反馈系统的传递函数

反馈系统的传递函数
反馈系统的传递函数

一个反馈控制系统在工作过程中,一般会受到两类信号的作用,统称外作用。

一类是有用信号或称输入信号、给定值、指令等,用)(t r 表示。通常)(t r 是加在控制系统的输入端,也就是系统的输入端;另一类则是扰动,或称干扰)(t n ,而干扰

)(t n ,可以出现在系统的任何位置,但通常,最主要的干扰信号是作用在被控对象

上的扰动,例如电动机的负载扰动等。 一、系统的开环传递函数

系统反馈量与误差信号的比值,称为闭环系统的开环传递函数,

二、系统的闭环传递函数

1、输入信号)(s R 作用下的闭环传递函数

令0)(=s D ,这时图1可简化成图2(a)。输出)(s C 对输入)(s R 之间的传递函数,称输入作用下的闭环传递函数,简称闭环传递函数,用)(s Φ表示。

而输出的拉氏变换式为

2、干扰)(s D 作用下的闭环传递函数

同样,令0)(=s R ,结构图1可简化为图3(a)。

以)(s D 作为输入,)(s C 为在扰动作用下的输出,它们之间的传递函数,用)(s n Φ表示,称为扰动作用下的闭环传递函数,简称干扰传递函数。

系统在扰动作用下所引起的输出为

三、系统的误差传递函数

系统的误差信号为)(s E ,误差传递函数也分为给定信号作用下的误差传递函数和扰动信号作用下的传递函数。前者表征系统输出跟随输入信号的能力,后者反映系统抗扰动的能力。

1、输入信号)(s R 作用下的误差传递函数

为了分析系统信号的变化规律,寻求偏差信号与输入之间的关系,将结构图简化为如图2)(b 。列写出输入)(s R 与输出)(s ε之间的传递函数,称为控制作用下偏差传递函数。用表示。

)()()()()()

()()(2

1s H s G s H s G s G s E s B s G K ===)()()(21s G s G s G =)()(1)

()()()(1)()()()()(2121s H s G s G s H s G s G s G s G s R s C s +=

+==

Φ)()

()()(1)()()(2121s R s H s G s G s G s G s C +=)

()(1)()()()(1)()()

()(2212s H s G s G s H s G s G s G s N s C s n +=

+==

Φ)

()

()()(1)

()(212s N s H s G s G s G s C +=

)

()()(s R s s εΦε=

2、干扰)(s D 作用下的误差传递函数

同理,干扰作用下的偏差传递函数,称干扰偏差传递函数。用)(s n εΦ表示。以

)(s N 作为输入,)(s ε作为输出的结构图,如图3)(b 。

显然,系统在同时受)(s R 和)(s D 作用下,系统总输出,根据线性系统的叠加原理,应为各外作用分别引起的输出的总和,将给定作用和扰动作用相加,即为总输出的变换式

式中,如果系统中的参数设置,能满足1)()()(21>>s H s G s G 及1)()(1>>s H s G ,则系统总输出表达式可近似为

上式表明,采用反馈控制的系统,适当地选配元、部件的结构参数,系统就具有很强的抑制干扰的能力。同时,系统的输出只取决于反馈通路传递函数及输入信号,而与前向通路传递函数几乎无关。特别是当1)(=s H 时,即系统为单位反馈时,)()(s R s C ≈,

表明系统几乎实现了对输入信号的完全复现,即获得较高的工作精度。 同理,得系统总的偏差为

)()()()(s N s R s s n e εΦΦε+=

将上式推导的四种传递函数表达式进行比较,可以看出两个特点

(1)它们的分母完全相同,均为)]()()(1[21s H s G s G +,其中)()()(21s H s G s G 称为开环传递函数。所谓开环传递函数,是指在图2-48所示典型的结构图中,将)(s H 的输出断开,亦即断开系统主反馈回路,这时从输入)(s R (或)(s ε)到)(s B 之间的传递函数。

(2)它们的分子各不相同,且与其前向通路的传递函数有关。因此,闭环传递函数的分子随着外作用的作用点和输出量的引出点不同而不同。显然,同一个外作用加在系统不同的位置上,对系统运动的影响是不同的。

例题:

求图4所示系统的 。

解:1、输入信号)(s R 作用下,系统结构图简化为图5.

)

()()(1)()()

()

()(212s H s G s G s H s G s N s s n +-=

=

εΦε)

()

()()(1)

()()()()(1)()()(2122121s N s H s G s G s G s R s H s G s G s G s G s C +++=

)()

(1

)(s R s H s C ≈

)()()()(s D s C s R s C ,)()((s))()(-1)

()()()

()(-1)()(1)()(-1)

()()

()

(3212221322212221s H s G G s H s G s G s G s H s H s G s G s G s H s G s G s G s R s C +=

+=

2、扰动信号)(s D 作用下,系统结构图简化为图6.

