积的(),所以一个三角形的面积等于(),用字母表示为()。

2、一个平行四边形的面积是与它等底等高的三角形面积的()。

二、基础检测

1、判断

(1)平行四边形的面积是三角形面积的2倍。()

(2)等底等高的两个三角形的面积一定相等。()

(3)平行四边形的面积比三角形的面积大。()

(4)一个三角形的底扩大到原来的3倍,高缩小到原来的1/3,面积不变。()

2、选择题

(1)直角三角形有()条高。

A、1

B、2

C、3

(2)两个完全一样的()三角形可以拼成一个正方形。

A、等腰

B、直角

C、等腰直角

3、解决问题

(1)一个三角形的面积是24平方分米,它的高是5分米,求它的底,

(2)为迎接元旦,学校准备做800面三角形小旗,每面小旗的底是25厘米,高是8厘米,学校需要买多少平方米的红布?

(3)如图正方形的周长是24厘米,那么阴影部分的面积是多少?

店上联校北村小学导案(教师用)

姓名李红梅科目数学年级五课型新授课课题三角形面积的计算时间编号5-2-1 学习目标:

1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.2.培养学生观察能力、动手操作能力和类推迁移的能力.

3.培养学生勤于思考,积极探索的学习精神.

教学重点:理解三角形面积计算公式,正确计算三角形的面积.

教学难点:理解三角形面积公式的推导过程.

导学流程:

一、复习导入

1.出示平行四边形

1.5厘米

2厘米

提问:(1)这是什么图形?怎样计算平行四边形的面积。(板书:平行四边形面积=底×高)

(2)底是2厘米,高是1.5厘米,求它的面积。

(3)平行四边形面积的计算公式是怎样推导的?

2.出示三角形。三角形按角可以分为哪几种?

3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

教师:今天我们一起研究“三角形的面积”(板书)

二、出示目标、重难点

1、目标:理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

2、重难点:理解三角形面积公式的推导过程.

三、指导探索

(一)推导三角形面积计算公式.

1.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

2.用两个完全一样的直角三角形拼.

(1)教师参与学生拼摆,个别加以指导

(2)可以拼成哪些图形?(大三角形、长方形、平行四边形)

(3)讨论

①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式

吗?为什么?

②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?

3.用两个完全一样的锐角三角形拼.

(1)可以拼成哪些图形?(指名演示)

(2)讨论:每个三角形的面积与拼成的平行四边形的面积有什么关系?

4.用两个完全一样的钝角三角形来拼.由学生独立完成.

5.讨论:

(1)两个完全相同的三角形都可以转化成什么图形?

(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

(3)三角形面积的计算公式是什么?

6、引导学生明确:

①两个完全一样的三角形都可以拼成一个平行四边形。

②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)

③这个平行四边形的底等于三角形的底。(同时板书)

④这个平行四边形的高等于三角形的高。(同时板书)

7、三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

板书:三角形面积=底×高÷2

如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

(二)自学例1

红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

1.由学生独立解答.

2.集体订正

3、尝试练习完成“做一做”

四、练习检测:完成学案

五、课堂总结

这节课大家有什么收获?还有什么疑问?

课后反思:

各种三角形边长的计算公式

各种三角形边长的计算公式 解三角形 解直角三角形(斜三角形特殊情况): 勾股定理 ,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中 a 和 b 分别为直角三角形两直角边,c 为斜边 .勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5. 他们分别是 3,4 和 5 的倍数 .常见的勾股弦数有: 3,4,5 ;6,8,10 ; 5,12,13;10,24,26; 等等 . 解斜三角形: 在三角形ABC a/SinA=b/SinB=中 , 角A,B,C c/SinC=2R 的对边分别为a,b,c. 则有 (R 为三角形外接圆半径 ) ( 1 )正弦定理 ( 2 )余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC注:勾股定理其实是余弦定理的一种特殊情况(.3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出 b 与 c,在有解时有一解. 两边和夹角(如 a、b 、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边 所对的角 ,再由 A+B+C=180˙求出另一角,在有解时有一解. 三边 (如 a、 b、 c) 余弦定理由余弦定理求出角 A 、B,再利用 A+B+C=180˙,求出角 C 在有解时只有一解 .

