清洁煤燃烧器的技术

清洁煤燃烧器的技术
清洁煤燃烧器的技术

清洁煤燃烧器的技术

摘要循环流化床燃烧技术是国际80年代在锅炉上得到成功应用的清洁煤燃烧技术。提高可靠性、经济性和文明生产程度贯穿了循环流化床燃烧技术的发展历史。围绕分离器的形式和整体布置,循环床燃烧技术已经历了三代的发展,作者认为冷却型紧凑布置的循环床燃烧技术是未来的发展方向。

关键词循环流化床锅炉分离器发展方向

引言

循环流化床锅炉(CFB)燃烧技术是一项近20年来发展起来的燃

煤技术。它具有燃料适应性广、燃烧效率高、氮氧化物排放低、负荷调节比大和负荷调节快等突出优点。自循环流化床燃烧技术出现以来,循环流化床锅炉已在世界范围内得到广泛的应用,大容量的循环流化床电站锅炉已被发电行业所接受。世界上最大容量的250MW循环流化床锅炉已在1997年投运,多台200~250MW大容量循环流化床锅炉也已投产。我国集中于中型CFB的研制与开发,目前已完全商业化。到1998年底,我国已投运及订货的35t/h以下的循环流化床锅炉共计约600台,已开始走向电力市场,并且开始大型CFB的研制工作。

主循环回路是循环流化床锅炉的关键,其主要作用是将大量的高温固体物料从气流中分离出来,送回燃烧室,以维持燃烧室的稳定的流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应,以提高燃烧效率和脱硫效率。主循环回路不仅直接影响整个循环流化床锅炉的总体设计、系统布置,而且与其运行性能有直接关系。分离器是主循环回路的主要部件,因而人们通常把分离器的形式,工作状态作为循环流化床锅炉的标志。

1 循环流化床的发展现状

气固分离器是CFB系统的核心部件之一。其之所以关键,从运行机理上来讲,只有当分离器完成了含尘气流的气固分离并连续地把收

集下来的物料回送至炉膛,实现灰平衡及热平衡,才能保证炉内燃烧的稳定与高效;就系统结构而言,分离器设计、布置得是否合理直接关系着锅炉系统制造、安装、运行、维修等各方面的经济性与可靠性。虽然分离器是CFB必不可少的关键环节,但它又具有相对的独立性和灵活性,在结构与布置上回旋余地很大。从某种意义上讲,CFB锅炉燃烧技术的发展也取决于气固分离技术的发展,分离器设计上的差异标志着不同的CFB技术流派。

1.1 第一代循环流化床燃烧技术——绝热旋风分离循环流化床锅炉

旋风分离器在化工、冶金等领域具有悠久的使用历史,是比较成熟的气固分离装置,因此在CFB领域应用最多。

德国Lurgi公司较早地开发出了采用保温、耐火及防磨材料砌装成筒身的高温绝热式旋风分离器的CFB锅炉[1]。分离器入口烟温在850℃左右。应用绝热旋风筒作为分离器的循环流化床锅炉称为第一代循环流化床锅炉,目前已经商业化。Lurgi公司、Ahlstrom公司、以及由其技术转移的Stein、ABB-CE、AEE、EVT等公司设计制造的循环流化床锅炉均采用了此种形式。这种分离器具有相当好的分离性能,使用这种分离器的循环流化床锅炉具有较高的性能。据统计,目前除中国大陆外,有78%的CFB全部采用了高温绝热旋风分离器,但这种分离器也存在一些问题,主要是旋风筒体积庞大,因而钢耗较高,锅炉造价高,占地较大,旋风筒内衬厚、耐火材料及砌筑要求高、用量大、费用高,见图1;启动时间长、运行中易出现故障;密封和膨胀系统复杂;尤其是在燃用挥发份较低或活性较差的强后燃性煤种时,旋风筒内的燃烧导致分离后的物料温度上升,引起旋风筒内或回料腿回料阀内的超温结焦。这些问题在我国的实际生产条件下显得更为突出。