图1 闭环控制系统的典型结构图

图2 给定作用时的系统结构图

图3 扰动作用时的系统结构图

图4 闭环控制系统的典型结构图

)

()((s))()(-1)]()(1)[()()()()(-1)(1)]

()(1[)

()(-1)

()()(321221123122211222s H s G G s H s G s H s G s G s H s G s H s G s G s H s G s H s G s G s D s C +-=

+-

=)

(1s G )

(2s G )

(3s H +

)

(1s H )

(2s H +

)

(s C )

(s R )

(s D R(s)

)

(1s G E(s)D(s)

B(s)

)

(2s G )

(s H +

图5 给定作用时的系统结构图

图6 扰动作用时的系统结构图

)

(1s G )

(2s G )

(3s H )

(2s H +

)

(s C )

(s R )

(1s G )

(2s G )

(3s H +

)

(1s H )

(2s H +

)

(s C )

(s D

单位负反馈系统的PID控制器设计及参数整定

计算机控制系统三级项目 单位负反馈系统的PID控制器设计及参数整定

目录 一.PID控制概述 (1) 二.PID控制在液压系统中的应用 (2) 三.课题分析与设计 (3)

一.PID控制概述 这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。 PID(比例-积分-微分)控制器作为最早实用化的控制器已有70多年历史,现在仍然是应用最广泛的工业控制器。PID 控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。 PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e (t)与输出u (t)的关系为u(t)=kp[e(t)+1/TI∫e(t)dt+TD*de(t)/dt] 式中积分的上下限分别是0和t 因此它的传递函数为:G(s)=U(s)/E(s)=kp[1+1/(TI*s)+TD*s] 其中kp为比例系数; TI为积分时间常数; TD为微分时间常数。 它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp, Ti和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。 首先,PID应用范围广。虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。 其次,PID参数较易整定。也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID 参数就可以重新整定。 第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。 在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源

求下图所示系统的传递函数

一、求下图所示系统的传递函数)(/)(0s U s U i 。 (10分) ) 1()()(3132320+++-=CS R R R R CS R R s U s U i 一、控制系统方块图如图所示: (1)当a =0时,求系统的阻尼比ξ,无阻尼自振频率n ω和单位斜坡函数输入时的稳态误差; (2)当ξ=时,试确定系统中的a 值和单位斜坡函数输入时系统的稳态误差; 系统的开环传函为 s a s s G )82(8)(2++=闭环传函为8)82(8)()(2+++=s a s s R s Y 25.0 83.2 36.0===ss n e ωξ 4 25.0==ss e a 设某控制系统的开环传递函数为 ) 22()(2++=s s s k s G 试绘制参量k 由0变至∞时的根轨迹图,并求开环增益临界值。 (15分) 1)j p j p p --=+-==110 321 2)πππ?σ3 5,,332=-=a a (10分) 3)ω=j 2±,c k =4,开环增益临界值为K=2 设某系统的特征方程为23)(234+--+=s s s s s D ,试求该系统的特征根。 列劳斯表如下 0000220112311 2 3 4 s s s s --- (4分) 得 辅助方程为0222=+-s ,解得1,121-==s s (4分)

最后得1,243=-=s s 设某控制系统的开环传递函数为 )()(s H s G =) 10016()12.0(752+++s s s s 试绘制该系统的Bode 图,并确定剪切频率c ω的值 剪切频率为s rad c /75.0=ω 某系统的结构图和Nyquist 图如图(a)和(b)所示,图中 2)1(1)(+=s s s G 23 ) 1()(+=s s s H 试判断闭环系统稳定性,并决定闭环特征方程正实部根的个数。 (16分) 解:由系统方框图求得内环传递函数为: s s s s s s s H s G s G +++++=+23452 474)1()()(1)( (3分) 内环的特征方程:04742345=++++s s s s s (1 分) 由Routh 稳定判据: 01: 03 10 :16 :044: 171: 01234s s s s s 七、设某二阶非线性系统方框图如图所示,其中 4 , 2.0 , 2.00===K M e 及s T 1=, 试画出输入信号)(12)(t t r ?=时系统相轨迹的大致图形,设系统原处于静止状态。 (16分) 解:根据饱和非线性特性,相平面可分成三个区域,运动方程分别为

单位负反馈系统的PID控制器设计及参数整定

计算机控制系统三级项目 -----单位负反馈系统的PID控制器设计及参数整定 学院(系): 机械工程学院 年级专业: 10级机电控制工程1班 小组成员:卢彪冯续桑子涵 董海洋林加城 指导教师:张立杰刘思远 时间: 2013年10月10日

目录 一.PID控制概述 (3) 二.PID控制的现实意义 (4) 三.PID控制器对系统性能的影响 (4) 1.P控制器对系统性能的影响 (5) (1)对动态特性的影响 (5) (2)对稳态特性的影响 (5) 2.PI控制器对系统性能的影响 (6) (1)对动态特性的影响 (6) (2)对稳态特性的影响 (7) 3.PID控制器对系统性能的影响 (8) 四.试凑法简介 (10) 五.PID控制在液压系统中的应用 (10) 六.感想与体会 (11)