两边和其中一边的对角( 如 a 、 b 、 A)正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解. 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平 方.几何语言:若△ABC 满足∠ABC=90 °,则 AB2+BC 2=AC 2 勾股定理的逆定理也 成立 ,即两条边长的平方之和等于第三边长的平方 ,则这个三角形是直角三角形几 何语言:若△ABC 满足 ,则∠ABC=90 °. [3] 射影定理(欧几里得定理) 内容:在任何一个直角三角形中 ,作出斜边上的高 ,则斜边上的高的平方等于高所 在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积 .几何语言:若△ABC 满足∠ABC=90 °,作 BD ⊥AC,则 BD2 =AD ×DC 射影定理的拓展:若△ ABC满足∠ABC=90°,作BD ⊥ AC,(1)AB 2 =BD ·BC(2)AC 2 ;=CD ·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与 三边边长和的乘积之比几何语言:在△ABC 中,sinA/a=sinB/b=sinC/c=2S三 角形 /abc结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是 外接圆半径) 余弦定理 内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边 的 2 倍乘以它们夹角的余弦几何语言:在△ABC中,a2=b 2+c 2-2bc×cosA此定 理可以变形为: cosA= ( b 2+c 2-a 2 )÷2bc

几何初步与三角形知识点与对应习题

初三数学寒假课程(6) 教案编写日期:2012.01.11 课程教授日期:2011.01.29 应到人数: 18 实到人数: 授课课题: 几何初步与三角形授课人: 教学目标:掌握几何基本概念以及三角形的相关内容 教学重难点: 重点:三角形的性质 难点:特殊三角形的综合运用 教学过程: 一、知识点例题讲解 一、相交线与平行线 1.线段,射线,直线,延长线 (1)两点之间,线段最短. (2)把线段向一方无限延伸所形成的图形叫做射线. (3)把线段向两方无限延伸所形成的图形叫做直线.经过两点有一条直线,并且只有一条直线.即两点确定一条直线. 提示:直线、射线、线段的区别主要看端点个数,直线无端点,射线有一个端点,线段有两个端点. (4)过N个点可以最多画几条直线 (5)无图线段长度的两边两种情况,例,线段AB长5,AC=2,则CB=多少,两种情况2.角 有公共端点的两条射线组成的图形叫做角;如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于00小于直角的角叫做锐 角. 提示: 1周角=2平角=4直角=360°; 1平角=2直角=180°;1直角=90°; 1度=60分=3600秒(即:1°=60ˊ=3600"); 1分=60秒(即:1ˊ=60"). 1.时钟的分针从3点整的位置起,经过多长时间时针与分针第一次重合? 3.角的特殊关系 互为补角:如果两个角的和是一个平角,那么这两个角叫做互为补角. 互为余角:如果两个角的和是一个直角,那么这两个角叫做互为余角. 互为邻补角:两条直线相交得到的四个角中,有一条公共边的两个角,叫做互为邻补角. 提示:同角或等角的余角相等;同角或等角的补角相等. 4.角平分线 5.对顶角 6.平行线概念,平行的判定,性质 1.定义:在同一平面内,不相交的两条直线叫做平行线。 2.判定: (1)同位角相等,两直线平行。

三角形中的边角关系

三角形中的边角关系 1、 A+B+C=π , 2C = 2 π-( 2A + 2 B ) 2、 sinC=sin(A+B), cosC=-cos(A+B) sin 2 C =cos( 2 A +2 B ), cos 2 C =sin( 2 A + 2 B ), tan 2 C =cot( 2 A + 2 B ) sin2C=-sin2(A+B), cos2C=cos2(A+B) 3、 三角形面积公式 S ?= 12 absinC= 12 bcsinA= 12 casinB p= 12 (a+b+c ) 4、 正弦定理sin sin sin a b c A B C = = =2R sinA ?sinB ? sinC ?a = b ? c sinA= 2a R ,sinB=2b R ,sinC= 2c R a=2RsinA , b=2RsinB , c=2RsinC 适用类型:AAS →S ,SSA →A (2,1,0解) 5、余弦定理2222cos a b c bc A =+- 2 2 2 co s 2b c a A b c +-= 适用类型:SSS →A ,SAS →S ,AAS →S(2,1,0解) 5、 判定三角形是锐角直角钝角三角形 设c 为三角形的最大边 2c <2a +2b ??ABC 是锐角三角形 2 c =2 a +2 b ??ABC 是直角三角形 2 c >2 a +2 b ??ABC 是钝角三角形 6、 tanA+tanB+tanC=tanAtanBtanC cotAcotB+cotBcotC+cotCcotA=1 tan 2 A tan 2 B +tan 2 B tan 2 C +tan 2 C tan 2 A =1 7* 、若三角形三内角成等差数列,则B=3 π 三边成等差数列,则0

初中几何经典培优题型(三角形)

全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等; (3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等; (4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.