Circofluid的中温分离技术在一定程度上缓解了高温旋风筒的问题,炉膛上部布置了较多数量的受热面,降低了旋风筒入口处的烟

气温度和体积,旋风筒的体积和重量有所减小,因此相当程度上克服了绝热旋风筒技术的缺陷,使其运行可靠性提高,但炉膛上部布置有过热器和高温省煤器等,需要采用塔式布置,炉膛比较高,钢耗量大,使锅炉造价提高。同时,它的CO排放及检修问题在一定程度上限制了该技术的发展。

1.2 第二代CFB燃烧技术——水(汽)冷分离循环流化床锅炉

为保持绝热旋风筒循环流化床锅炉的优点,同时有效地克服该炉型的缺陷,Foster Wheeler公司设计出了堪称典范的水(汽)冷旋风分离器[2],其结构如图2。应用水(汽)冷分离器的循环流化床锅炉被称为第二代循环流化床锅炉。该分离器外壳由水冷或汽冷管弯制、焊装而成,取消绝热旋风筒的高温绝热层,代之以受热面制成的曲面及其内侧布满销钉涂一层较薄厚度的高温耐磨浇注料。壳外侧覆以一定厚度的保温层,内侧只敷设一薄层防磨材料,见图3。水(汽)冷旋风筒可吸收一部分热量,分离器内物料温度不会上升,甚至略有下降,较好地解决了旋风筒内侧防磨问题。该公司投运的循环流化床锅炉从未发生回料系统结焦的问题,也未发生旋风筒内磨损问题,充分显示了其优越性。这样,高温绝热型旋风分离循环床的优点得以继续发挥,缺点则基本被克服。

当然,任何一种设计都难以尽善尽美,FW式水(汽)冷旋风分离器的问题是制造工艺复杂,生产成本过高,缺乏市场竞争力,这使其商业竞争力下降,通用性和推广价值受到了限制[3]。

1.3 水冷方形分离器

为克服汽冷旋风筒制造成本高的问题,芬兰Ahlstrom公司创造性地提出了Pyroflow Compact设计构想[4,5], Pyroflow Compact

型循环流化床锅炉结构简图。

Pyroflow Compact循环床锅炉采用其独特专利技术的方形分离器,分离器的分离机理与圆形旋风筒本质上无差别,壳体仍采用FW

式水(汽)冷管壁式,但因筒体为平面结构而别具一格。这就是第三代循环流化床锅炉。它与常规循环流化床锅炉的最大区别是采用了方形的气固分离装置,分离器的壁面作为炉膛壁面水循环系统的一部分,因此与炉膛之间免除热膨胀节。同时方形分离器可紧贴炉膛布置从而使整个循环床锅炉的体积大为减少,布置显得十分紧凑。此外,为防止磨损,方形分离器水冷表面敷设了一层薄的耐火层,这使得分离器起到传热表面的作用,并使锅炉启动和冷却速率加快。

从国内许多已投入运行的流化床锅炉来看,普遍都存在有床内的燃烧工况组织不好、床温偏高以及旋风分离器内CO和残碳后燃造成数十度甚至上百度温升的现象,加上流化床中的结焦温度比较低,因此结焦的可能在运行中始终是一个很大的隐患。如果采用有冷却的旋风筒,分离器内的温度就可以得到控制,从而消除了结焦的危险。

水冷或汽冷的方形旋风分离器与不冷却的钢板卷成的旋风筒制造成本基本相当,考虑到前者所节省的大量的保温和耐火材料,最终的实际成本有所下降。此外它还减少了散热损失,提高了锅炉效率。另外由于保温厚度的减少,可以提高启停速度,启停过程中床料的温升速率不再取决于耐火材料,而主要取决于水循环的安全性,使得启停时间大大缩短。以一台高温绝热旋风筒的75t/h锅炉为例,采用两根油枪床下点火,一般设计每小时耗油量为600kg左右,启动时间

8h以上,如果将分离器做成汽冷或水冷,只要2~3h就足够了,这样每次启动都可以节省2~3t的轻柴油。

2 循环流化床锅炉的发展方向分析

Ahlstrom公司的方形分离器紧凑型设计推出之后,立即引起了广泛的重视,人们对该技术一直持观望态度。但经过5年的多台锅炉运行实践,已被人们所接受,其标志为:在1999年5月第15届国际流化床燃烧会议上,该专利持有人Timo荣获唯一的ASME贡献奖。Foster wheeler公司和Ahlstrom公司合并后即将方形分离器循环流