一.PID控制概述 这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。 PID(比例-积分-微分)控制器作为最早实用化的控制器已有70多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。 PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e (t)与输出u (t)的关系为 u(t)=kp[e(t)+1/TI∫e(t)dt+TD*de(t)/dt] 式中积分的上下限分别是0和t 因此它的传递函数为:G(s)=U(s)/E(s)=kp[1+1/(TI*s)+TD*s] 其中kp为比例系数; TI为积分时间常数; TD为微分时间常数。 它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp, Ti和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。 首先,PID应用范围广。虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID 就可控制了。 其次,PID参数较易整定。也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。 第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。 在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。PID参数自整定就是为了处理PID参数整定这个问题而产生的。现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准。 在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在一些问题需要解决: 如果自整定要以模型为基础,为了PID参数的重新整定在线寻找和保持好过程模型是较难的。闭环工作时,要求在过程中插入一个测试信号。这个方法会引起扰动,所以基于模型的PID参数自整定在工业应用不是太

求下图所示系统的传递函数

一、求下图所示系统的传递函数 ) (/)(0s U s U i 。 (10分) ) 1()()(313 2320+++-=CS R R R R CS R R s U s U i 一、控制系统方块图如图所示: (1)当a =0时,求系统的阻尼比ξ,无阻尼自振频率n ω和单位斜坡函数输入时的稳态误差; (2)当ξ=0.7时,试确定系统中的a 值和单位斜坡函数输入时系统的稳态误差; 系统的开环传函为 s a s s G )82(8)(2++= 闭环传函为8)82(8 )()(2 +++=s a s s R s Y 25.0 83.2 36.0===ss n e ωξ 4 25.0==ss e a 设某控制系统的开环传递函数为 ) 22()(2 ++= s s s k s G 试绘制参量k 由0变至∞时的根轨迹图,并求开环增益临界值。 (15分) 1)j p j p p --=+-==110321 2) πππ?σ3 5 ,,332=- =a a (10分) 3)ω=j 2±,c k =4,开环增益临界值为K=2 设某系统的特征方程为23)(2 3 4 +--+=s s s s s D ,试求该系统的特征根。 列劳斯表如下 022******* 2 34 s s s s ---

得辅 助 方 程 为 222=+-s ,解得 1,121-==s s (4分) 最后得1, 243=-=s s 设某控制系统的开环传递函数为 )()(s H s G = ) 10016() 12.0(752+++s s s s 试绘制该系统的Bode 图,并确定剪切频率c ω的值 剪切频率为s rad c /75.0=ω 某系统的结构图和Nyquist 图如图(a)和(b)所示,图中 2)1(1)(+=s s s G 2 3 ) 1()(+=s s s H 试判断闭环系统稳定性,并决定闭环特征方程正实部根的个数。 (16分) 解:由系统方框图求得内环传递函数为: s s s s s s s H s G s G +++++= +23452 474)1()()(1)(

单位负反馈系统的校正装置设计(优选材料)

课 程 设 计 题 目: 单位负反馈系统的校正装置设计 初始条件: 已知某控制系统结构如图所示,要求设计校正环节Gc (s ),使系统对于阶跃输入的稳态误差为0,使系统校正后的相角裕量045≥γ,幅值裕量dB h 10≥. 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1) 用MATLAB 作出原系统的系统伯德图,计算系统的幅值裕度和相位裕 度。 (2) 在系统前向通路中插入一校正装置,确定校正网络的传递函数,并 用MATLAB 进行验证。给出所设计的校正装置电路图,并确定装置的 各参数值。 (3) 用MATLAB 画出未校正和已校正系统的根轨迹。 R(t) -- ) 01)(1(010++s s s

(4)用Matlab对校正前后的系统进行仿真分析,画出阶跃响应曲线,计算其时域性能指标。 (5)对上述任务写出完整的课程设计说明书,说明书中必须进行原理分析,写清楚分析计算的过程及其比较分析的结果,并包含Matlab源程序或Simulink仿真模型,说明书的格式按照教务处标准书写。 时间安排: 任务时间(天)指导老师下达任务书,审题、查阅相关资 2 料 分析、计算 2 编写程序 1 撰写报告 2 论文答辩 1 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 1 设计题目 (1) 2 要求完成的主要任务 (1) 3 设计的总体思路 (1) 4 用MATLAB作出原系统的系统伯德图和根轨迹 (2) 5 超前校正过程 (4) 6 滞后校正过程 (6) 7 用simulink仿真 (10) 8 设计总结 (13) 参考文献 (14)