3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的 思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是 全等变换中的“平移”或“翻转折叠” 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相 等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 常见辅助线写法: ⑴过点A作BC的平行线AF交DE于F ⑵过点A作BC的垂线,垂足为D ⑶延长AB至C,使BC=AC ⑷在AB上截取AC,使AC=DE ⑸作∠ABC的平分线,交AC于D ⑹取AB中点C,连接CD交EF于G点

八年级数学竞赛讲座三角形的边与角附答案

第九讲 三角形的边与角 三角形是最基本的图形之一,是研究其他复杂图形的基础,三角形的三边相互制约,三个内角之和为定值,边与角之间有密切的联系(如大角对大边、大边对大角等),反映三角形的边与角关联的基本知识有:三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段。角度的计算、图形的计数等方面有广泛的应用. 解与三角形的边与角有关的问题时,往往要用到数形结合及分类讨论法,即用代数方法(方程、不等式)解几何计算题及简单的证明题,按边或角对三角形进行分类. 熟悉以下基本图形、并证明基本结论: (1) ∠l +∠2=∠3+∠4; (2) 若BD 、CO 分别为∠ABC 、∠ACB 的平分线,则∠BOC=90°+ 21∠A ; (3) 若BO 、CO 分别为∠DBC 、∠ECB 的平分线,则∠BOC=90°- 21∠A ; (4) 若BE 、CE 分别为∠ABC 、∠ACD 的平分线,则∠E= 2 1∠A . 注: 中线、角平分线、高是三角形中的重要线段,它们的差别在于高随着三角形形状的不同,可能在三角内部、边上或外部. 代数法解几何计算问题的基本思路是通过设元,运用几何知识建立方程(组)、不等式(组),将问题转化为解方程(组)或解不等式(组). 例题求解 【例1】 在△ABC 中,三个内角的度数均为整数,且∠A<∠B<∠C ,4∠C =7∠A ,则∠B 的度数为 .(北京市竞赛题) 思路点拨 设∠C =x °,根据题设条件及三角形内角和定理把∠A 、∠B 用x 的代数式表示,建立关于x 的不等式组. 【例2】以1995的质因数为边长的三角形共有( ) A .4个 B .7个 C .13个 D .60个 (河南省竞赛题) 思路点拨 1995=3×5×7×19,为做到计数的准确,可将三角形按边分类,注意三角形三边应满足的

三角形边长的计算公式

解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2,其中a和b 分别为直角三角形两直角边,c为斜边.勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5.他们分别是3,4和5的倍数.常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c.则有(1)正弦定理a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况.(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解. 两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解. 三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解. 两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解.

几何基础图形——三角形的认识

几何基础图形——三角形的认识 定 义 示例剖析 三角形的定义: 由三条不在..同一条直线上的线段首尾顺次.... 连结组成的平面图形叫做三角形.三角形具有稳定性... . 表示法及读法: 三角形用符号“△”表示,顶点是A 、B 、C 的三角形记作“ ABC △ ”,读作“三角形ABC ”. ABC △的三边有时也用a ,b ,c 表示. 顶点A 的对边a (BC ) 顶点B 的对边b (AC ) 顶点C 的对边c (AB ) 三角形的内角: 三角形的每两条边所组成的角叫做三角形的内角,简称三角形的角. ,,A B C ∠∠∠是三 角形的内角 c b a C B A 思路导航 知识互联网 题型一:三角形的边 A B C