化床锅炉作为大型化方向予以重点发展。时至今日,Foster Wheeler 公司采用方形分离器技术的紧凑型循环流化床锅炉已有68t/h至

410t/h多台锅炉成功运行,150MW机组正在建设中,300MW和600MW 容量的紧凑布置CFB已经完成设计。图5给出了方形分离器循环流化床锅炉单台容量的发展历史。采用方形分离器的紧凑型布置循环床锅炉的市场份额逐年增加,该技术在Foster Wheeler的定单总数与其它形式的技术比较。

目前各循环流化床锅炉制造厂家和研究机构都十分重视循环流

化床锅炉的大型化,方形分离器在大型化方面具有很大的优势。1993年清华大学在实验室对国外方形分离器专利进行了验证实验,初步实验发现其分离效率并非如国外公司宣传的那么好,特别是在200~400mm的粒径范围存在一个低效区。经分析表明这个低效区是由于分离器进口颗粒加速不良造成的,为此改进了入口段设计,实验表明此改进是完全正确的,这个改进最终取得了中国专利——“水冷异型分离器”。为进一步优化分离器的效果和验证改进可靠性,在实验室冷态实验、热态实验的基础上应用到75t/h完善化循环流化床锅炉上,并取得成功。

该分离器是四周用膜式水冷壁组成的方形分离器,但烟气入口和水冷壁管弯制成圆弧形段,这一结构使分离器的造价降低,有效地克服了绝热旋风筒的后燃结焦问题和圆形汽(水)冷旋风筒的制造成本

问题,被认为达到了90年代国际先进水平。采用方形分离器的循环流化床锅炉市场发展情况。

清华大学等单位已对几种不同当量尺寸的方形分离器进行了一

些卓有成效的试验和较为深入的研究,取得了许多有价值的结果[6]。对这些成果进行较全面的分析、整理和比较,可以更多的了解方形分离器的放大性能,有助于开发研制大型化分离器和解决循环流化床锅炉大型化所面临的难题。这些研究结果表明,方型分离器的放大性能

要优于圆形旋风分离器,至少绝不逊于后者,特征尺寸在10m以内的方型分离器大型化的前景相当乐观[7]。清华大学在该方面的研究成果得到国际同行的充分肯定和高度评价,在15届FBC国际会议上被评为最佳论文[8]。采用方形分离器的220t/h、410t/h循环流化床锅炉设计已完成。

3 结论

采用第三代技术的循环流化床锅炉除了具有常规循环流化床锅

炉的优点外,还具有结构紧凑、占地面积小、钢耗量小、制造成本低、分离器内无磨损等突出优点,因此第三代循环流化床锅炉将成为燃烧技术发展的主流,并且在大型化方面将发挥其优势。

煤炭清洁利用技术发展方向及作用通用版

安全管理编号:YTO-FS-PD404 煤炭清洁利用技术发展方向及作用通 用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

煤炭清洁利用技术发展方向及作用 通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 所谓煤炭清洁利用技术就是指以煤炭洗选为源头、以煤炭高效洁净燃烧为先导、以煤炭气化为核心、以煤炭转化和污染控制为重要内容的技术体系,主要包括煤炭加工、煤炭高效洁净燃烧和转化等技术手段。近年来,随着我国经济的快速发展.煤炭的产生量和消费量节节攀升。我国已经成为全球最大的煤炭生产国和煤炭消费国。因此, 发展煤炭清洁利用技术,对发挥我国煤炭资源优势、提高能源效率、加强环境保护、实现可持续发展具有重要意义。 1.煤炭加工技术 煤炭加工技术主要包括洗选煤技术、型煤技术以及水煤浆技术等。 1.1选煤技术 我国煤炭工业实际生产中往往采用物理选煤和化学选煤两大常用技术,目的是为了筛除煤中的矿物质和燃烧后造成大气污染的成分,比如常见的煤炭脱硫工艺,但是多数情况