比例阀控制系统传递函数Word版

0 引言 最近10年来发展起来的电液比例控制技术新成员——伺服比例阀,实际上是电液比例技术与电液伺服阀的进一步的“取长补短”式的融合。伺服比例阀(闭环比例阀)内装放大器,具有伺服阀的各种特性:零遮盖、高精度、高频响,但其对油液的清洁度要求比伺服阀低,具有更高的工作可靠性。 电液伺服控制系统多数具有良好的控制性能,并具有一定的鲁棒性,有广泛的应用。电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。电液伺服系统由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂,因此,电液伺服控制系统的仿真受到越来越多的重视。 电液技术的不断发展和人们对电液系统性能要求的不断提高,了解电液伺服系统过程中的动态性能和内部各参变量随时间的变化规律,已成为电液伺服系统设计和研究人员的首要任务在系统工作过程中,主要液压元件的动态响应、系统各部分的压力变化,执行元件的位移和速度等,都是人们非常关心的。 本文以电液伺服比例阀控液压缸为例,针对Matlab/Simulink 在电液伺服控制系统仿真分析中的局限性,采用AMESim 和Matlab/Simulink 联合仿真模型,取得了良好的效果。 1 系统组成及原理 电液伺服控制系统根据被控物理量(即输出量)分为电液位置伺服系统,电液速度伺服系统,电液力伺服系统三类。本文主要介绍电液位置伺服系统的仿真研究。其中四通阀伺服比例阀控液压缸的原理如图所示。

图1 阀控缸-负载原理图系统组成图 电液位置伺服控制系统是最为常见的液压控制系统,实际的伺服系统无论多么复杂,都是由一些基本元件组成的。控制系统结构框图见图2所示。 图2 电液伺服控制系统的结构框图

实验一 MATLAB系统的传递函数和状态空间表达式的转换

实验一 MATLAB 系统的传递函数和状态空间表达式的转换 一、 实验目的 1、学习多变量系统状态空间表达式的建立方法; 2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数之间相互转换的方法; 3、掌握相应的MATLAB 函数。 二、 实验原理 设系统的模型如式(1.1)所示: ?? ?+=+=D Cx y Bu Ax x ' x ''R ∈ u ∈R ’’’ y ∈R P (1.1) 其中A 为nXn 维系统矩阵、B 为nXm 维输入矩阵、C 为pXn 维输出矩阵,D 为直接传递函数。系统的传递函数和状态空间表达式之间的关系如式(1.2)所示 G(s)=num(s)/den(s)=C (SI-A)-1 B+D (1.2) 式(1.2)中,num(s)表示传递函数的分子阵,其维数是pXm ,den(s)表示传递函数的按s 降幂排列的分母。 表示状态空间模型和传递函数的MATLAB 函数如下: 函数ss (state space 的首字母)给出了状态空间模型,其一般形式是: sys=ss(A,B,C,D) 函数tf (transfer function 的首字母)给出了传递函数,其一般形式是: G=tf(num ,den) 其中num 表示传递函数中分子多项式的系数向量(单输入单输出系统),den 表示传递函数中分母多项式的系数向量。 函数tf2ss 给出了传递函数的一个状态空间实现,其一般形式是: [A,B,C,D]=tf2ss(num,den) 函数ss2tf 给出了状态空间模型所描述系统的传递函数,其一般形式是: [num,den]=ss2tf(A,B,C,D,iu)

传递函数的使用.docx

传递函数transfer function零初始条件F线性系统响应(即输出)量的拉普拉斯变换(或z变换)与激励(即输入)量的拉普拉斯变换之比。记作G (s) =Y (s) /U (s),其中Y (s)、U (s)分别为输出量和输入量的拉普拉斯变换。传递函数是描述线性系统动态特性的基本数学工具之一,经典控制理论的主要研究方法频率响应法和根轨迹法都是建立在传递函数的基础Z上。 简介 系统的传递函数与描述其运动规律的微分方程是对应的。可根据组成系统各单元的传递函数和它们之间的联结关系导出整体系统的传递函数,并用它分析系统的动态特性、稳定性,或根据给定要求综合控制系统,设计满意的控制器。以传递函数为工具分析和综合控制系统的方法称为频域法。它不但是经典控制理论的基础,而且在以时域方法为基础的现代控制理论发展过程小,也不断发展形成了多变量频域控制理论,成为研究多变量控制系统的有力工具。传递函数小的复变量s在实部为零、虚部为角频率时就是频率响应。传递函数是《积分变换》里的概念。对复参数S, 函数f(t)*e A(-st)在[0,+8)的积分,称为函数f(t)的拉普拉斯变换,简称拉氏变换,记作F(s),这是个复变函数。设一个系统的输入函数为x(t), 输出函数为y(t),贝9 y⑴的拉氏变换Y(s)与x(t)的拉氏变换X(s)的商: W(s)=Y(s)/X(s)称为这个系统的传递函数。传递函数是由系统的本质 特性确定的,与输入量无关。知道传递函数以后,就可以由输入量求输岀量,或 者根据需要的输出量确定输入量了。传递函数的概念在自动控 制理论里有重要应用。 传递函数的常识 传递函数概念的适用范围限于线性常微分方程系统?当然,在这类系统的分析和设计屮,传递函数方法的应用是很广泛的.下面是有关传递函数的一些重耍说明(下列各项说明中涉及的均为线性常微分方程描述的系统). 1.系统的传递函数是一种数学模型,它表示联系输出变量与输入变量的微分方程的一种运算方法. 2.传递函数是系统本身的一种属性,它与输入量或驱动函数的大小和性质无关? 3.传递函数包含联系输入量与输出量所必需的单位,但是它不提供有关系统物理结构的任何信息(许多物理上完全不同的系统,可以具有相同的传递函数,称之为相似系统). 4.如果系统的传递函数已知,则可以针对各种不同形式的输入量研究系统的输出或响应,以便掌握系统的性质. 5.如果不知道系统的传递函数,则可通过引入已知输入量并研究系统输岀量的实验方法,确定系统的传递函数?系统的传递函数一旦被确定,就能对系统的动态特性进行充分描述,它不同于对系统的物理描述.