三角形的分类: 注意:每个三角形至少有两个锐角,而至多有一个钝角. 三角形的三个内角中,最大的一个内角是锐角(直角或钝角)时,该三角形即为锐角三角形(直角三角形或钝角三角形). 三角形三条边的关系 三角形三边关系定理:三角形任意两边之和大于第三边. 三角形三边关系定理的推论:三角形任意两边之差小于第三边. 即a 、b 、c 三条线段可组成三角形?b c a b c -<<+?两条较小的线段之和大于最大的线段. 注意:在应用三边关系定理及推论时,可以简化为:当三条线段中最长的线 段小于另两条线段之和时,或当三条线段中最短的线段大于另两条线段之差时,即可组成三角形. a c b +> ||a c b -<, a b c +> ||a b c -<, b c a +> ||b c a -< 【引例】一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长的最小值 直角三角形 钝角三角形 不等边三角形 等腰三角形 等边三角形 A B C a b c 例题精讲 三角形(按角分类) 直角三角形:三角形中有一个内角是直角 斜三角形 锐角三角形:三角形中三个内角都是锐角 钝角三角形:三角形中有一个内角是钝角 三角形(按边分类) 不等边三角形:三条边都不相等的三角形 等腰三角形 底边和腰不相等的等腰三角形:有两边相等的三角形 等边三角形(正三角形):三边都相等的三角形 锐角三角形

三角形的边与角试题与答案

三角形的边与角 一、选择题 1. (2016·湖北咸宁)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论: ①BC DE =21 ; ② S S COB DOE △△=21; ③AB AD =OB OE ; ④ S S ADE ODE △△=31. 其中正确的个数有( ) A. 1个 B. 2个 C.3个 D. 4个 (第1题) 【考点】三角形中位线定理,相似三角形的判定和性质. 【分析】①DE 是△ABC 的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定. 【解答】解:①∵DE 是△ABC 的中位线, ∴DE=21 BC ,即BC DE =21 ; 故①正确; ②∵DE 是△ABC 的中位线, ∴DE ∥BC ∴△DOE ∽△COB ∴ S S COB DOE △△=(BC DE )2=(21)2=41 , 故②错误; ③∵DE ∥BC ∴△ADE ∽△ABC ∴AB AD =BC DE △DOE ∽△COB ∴OB OE =BC DE ∴AB AD =OB OE ,

故③正确; ④∵△ABC 的中线BE 与CD 交于点O 。 ∴点O 是△ABC 的重心, 根据重心性质,BO=2OE ,△ABC 的高=3△BOC 的高, 且△ABC 与△BOC 同底(BC ) ∴S △ABC =3S △BOC , 由②和③知, S △ODE =41 S △COB ,S △ADE =41 S △BOC , ∴ S S ADE ODE △△=31. 故④正确. 综上,①③④正确. 故选C. 【点评】本题考查了三角形中位线定理,相似三角形的判定和性质.要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方. 2. (2016·四川广安·3分)下列说法: ①三角形的三条高一定都在三角形内 ②有一个角是直角的四边形是矩形 ③有一组邻边相等的平行四边形是菱形 ④两边及一角对应相等的两个三角形全等 ⑤一组对边平行,另一组对边相等的四边形是平行四边形 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱形的判定. 【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题. 【解答】解:①错误,理由:钝角三角形有两条高在三角形外.

三角形边与角的范围问题(答案)

三角形边与角的范围问题 课堂练习: 1、在锐角ABC 中,1,2a b ,则最大边c 的取值范围为_____________. 2 222214cos 0245,5,,25a b c c C C ab c c c c c 解析:由题意知是锐角,则又为最大边2、在ABC 中,角A ,B ,C 成等差数列,边AC=2,则三角形周长的取值范围为_________. A B C 2,3sin sin sin sin 43sin sin 3 sin 43sin 43sin()sin 33343(sin sin cos cos sin )3333 1 4(sin cos )4sin() 22625(0,),(,)(2,4]3666 B A C B a b c A B C b A A a B b C C c A B a c A A A A A A A A a c 解析:角、、成等差数列,由正弦定理=====周(4,6] 长取值范围为3、在ABC 中,角A 、B 、C 所对的边为a ,b ,c,且sin sin()sin sin cos A B C B C A ,则2ab c 的最大 值为_______. 解析: 2222222222 sin (sin cos cos sin ) sin sin cos sin sin cos sin cos sin sin sin cos sin sin() sin cos cos 32A B C B C B C A A B C A B C B C A C A B C c ab C c C ab a b c c a b c ab ab 由题可得移项得由正弦定理可得由余弦定理得因此 即最大值为. 4、在ABC 中,已知BC=AC ,ABC 周长为7,则BC 边上的中线AD 的最小值是________.