煤气化—煤炭高效清洁利用的核心技术

煤气化—煤炭高效清洁利用的核心技术 摘要:煤气化是现代煤化工发展的龙头技术,是发展现代煤化工的基础。从2004年开始,“国家重大基础研究发展计划”(973计划)先后两次立项,开展大规模高效气流床煤气化技术的基础研究。通过消化、吸收和集成创新,我国在煤气化技术上已取得了重要进展,形成了多喷嘴对置式水煤浆气化技术、SE粉煤气化技术等技术。我国煤气化技术的基础研究和技术开发均进入了国际先进行列,部分技术还处于国际领先水平。 关键词:煤气化;气流床;国家重大基础研究发展计划 煤是一定地质年代的植物埋藏在水底或泥沙中,处于空气不足的条件下,在漫长的地质年代中经历复杂的生物化学和物理化学变化,逐步形成的固体可燃矿物。从化学组成的角度看,煤中主要元素有碳、氢、氧、氮、硫以及灰分,煤灰组成极为复杂,以矿物质为主,不同区域、不同年代的煤,其元素组成与灰分是完全不同的,已经发现,煤中的矿物质和有害元素多达数十种。 煤炭是我国的基础能源和战略原料,勘探表明,我国化石能源(煤炭、石油、天然气)储量中,煤所占的比例超过90%;在我国一次能源消费中,煤炭也占到70%以上。据统计2013年我国煤炭产量达到37亿吨,煤炭消耗量占到全世界煤炭消费量的50.2%。高效清洁的利用煤炭资源,对保障国家能源安全,促进生态文明建设,保障国民经济和社会可持续科学发展意义重大。 1 何谓煤炭气化? 煤气化是指煤在一定的高温、压力下与氧气、水蒸气等进行化学反应,将煤中的碳、氢、氧转化成CO、H2为主要组成的混合气体的过程,同时伴随着煤渣(或煤灰)的产生。如下图1所示。 煤气化与煤燃烧不同,燃烧是煤中可燃的碳、氢等元素与氧气进行完全燃烧反应的过程,目的主要利用煤炭蕴涵的化学能,或者说燃烧是利用热能为主。而煤气化是碳、氢元素进行部分氧化(也可称为部分燃烧的过程),气化的目的是利用煤中的C、H元素,生成可以进一步加工利用的气体,即CO和H2。与煤燃烧相比,煤气化具有高效、清洁的优点,例如可通过后续成熟技术将硫化氢转化为硫磺。 2 煤炭气化的重要性 煤气化是煤炭清洁高效转化的核心,是发展煤基大宗化学品(化肥、甲醇、烯烃、芳烃、乙二醇等)、煤基清洁燃料合成(油品、天然气等)、先进的IGCC 发电、多联产系统、制氢、燃料电池、直接还原炼铁等过程工业的基础。煤气化不仅是现代煤化工的基础,在炼油、电力和冶金行业也有广泛应用,是这些行业的共性关键技术。