传递函数及其性质

2-6 传递函数 求解控制系统的微分方程,可以得到在确定的初始条件及外作用下系统输出响应的表达式,并可画出时间响应曲线,因而可直观地反映出系统的动态过程。如果系统的参数发生变化,则微分方程及其解均会随之而变。为了分析参数的变化对系统输出响应的影响,就需要进行多次重复的计算。微分方程的阶次愈高,这种计算愈复杂。因此,仅仅从系统分析的角度来看,就会发现采用微分方程这种数学模型,当系统阶次较高时,是相当不方便的。以后将会看到,对于系统的综合校正及设计,采用微分方程这一种数学模型将会遇到更大的困难。 目前在经典控制理论中广泛使用的分析设计方法——频率法和根轨迹法,不是直接求解微分方程,而是采用与微分方程有关的另一种数学模型——传递函数,间接地分析系统结构参数对响应的影响。所以传递函数是一个极其重要的基本概念。 一、传递函数的概念及定义 在[例2-7]中,曾建立了RC 网络微分方程,并用拉氏变换法对微分方程进行了求解。 其微分方程(2-44)为 )()(t u t u dt du RC r c c =+ 假定初始值0)0(=c u ,对微分方程进行拉氏变换,则有 )()()1(s U s U RCs r c =+ 网络输出的拉氏变换式为 )(11)(s U RCs s U r c += (2-48) 这是一个以s 为变量的代数方程,方程右端是两部分的乘积;一部分是)(s U r ,这是外作用(输入量)的拉氏变换式,随)(t u r 的形式而改变;另一部分是 1 1+RCs ,完全由网络的结构参数确定。将上式(2-48)改写成如下形式 1 1)()(+=RCs s U s U r c 令1 1)(+=RCs s G ,则输出的拉氏变换式可写成 )()()(s U s G s U r c =

单位负反馈系统

题目: 单位负反馈系统的校正装置设计初始条件: 日

武汉理工大学《自动控制原理》课程设计说明书 系主任(或责任教师)签名:年月日已知某控制系统结构如图所示,要求设计校正环节Gc(s),使系统对于阶跃输入的稳态误差为0,使系统校正后的相角裕量 450,幅值裕量h 10dB. 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)(1)用MATLAB作出原系统的系统伯德图,计算系统的幅值裕度和相位裕度。 (2)在系统前向通路中插入一校正装置,确定校正网络的传递函数,并用MATLAB进行验证。给出所设计的校正装置电路图,并确定装置的各参数值。 (3)用MATLAB画出未校正和已校正系统的根轨迹。 (4)用Matlab对校正前后的系统进行仿真分析,画出阶跃响应曲线,计算其时域性能指标。 (5)对上述任务写出完整的课程设计说明书,说明书中必须进行原理分析,写清楚分析计算的过程及其比较分析的结果,并包含Matlab源程序或Simulink仿真模型,说明书的格式按 照教务处标准书写。 时间安排: 目录 摘要 (1) 1设计题目 (2) 2要求完成的主要任务 (2) 3设计的总体思路 (2) 4用MATLAB作出原系统的系统伯德图和根轨迹 (3) 5超前校正过程 (5) 6滞后校正过程 (8) 7用simulink仿真 (13) 8总结 (15) 参考文献 (16) 本科生课程设计成绩评定表 (17)

摘要 一个自动控制系统是由被控对象还有控制器两大部分组成的,所谓系统设计,就是根 据给定的被控对象和控制任务设计控制器,并将构成控制器的各元部件与被控对象适当组 合起来,使之按照一定的精度完全控制任务。本次课程设计为单位负反馈系统的校正设计,提高学生对课程的理解以及实际动手能力。 在系统的校正过程,熟练作用软件MATLAB 进行仿真操作,能够更加清晰看出系统 校正前与校正后的变化过程。 MATLAB 的名称源自Matrix Laboratory,它是一种科学计算软件,专门以矩阵的形式 处理数据。MATLAB将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数, 从而被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作,而 且利用MATLAB 产品的开放式结构,可以非常容易地对MATLAB 的功能进行扩充,从 而在不断深化对问题认识的同时,不断完善MATLAB 产品以提高产品自身的竞争能力。 关键词:系统设计校正MATLAB

实例-单位反馈系统2

电气工程系 课程设计 课题:单位负反馈系统设计校正姓名: 学号: 专业: 班级: 指导教师:

任务书 一 设计目的 1. 掌握控制系统的设计与校正方法、步骤。 2. 掌握对系统相角裕度、稳态误差和剪切频率以及动态特性分析。 3. 掌握利用MATLAB 对控制理论内容进行分析和研究的技能。 4. 提高分析问题解决问题的能力。 二 设计要求 设单位反馈随动系统固有部分的传递函数为(ksm2) ) 20s )(5s )(4s (s ) 10s (160)s (G 0++++= 1、画出未校正系统的Bode 图,分析系统是否稳定。 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的校正装置,使系统达到下列指标: (1)在单位斜坡信号作用下,系统的稳态误差系数Kv=500 (2)超调量Mp<55%,调节时间Ts<0.5秒。 (3)相角稳定裕度在Pm >20°, 幅值定裕度Gm>30。 4、分别画出校正前,校正后和校正装置的幅频特性图。 5、给出校正装置的传递函数。计算校正后系统的剪切频率Wcp 和-π穿频率Wcg 。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。

目录 第一章校正前系统分析 (5) 1.1 校正前系统分析 (5) 1.2 系统稳定性 (6) 1.3 根轨迹图 (7) 第二章系统的校正 (9) 2.1 校正的概念 (9) 2.2 系统的校正 (9) 2.3 校正后系统检验 (14) 2.4 校正后系统仿真 (16) 第三章课程设计小结 (18) 致谢 参考文献

单位负反馈系统超前校正——自动控制原理课程设计

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 自动控制原理课程设计报告设计题目:单位负反馈系统的校正设计 单位(二级学院):自动化学院 学生姓名: 专业:自动化 班级: 学号: 指导教师:李鹏华 设计时间:2013 年12 月

目录 一、自动控制原理课程设计题目 ......................... 错误!未定义书签。 二、摘要.................................................................. 错误!未定义书签。 三、未校正系统的分析 ......................................... 错误!未定义书签。 1.系统分析 ...................................................... 错误!未定义书签。 2.单位阶跃信号下系统输出响应 (3) 3.未校正系统伯德图 (4) 四、系统校正设计 (5) 1.校正方法 (5) 2.设计总体思路 (5) 3.参数确定 (5) 4.校正装置 (6) 5.校正后系统 (7) 6.验算结果 (7) 五、结果 (8) 1.校正前后阶跃响应对比图 (8) 2.结果分析 (8) 六、总结体会.......................................................... 错误!未定义书签。 七、参考文献 (10) 八、附录 (10) 1.Matlab程序 (10)

一、自动控制原理课程设计题目 题目:单位负反馈系统的校正设计 原理: 设单位负反馈系统的开环传递函数为: ))101.0)(1(/()(++=s s s K s G 用相应的频率域校正方法对系统进行校正设计,使系统满足如下动态和静态性能: 1)相角裕度0 45≥γ; 2)在单位斜坡输入下的稳态误差为0625 .0≥ss e ; 3)系统的穿越频率大于2rad/s 。 要求: 1)分析设计要求,说明校正的设计思路(超前校正,滞后校正或滞后- 超前校正); 2)详细设计(包括的图形有:校正结构图,校正前系统的Bode 图,校 正装置的Bode 图,校正后系统的Bode 图); 3)用Matlab 编程代码及运行结果(包括图形、运算结果); 4)校正前后系统的单位阶跃响应图。

单位负反馈系统的校正设计课程设计

题目单位负反馈系统的校正设计学院自动化学院 专业自动化 班级 姓名 指导教师 年月日

课程设计任务书 学生姓名: 专业班级: 自动化1103班 指导教师: 工作单位: 自动化学院 题 目: 单位负反馈系统的校正设计 初始条件: 已知某控制系统结构如图所示,要求设计校正环节Gc (s ),使系统对于阶跃输入 的稳态误差为0,使系统校正后的相角裕量045≥γ,幅值裕量dB h 10≥. 要求完成的主要任务: (1) 用MATLAB 作出原系统的系统伯德图,计算系统的幅值裕度和相位裕度。 (2) 在系统前向通路中插入一校正装置,确定校正网络的传递函数,并用MATLAB 进行验证。 (3) 用MATLAB 画出未校正和已校正系统的根轨迹。 (4) 对上述任务写出完整的课程设计说明书,说明书中必须进行原理分析,写清楚 分析计算的过程及其比较分析的结果,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 时间安排: 1、课程设计任务书的布置,讲解 (半天) 2、根据任务书的要求进行设计构思。(半天) 3、熟悉MATLAB 中的相关工具(一天) 4、系统设计与仿真分析。(三天) 5、撰写说明书。 (二天) 6、课程设计答辩(半天) 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

目录 摘要 (1) 1.总体思路 (2) 2.用MATLAB作出原系统的系统伯德图和根轨迹 (2) 3.利用超前校正 (5) 4.利用滞后校正 (8) 5.仿真及结果 (13) 6、心得体会 (15)