三角形边长公式

三角形边长公式 解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有(1)正弦定理 a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。 两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解。 三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。 两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由 A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解。 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。几何语言:若△ABC满足∠ABC=90°,则AB2+BC2=AC2勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC满足,则∠ABC=90°。 [3]射影定理(欧几里得定理) 内容:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积。几何语言:若△ABC满足∠ABC=90°,作BD⊥AC,则BD2=AD×DC 射影定理的拓展:若△ABC满足∠ABC=90°,作BD⊥AC,(1)AB2=BD·BC (2)AC2;=CD·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S

初一几何三角形练习题及答案

初一几何---三角形 一.选择题 (本大题共 24 分) 1.以下列各组数为三角形的三条边,其中能构成直角三角形的是() (A)17,15,8 (B)1/3,1/4,1/5 (C) 4,5,6 (D) 3,7,11 2.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是() (A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形 3.下列给出的各组线段中,能构成三角形的是() (A)5,12,13 (B)5,12,7 (C)8,18,7 (D)3,4,8 4.如图已知:Rt△ABC中,∠C=90°,AD平分∠BAC,AE=AC,连接DE,则下列结论中,不正确的是() (A) DC=DE (B) ∠ADC=∠ADE (C) ∠DEB=90°(D) ∠BDE=∠DAE 5.一个三角形的三边长分别是15,20和25,则它的最大边上的高为() (A)12 (B)10 (C) 8 (D) 5 6.下列说法不正确的是() (A)全等三角形的对应角相等 (B)全等三角形的对应角的平分线相等 (C)角平分线相等的三角形一定全等 (D)角平分线是到角的两边距离相等的所有点的集合 7.两条边长分别为2和8,第三边长是整数的三角形一共有() (A)3个(B)4个(C)5个(D)无数个 8.下列图形中,不是轴对称图形的是() (A)线段MN (B)等边三角形(C) 直角三角形(D) 钝角∠AOB 9.如图已知:△ABC中,AB=AC,BE=CF,AD⊥BC于D,此图中全等的三角形共有() (A)2对(B)3对(C)4对(D)5对 10.直角三角形两锐角的平分线相交所夹的钝角为() (A)125°(B)135°(C)145°(D)150°

三角形边角关系-第3讲的角与边学

第三讲三角形的角与边 一、基础知识 本讲重点介绍三角形的边、角不等关系,包括同一个三角形中的边、角不等关系以及不同三角形中的边、角不等关系. 1.边与边的关系 (1)在同一个三角形中两边之和大于第三边,两边之差小于第三边(三边满足什么条件时,三角形必然存在?); (2)勾股定理:即在直角三角形中两条直角边的平方和等于斜边的平方. 2.角与角的关系 (1)三角形的内角和为180?; (2)直角三角形中两锐角互余; (3)三角形的一个外角大于任何一个与它不相邻的内角; (4)三角形的一个外角等于与它不相邻的两内角之和. 3.边和角的关系 (1)在同一个三角形中,大边对大角,大角对大边; (2)在两个三角形中,如果有两条边对应相等,那么夹角大的所对的边也大;反之也成立,即在两个三角形中,如果有两条边对应相等,那么第三边大,则所对的角也大. 4.不等式变形时常用的性质 (1)若a>b,c>d,则a+c>b+d; (2)若a>b,c>d,则a-d>b-c; (3)若a>b,c>0,则ac>bc; 若a>b,c<0,则acb>0,则11 a b < ; (5)总量大于任何一个部分量. 5.三角形中的不等关系根源: (1)两点之间线段最短; (2)垂线段最短. 二、例题 第一部分边的问题 例1. (★★希望杯训练题)将三边长为a,b,c的三角形记作(a,b,c).写出周长为20,各边长为正整数的所有不同的三角形.

例2. (★★★ 2000年希望杯竞赛题)一个三角形的三条边的长分别是a,b,c(a,b,c都是质数),且a+b+c=16,则这个三角形是() A.直角三角形 B.等腰三角形 C.等边三角形 D.直角三角形或等腰三角形 例3. (★★★1998年江苏省竞赛题)在不等边三角形中,如果有一条边长等于另两条边长的平均值,那么最大边上的高与最小边上的高的比值的取值范围是( ) A.3 1 4 k << B. 1 1 3 k << C.12 k << D. 1 1 2 k << 例4. (★★★1997年北京市竞赛题)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm 两部分,则这个等腰三角形的底边的长为( ) A.17cm B.5cm C.17cm或5cm D.无法确定 例5. (★★★)如图3-1,已知P为三角形ABC内一点, 求证: 1 () 2 AB AC BC PA PB PC AB AC BC ++<++<++. 例6. (★★★第三十二届美国邀请赛试题)不等边三角形ABC的两条高长度为4和12,若第三条高的长也是整数,试求它的长.