煤炭清洁利用技术发展现状

煤炭清洁利用技术发展现状 所谓煤炭清洁利用技术就是指以煤炭洗选为源头、以煤炭高效洁净燃烧为先导、以煤炭气化为核心、以煤炭转化和污染控制为重要内容的技术体系,主要包括煤炭加工、煤炭高效洁净燃烧和转化等技术手段。 近年来,随着我国经济的快速发展.煤炭的产生量和消费量节节攀升。我国已经成为全球最大的煤炭生产国和煤炭消费国。因此,发展煤炭清洁利用技术,对发挥我国煤炭资源优势、提高能源效率、加强环境保护、实现可持续发展具有重要意义。 一、我国动力煤清洁利用现状分析 1、大型发电集团动力煤清洁使用的现状 近年来,随着我国经济迅猛发展.大型发电集团新增了大量的发电机组,电力供应能力得到了大幅度提高,全社会用电的保障性大为改善,发电装机容量的富余程度大大提高。同时,在国家环保政策的引导下,大型发电集团关停了一大批能效和排放较差的燃煤发电机组,新建了很多国际上最为先进的燃煤发电机组,有效地改善了我国燃煤发电对环境的不良影响,一些新的燃煤发电机组的排放已经接近了燃气发电机组的排放水平,成效十分显著。大型发电集团是我国动力煤使用的绝对主力,其均为国有企业,有能力更有责任在动力煤的清洁使用上高标准严要求,全面严格落实国家有关法律法规和相关政策。但应该认识到:一方面,我国大型发电集团动力煤使用的环保治理还存在着区域性的不平衡问题,一些经济发达地区的治理已经达到了较高的水平,但一些经济欠发达地区或边远地区的环保治理还没有得到足够重视,治理水平相对落后。大型发电集团在动力煤清洁利用方面目前存在的问题主要表现为: (1)部分燃煤电厂进厂煤还是采用汽车运输方式。 (2)脱硫脱硝尚未全面实现与发电同步运行。 (3)气体排放和灰水排放需进一步深化治理。随着科技的进步和社会对环境要求的提高,以往未被认识和重视的一些污染物质的排放,需要进行治理。如:磷(P)、氟(F)、氯(c1)、汞(Hg)、砷(As)、铍(Be)、镉(Cd)、硒(Se)、铅(Pb)、锰(Mn)、铬(Cr)、镭(Ra)、铀(u)、镍(Ni)、钒(V)、铋(Bi)等有毒有害微量元素的排放。因此,解决环保问题还远未终及。 (4)燃煤发电形式还很单一,更多燃煤洁净发电技术尚未得到应用。目前国际上普遍认可的燃煤洁净发电技术主要有:常压循环流化床(CFB)、整体煤气化联合循环(IGCC)、增压循环流化床联合循环(PFBC)、常规煤粉炉加烟气脱硫脱硝(PC+FGD+SCR)技术等。有些技术在我国的实际应用还很少。 (5)很多大型燃煤锅炉设计煤种等级过低。从宏观上看,现在我国很多大型燃煤锅炉设计煤种的等级过低。这与我国煤炭生产和市场供给长期处于较落后状态有着直接的关系。由于煤炭生产加工长期处于落后的状况,大量高灰分高含矸的煤炭均直接进入市场销售,动力煤使用企业只能从这些低质煤炭中采购和使用。因而,燃煤锅炉的设计煤种也只能依据实际可采 购煤炭的质量情况来确定。燃煤锅炉设计煤种的选定.对其生产运行起着决定性作用。理论上,锅炉最佳使用煤质与设计煤质基本一致或接近。因此,选择低等级煤炭作为锅炉设计煤种将产生如下结果:锅炉的建设成本、运行成本均会较高,设备使用寿命缩短;大量低等级动力煤的运输造成了大量的运输能源损失;误导动力煤市场对高品质煤的真正需求.延误动力煤深加工的良性发展。 2 、动力煤汽车运输的环境污染

中国煤炭清洁高效利用之路

中国煤炭未来究竟路在何方 2017-12-19 亚太地区煤炭交易中心 倪维斗,中国工程院院士,清华大学热能工程系教授,在2017国际工程科技发展战略高端论坛上发表演讲——《中国煤炭清洁高效利用之路》,提出:未来,单一技术和技术组合难以解决能源困局,系统整合和战略规划才是关键。 煤炭的贡献不可忽视 以煤为主是符合我国资源禀赋的不可变化的事实,其他替代能源只能是辅助能源,而不能成为主力。 中国的发展,尤其是改革开放以来巨大的进步,煤起了巨大的作用。而今,由于环境的影响,尤其是PM2.5雾霾的污染,人们把罪魁祸首指向煤的利用,当年的功臣被妖魔化,变成老鼠过街人人喊打,变成飞鸟尽,良弓藏,狡兔死,走狗烹。把屁股板全打在煤身上,实际上这是很冤枉的,不能真正解决问题。 我国这么多的人口,都希望过现代化的生活,社会要不断发展,技术在不断进步,能源需求越来越大,2016年我国能源消耗总量已达43.6亿吨标准煤,在我国缺油、少气的资源条件下,靠什么能源来满足?