摘要 MATLAB是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。在通常情况下,可以用它来代替底层编程语言,如C和C++ 。在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。 如果系统设计要求满足性能指标属频域特征量,则通过采用频域校正方法。在开环系统对数频率特性基础上,满足稳态误差、开环系统截止频率和相角裕度等要求出发,进行串联校正的方法。在bode图上虽然不能严格定量的给出系统的动态性能,但是却能方便的根据频域指标确定校正装置的形式和参数,特别是对校正系统的高频特性有要求时,采用频率校正较其他方法更方便。串联滞后校正-超前校正,其基本原理是利用滞后超前网络的超前部分来郑大系统的相角裕度,同时利用滞后部分来改善系统的稳定性能。 关键词:控制系统,校正,传递函数,频率,MATLAB

单位负反馈系统的校正装置设计

课 程 设 计 题 目: 单位负反馈系统的校正装置设计 初始条件: 已知某控制系统结构如图所示,要求设计校正环节Gc (s ),使系统对 于阶跃输入的稳态误差为0,使系统校正后的相角裕量045≥γ,幅值裕量 dB h 10≥. 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明 书撰写等具体要求) (1) 用MATLAB 作出原系统的系统伯德图,计算系统的幅值裕度和相位 裕度。 (2) 在系统前向通路中插入一校正装置,确定校正网络的传递函数,并 用MATLAB 进行验证。给出所设计的校正装置电路图,并确定装置的各参数值。

(3)用MATLAB画出未校正和已校正系统的根轨迹。 (4)用Matlab对校正前后的系统进行仿真分析,画出阶跃响应曲线,计算其时域性能指标。 (5)对上述任务写出完整的课程设计说明书,说明书中必须进行原理分析,写清楚分析计算的过程及其比较分析的结果,并包含Matlab 源程序或Simulink仿真模型,说明书的格式按照教务处标准书写。 时间安排: 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 1 设计题目 (1) 2 要求完成的主要任务 (1) 3 设计的总体思路 (1) 4 用MATLAB作出原系统的系统伯德图和根轨迹 (2) 5 超前校正过程 (5) 6 滞后校正过程 (8) 7 用simulink仿真 (13) 8 设计总结 (16) 参考文献 (17)

摘要 在科技高速发展的今天,自动控制技术已广泛运用于制造,农业,交通,航空航天等众多部门,极大的提高了社会劳动生产率,改善了人们的劳动环境,丰富和提高了人民的生活水平,在今天的社会生活中,自动化装置已经无所不在,为人类文明的进步作出了重要贡献,自动控制系统的课程设计就是检验我们学过知识扎实程度的好机会,也让我们的知识体系更加系统,更加完善。在不断学习新知识的基础上得到动手能力的训练,启发新思维及独立解决问题的能力,提高设计、装配、调试能力。 如果系统设计要求满足性能指标属频域特征量,则通过采用频域校正方法。在开环系统对数频率特性基础上,满足稳态误差、开环系统截止频率和相角裕度等要求出发,进行串联校正的方法。在bode图上虽然不能严格定量的给出系统的动态性能,但是却能方便的根据频域指标确定校正装置的形式和参数,特别是对校正系统的高频特性有要求时,采用频率校正较其他方法更方便。串联滞后校正-超前校正,其基本原理是利用滞后超前网络的超前部分来郑大系统的相角裕度,同时利用滞后部分来改善系统的稳定性能。 关键词:控制系统,校正,传递函数,频率,幅值相

单位负反馈系统校正——自动控制原理课程设计

目录 1.设计题目 ............................................................ 错误!未定义书签。 2.摘要 (2) 3、未校正系统的分析 (3) 3.1.系统分析 (3) 3.2.单位阶跃信号下系统输出响应 (4) 4、系统校正设计 (7) 4.1.校正方法 (7) 4.2.设计总体思路 (7) 4.3.参数确定 (8) 4.4.校正装置 (9) 4.5.校正后系统 (10) 4.6.验算结果 (11) 5、结果 (13) 5.1.校正前后阶跃响应对比图 (13) 5.2.结果分析 (14) 6、总结体会 (15) 7、参考文献 (16)

1.设计题目 设单位负反馈系统的开环传递函数为: ))101.0)(1(/()(++=s s s K s G 用相应的频率域校正方法对系统进行校正设计,使系统满足如下动态和静态性能: 1)相角裕度045≥γ ; 2)在单位斜坡输入下的稳态误差为0625 .0≥ss e ; 3)系统的穿越频率大于2rad/s 。 要求: 1)分析设计要求,说明校正的设计思路(超前校正,滞后校正或滞后- 超前校正); 2)详细设计(包括的图形有:校正结构图,校正前系统的Bode 图,校 正装置的Bode 图,校正后系统的Bode 图); 3)用Matlab 编程代码及运行结果(包括图形、运算结果); 4)校正前后系统的单位阶跃响应图。