初中几何三角形五心及定理性质

初中几何三角形五心定律及性质 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。 三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称 重心定理 三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。 5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。 外心定理

三角形外接圆的圆心,叫做三角形的外心。 外心的性质: 1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。 2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或 ∠BOC=360°-2∠A(∠A为钝角)。 3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。 5、外心到三顶点的距离相等 垂心定理 图1 图2 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质: 1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line)) 3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。 4、垂心分每条高线的两部分乘积相等。 推论: 1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图1) 2. 三角形的垂心是其垂足三角形的内心。(图1) 3. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图2) 定理证明 已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB 证明: 连接DE ∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆 ∴∠ADE=∠ABE

三角形的边与角的认识

三角形三大专题 知识互联网 题型一:整数边三角形 思路导航 1、边长都是整数的三角形,称为整数边三角形. 2、若三角形三边的长为a ,b ,c 且a b c ≤≤,则 ⑴ 三角形的最小的边a 满足:03 a b c a ++<≤,当且仅当a b c ==时,等号成立; ⑵ 三角形的最大的边c 满足:32 a b c a b c c ++++< ≤,当且仅当a b c ==时,等号成立. 方程(特别是不定方程)和不等式是解决整数边三角形或内角是整数的三角形的常用工具.运用这一工具时,枚举法(树状图)则是常用的方法,但要注意对求得的结果进行检验. 例题精讲 【引例】 已知等腰三角形的周长是8,边长是整数,则腰长是多少? 典题精练 【例1】 ⑴若三角形的周长为60,求最大边的范围. ⑵设m 、n 、p 均为自然数,且m n p ≤≤,15m n p ++=,试问以m 、n 、p 为边长 的三角形共有多少个? 【例2】 ⑴三角形三边长a 、b 、c 都是整数,且a b c <<,若7b =,则有 个满足题意的 三角形. ⑵三角形三边长a 、b 、c 都是整数,且a b c <≤,若7b =,则有 个满足题意的三角形. ⑶三角形三边长a 、b 、c 都是整数,且a b c ≤≤,若7b =,则有 个满足题意的三角形.

题型二:多边形及其内、外角和 思路导航 多边形及其内、外角和 (一)多边形及其内角和 1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. ① 多边形的顶点、边、内角、外角、对角线 内角:A ∠、ABC ∠、C ∠、CDE ∠、E ∠…… 外角:α∠ 对角线:连接不相邻两个顶点的线段是多边形的对角线.如BD . n 边形对角线条数: (3) 2 n n -条 ② 凸、凹多边形:多边形的每一边都在任何一边所在直线的同一侧,叫做凸多边形;反之叫做凹多边形.(如图) 图(a )为凸多边形 图(b )为凹多边形 ( a ) (b ) ③ 正多边形:各个角都相等,各条边都相等的多边形叫做正多边形 (如图正六边形) AB=BC=CD=DE=EF=AF A B C D E F ∠=∠=∠=∠=∠=∠ 2.多边形内角和:n 边形内角和等于(2)180n -?° ① 多边形内角和公式推理方法一: 过n 边形一个顶点,连对角线,可以得(3)n -条对角线,并且将n 边形分成 (2)n -个三角形,这(2)n -个三角形的内角和恰好是多边形的内角和. 将n 边形分成()2n -个三角形 ② 多边形内角和公式推理方法二: 在n 边形边上取一点与各顶点相连,得(1)n -个三角形,n 边形内角和等于这 (1)n -个三角形内角和减去在所取的一点处的一个平角,即 (1)180180(2)180n n -?-=-?°°° 将n 边形分成()1n -个三角形 F E D C B A

几何三角形专题练习

第21课时 线段、角、相交线与平行线 一、选择题 1.( 2008年杭州市) 设一个锐角与这个角的补角的差的绝对值为α, 则( ) A . 900<<α B . 900≤<α C . 900<<α或 18090<<α D . 1800<<α 2.已知:如图,∠AOB 的两边OA 、OB 均为平面反光镜,∠AOB=40°,在OB ?上有一点P ,从P 点射出一束光线经OA 上的Q 点反射后,反射光线QR 恰好与OB 平行,则∠QPB ?的度数是( ) A .60° B .80° C .100° D .120° 3.如图,B 是线段AC 的中点,过点C 的直线L 与AC 成60°的角,?在直线L 上取一点P ,使∠APB=30°,则满足条件的点P 共有( ) A .1个 B .2个 C .3个 D .无数个 4.(2009年新疆)如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) A .50° B .30° C .20° D .15° 5.学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4) ): 从图中可知,小敏画平行线的依据有( ) ①两直线平行,同位角相等; ②两直线平行,内错角相等; ③同位角相等,两直线平行; ④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④ 二、填空题 6.一副三角板,如图叠放在一起,∠α的度数是 度. 7.如图,AB ∥CD ,若∠ABE=120?°, ∠DCE=?35?°,?则有∠BEC=_______度. 8.如图,地面上有一个钟,钟面12个粗线段刻度是整点时时针(短针)所指位 图6 第2题图 第3题图 第4题图 第6题图 第7题图 第8题图 1 2 3

三角形中边与角之间的不等关系

三角形中边与角之间的不等关系 《三角形中边与角之间的不等关系》教学设计教学目标: 1. 通过 实验探究发现:在一个三角形中边与角之间的不等关系; 2. 通过实验探究和推理论证,发展学生的分析问题和解决问题的能力;通过探索、总结形成利用图形的翻折等变换是解决几何问题常见的策略; 3. 提供动手操作的机会,让学生体验数学活动中充满着探索与创新,激发学生学习几何的兴趣。教学重点:三角形中边与角之间的不等关 系及其探究过程。教学难点:如何从实验操作中得到启示,写成几 何证明的表达。教具准备:三角形纸片数张、剪刀、圆规、三角板等。教学过程一、知识回顾 1. 等腰三角形具有什么性质? 2. 如何判定一个三角形是等腰三角形?从这两条结论来看,今后要在同 一个三角形中证明两个角相等,可以先证明它们所对的边相等;同样要证明两条边相等可以先证明它们所对的角相等。二、引入新课问题:在三角形中不相等的边所对的角之间又有怎样的大小关系呢?或者不相等的角所对的边之间大小关系又怎样?方法回顾:在探究 “等边对等角”时,我们采用将三角形对折的方式,发现了“在三角形中相等的边所对的角相等”,从而利用三角形的全等证明了这些性质。现在请大家拿出三角形的纸片用类似的方法探究今天的问题。三.探究新知实验与探究1:在△ABC中,如果AB>AC,那么我们可以将△ABC沿∠BAC的平分线AD折叠,使点C落在AB边上的点E处,即AE=AC,这样得到∠AED=∠C,再利用∠AED是△BDE的外角的关系得到∠AED>∠B,从而得到∠C>∠B。由上面的操作过程得到启示, 请写出证明过程。(提示:作∠BAC的平分线AD,在AB边上取点E,使AE=AC,连结DE。)形成结论1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。思考:是否还 有不同的方法来证明这个结论? 实验与探究2:在△ABC中,如果∠C>∠B,那么我们可以将△ABC沿BC的垂直平分线MN折叠,使点B落在点C上,即∠MCN=∠B,于是MB=MC,这样AB=AM+MB=AM+MC>AC. 由上面的操作过程得到启示,请写出证明过程。 形成结论2:在一个三角形中,如果两个角不等,那么它们所对的边

奥数几何 三角形五大模型带解析

三角形五大模型 【专题知识点概述】 本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。 重点模型重温 一、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b = ③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线 平行于CD . ④等底等高的两个平行四边形面积相等( 长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、等分点结论(“鸟头定理”) D C B A b a s 2 s 1

如图,三角形AED 占三角形ABC 面积的23×14=1 6 三、任意四边形中的比例关系 (“蝴蝶定理”) ① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3) 梯形中比例关系(“梯形蝴蝶定理”) ① S 1︰S 3=a 2︰b 2 ②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2 模型四:相似三角形性质 如何判断相似 (1)相似的基本概念: 两个三角形对应边城比例,对应角相等。 (2)判断相似的方法: ①两个三角形若有两个角对应相等则这两个三角形相似; ②两个三角形若有两条边对应成比例, 且这两组对应边所夹的角相等则两个 S 4 S 3 s 2 s 1O D C B A S 4 S 3s 2 s 1 b a