2.摘要 用频率法对系统进行超前校正的实质是将超前网络的最大超前角补在校正后系统开环频率特 性的截止频率处,提高校正后系统的相角裕度和截止频率,从而改善系统的动态性能。为此,要求校正网络的最大相位超前角出现在系统的截止频率处。只要正确地将超前网络的交接频率1/aT和1/T设置在待校正系统截止频率Wc的两边,就可以使已校正系统的截止频率Wc和相裕量满足性能指标要求,从而改善系统的动态性能。串联超前校正主要是对未校正系统在中频段的频率特性进行校正。确保校正后系统中频段斜率等于-20dB/dec,使系统具有45°~60°的相角裕量。以加快系统的反应速度,但同时它也削弱了系统抗干扰的能力。在工程实践中一般不希望系数a值很大,当a=20时,最大超前角为60°,如果需要60°以上的超前相角时,可以考虑采用两个或两个以上的串联超前校正网络由隔离放大器串联在一起使用。在这种情况下,串联超前校正提供的总超前相角等于各单独超前校正网络提供的超前相角之和。 2. abstract With the frequency method of the system is the essence of advanced correction will lead the network maximum lead angle compensation at cut-off frequency after correction of opened loop frequency characteristics of the system, improve the correction system phase margin and cut-off frequency, so as to improve the dynamic performance of the system. To this end, the maximum phase lead angle of the network is required to appear at the cut-off frequency of the system. As long as the right on both sides of the advance network handover frequency 1/aT and 1/T set the cutoff frequency of the Wc in the correction system, can make the cutoff frequency Wc has correction system and phase margin meet performance requirements, so as to improve the dynamic performance of the system. Series lead correction is to correct the frequency characteristic of the system in the middle frequency band. Ensure that the corrected system of intermediate frequency is equal to the slope of 20dB/dec, the system has 45 degrees to 60 degrees of phase margin. In order to speed up the system's reaction speed, it also weakens the ability of the system to resist interference. Great general hope coefficient a value in engineering practice, when a = 20, the maximum lead angle is 60 degrees, if you need to advance angle above 60 degrees, you can consider using two or more than two series leading correction network by isolation amplifier is connected in series with the use of. In this case, series leading correction is equal to the total advance angle to provide separate lead network and provide advance angle. 关键词:串联超前校正; 动态性能; 相角裕度 Key words: Series lead correction ;Dynamic performance ;Phase margin

matlab关于控制的设计单位负反馈的校正

电子信息工程 课程设计 课题:单位负反馈系统设计校正 姓名: 学号: 专业:自动化 班级: 2 班 指导教师:张朝阳

任务书 一、 设计目的 1、 掌握控制系统的设计与校正方法、步骤。 2、 对系统BODE 图和根轨迹图的绘制与分析。 3、掌握利用MATLAB 对控制理论内容进行分析和研究的技能。 4、提高分析问题解决问题的能力。 二、设计要求 设单位反馈随动系统固有部分的传递函数为 )101.0)(11.0()(++= s s s K s G k 1、画出未校正系统的Bode 图,分析系统是否稳定 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标 (1)静态速度误差系数K v ≥100s -1; (2)相位裕量γ≥30° (3)幅频特性曲线中穿越频率ωc ≥45rad/s 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 8、在SIMULINK 中建立系统的仿真模型。

第一章校正前系统分析 (5) 1.1 BODE图的绘制与分析 (5) 1.3 根轨迹图的绘制与分析 (7) 第二章系统的校正 (9) 2.1 校正的概念 (9) 2.2 系统的校正 (9) 2.3 校正后系统检验 (14) 2.4 校正后系统仿真 (16) 第三章校正后系统分析 (18) 第四章课程设计小结………………………………………… 参考文献

Matlab控制系统传递函数模型

MATLAB及控制系统 仿真实验 班级:智能0702 姓名:刘保卫 学号:06074053(18)

实验四控制系统数学模型转换及MATLA实现 一、实验目的 熟悉MATLAB的实验环境。 掌握MATLAB建立系统数学模型的方法。 二、实验内容 (注:实验报告只提交第2题) 1、复习并验证相关示例。 (1)系统数学模型的建立 包括多项式模型(TranSfer FunCtiOn,TF),零极点增益模型(ZerO-POIe,ZP), 状态空间模型 (State-SPace,SS ); (2)模型间的相互转换 系统多项式模型到零极点模型(tf2zp ),零极点增益模型到多项式模型(zp2tf ), 状态空间模 型与多项式模型和零极点模型之间的转换(tf2ss,ss2tf,zp2ss …); (3)模型的连接 模型串联(SerieS ),模型并联(parallel ),反馈连接(feedback) 2、用MATLAB故如下练习。 x+2 :6{J?=——;----- (1)用2种方法建立系统?-的多项式模型。 程序如下: %?立系统的多项式模型(传递函数) %方法一,直接写表达式 s=tf('s') GSI=(S+2)∕(s^2+5*s+10) %方法二,由分子分母构造 num=[1 2]; den=[1 5 10]; Gs2=tf( nu m,de n) figure PZmaP(GS1) figure PZmaP(GS1) grid On 运行结果: 易知两种方法结果一样 Tran Sfer fun Cti on: Tran Sfer fun Cti on:

S + 2 s^2 + 5 S + 10 Tran Sfer fun Cti on: S + 2 s^2 + 5 S + 10 ^)=1°

相关文档
最新文档