直角三角形的边角关系--知识点

直角三角形的边角关系知识考点 知识讲解: 1.锐角三角函数的概念 如图,在ABC 中,∠C 为直角,则锐角A 的各三角 函数的定义如下: (1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即sinA =a c (2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA , 即cosA =b c (3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作t an A , 即t an A =a b (4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作c ot A , 即c ot A =b a 2.直角三角形中的边角关系 (1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A +B =90° (3)边角之间的关系: sinA =cosB =a c , cosA =sinB =b c t an A =c ot B =a b , cot A =t an B =b a

3.三角函数的关系 (1)同角的三角函数的关系 1)平方关系:sinA2+cosA2=1 2)倒数关系:t an A·c ot A=1 3)商的关系:t an A=sinA cosA ,c ot A=cosA sinA (2)互为余角的函数之间的关系 sin(90°-A)=cosA,cos(90°-A)=sinA t an(90°-A)=c ot A, cot(90°-A)=t an A 4.一些特殊角的三角函数值

5.锐角α的三角函数值的符号及变化规律. (1)锐角α的三角函数值都是正值 (2)若0<α<90°则sinα,tanα随α的增大而增大,cosα,cotα随α的增大而减小. 6.解直角三角形 (1)直角三角形中的元素:除直角外,共有5个元素,即3条边和2个锐角. (2)解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知的元素的过程叫做解直角三角形. 7.解直角三角形的应用, 解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念: (1)仰角、俯角 视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角 (2)坡度=坡面的铅直高度h与水平宽度l的比叫做坡度,常用字母i表示, 即i=h l (3)坡角:坡面与水平面的夹角叫做坡角,用字母α表示,则tanα=i=h l (4)方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角.

21-与三角形有关的几何题

F E D C B A E D C B A 与三角形有关的几何题 (2016东城二模)19.如图,已知∠ABC =90°,分别以 AB 和BC 为边向外作等边△ABD 和等边△BCE ,连接AE ,CD . 求证:AE = CD . (2016丰台二模)20. 如图,△ABC 是等边三角形,AC BD ⊥于 点D ,E 为BC 的中点,连接DE . 求证:DE =DC . (2016西城二模)18.如图,在△ABC 中,D 是AB 点E 在CD 的延长线上,且∠EBC =∠ACB . 求证:AC =EB . (2016房山二模)20.已知:如图,在△ABC 中,点D 、E 分别在边AB ,AC 上,且∠AED=∠ABC ,DE =3,BC =5,AC =12. 求AD 的长. (2016怀柔二模)20.如图,在△ABC 中,AB=AC,AD 是△ABC 点的中线,E 是AC 的中 点,连接AC,DF ⊥AB 于点F.求证:∠BDF=∠ADE. (2016平谷二模)20.如图,四边形ABCD 中,AD =2AB ,E 是AD 的中点, AC 平分∠BAD ,连接CE . 求证:CB =CE . (2016海淀二模)20.已知:如图,在△ABC 中,∠ACB =90 ,点D 在BC 上,且BD =AC ,过点D 作DE ⊥AB 于点E ,过点B 作CB 的垂线,交DE 的延长线于点F . D C A E B

求证:AB =DF . (2016朝阳二模)20.如图,在Rt △ABC 中,∠BAC = 90o,AD 是BC 边上的中线, ED BC ⊥于D ,交BA 延长线于点E ,若∠E =35°, 求∠BDA 的度数. (2016石景山二模)20.如图,在Rt △ABC 中,∠ABC=90°,点D 在边AB 上,且DB =BC , 过点D 作EF ⊥AC 于E ,交CB 的延长线于点F 求证:AB=BF . (2016昌平二模)20. 已知:如图,∠B =∠C ,AB = DC . 求证:∠EAD =∠EDA . (2016通州二模)20. 如图,已知AB =AC =AD ,且AD ∥BC . 求证:∠DAC =2∠D . (2016顺义二模)20.已知: 如图,在ABC ?,AB AC =, AD 是BC 边上的中线,E 是AC 的中点,BF CA ⊥延长线 E B A A B E D C F E D C B A

相关文档
最新文档