除煤炭外,其他能源潜力不大 天然气 现在很多人把希望寄托在天然气身上,中俄燃气(中国和俄罗斯的天然气合作供应协议)380亿立方米,相当于2700万吨标

准煤;我国的天然气储量为3600亿立方米,相当于2.6亿吨标准煤,已是极限。目前天然气的用量是煤的1/20,远期来看,天然气的用量仍将只是煤的1/15。 核电 2016年的装机量是3364万千瓦,年发电量为2133亿千瓦时,占全部发电总量的3.5%。规划2020年装机5800万千瓦,到2030年装机1.2亿千瓦,发电8000亿千瓦时,折合来看是1亿标准煤。铀资源的贫乏,100万千瓦机组建堆时首次要339吨铀,每年还要补充15吨铀235和铀238,铀进口依存度已超过90%。核电不能成为我国能源发展主要方式,只能是补充方式。

第二章 清洁燃料技术

第二章清洁燃料技术,课后习题答案 1.列举燃料完全燃烧的需要的条件,解释3T的含义? 答: ①空气条件,通入空气的量要适宜,保证燃料能够充分的燃烧;②温度条件,温度要适合燃料的充分燃烧;③时间条件以及燃料和空气的混合条件,燃烧时间必须充分,燃料要充分混合。“3T”是指温度(Temperature)、时间(Time)和湍流(Turbulence)。 2.烟气中硫氧化物主要以哪种形式存在? 答: 烟气中,硫主要以SO2,SO3,的形式存在,氮主要以NO NO2的形式存在 3.有效降低氮氧化物产生的途径是什么? 答: 【关键词】氮氧化物;低NOx燃烧技术;机理 氮氧化物是造成大气污染的主要污染源之一。通常所说的氮氧化物NOx有多种不同形式:N2O、NO、NO2、N2O3、N2O4和 N2O5,其中NO和NO2是主要的大气污染物。我国氮氧化物的排放量中70%来自于煤炭的直接燃烧。 研究表明,氮氧化物的生成途径[2]有三种:(1)热力型NOx,指空气中的氮气在高温下氧化而生成NOx;(2)快速型NOx,指燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成NOx;(3)燃料型NOx,指燃料中含氮化合物在燃烧过程中进行热分解,继而进一步氧化而生成NOx;在这三种形式中,快速型NOx所占比例不到5%;在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx主要通过燃料型生成途径而产生。控制NOx排放的技术指标可分为一次措施和二次措施两类,一次措施是通过各种技术手段降低燃烧过程中的NOx 生成量;二次措施是将已经生成的NOx通过技术手段从烟气中脱除。 1.热力型 热力NOx的生成和温度关系很大,在温度足够高时,热力型NOx的生成量可占到NOx总量的30% ,随着反应温度T的升高,其反应速率按指数规律增加。当T<1300℃时NOx的生成量不大,而当T>1300℃时T每增加100℃,反应速率增大6~7倍。 热力型NOx的生成是一种缓慢的反应过程,是由燃烧空气中的N2与反应物如O 和OH以及分子O2反应而成的。所以,降低热力型NOx的生成主要措施如下: ①降低燃烧温度,避免局部高温。 ②降低氧气浓度。 ③缩短在高温区内的停留时间。 2.快速型 快速型NOx是在碳氢化合物燃料在燃料过浓时燃烧,燃料挥发物中碳氢化合物高温分解生成的CH自由基和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成。快速NOx在燃烧过程中的生成量很小,影响快速NOx生成的主要因素有空气过量条件和燃烧温度。 3.燃料型 燃料型NOx是由燃料中氮化合物在燃烧中氧化而成,由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800℃时就会生成燃料型NOx,它在煤粉燃烧NOx 产物中占60~80%。由于煤的燃烧过程由挥发分燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化(挥发分)和焦炭中剩余氮的氧化(焦炭)两部分组成,其中挥发分NOx占燃料型NOx大部分。 影响燃料型NOx生成的因素有燃料的含氮量、燃料的挥发分含量、燃烧过程温度、

煤炭清洁燃烧现状与展望讲解学习

一、技术概述 我国是世界耗煤第一大国,主要用于火力发电燃煤锅炉,由于大部分火电厂未对燃煤排气中的SO2、NO X采取措施脱除,因此造成对环境的污染越来越严重。目前主要有两类方式对燃煤排放气体中的SO2、NO X进行处理。 一类是在炉内通过燃烧技术的改进,降低SO2、NO X排放量,这种技术主要应用于常规燃煤发电厂,称之为煤清洁发电技术。目前已有商业应用。煤的清洁发电技术主要有:循环流化床燃烧技术(CFBC)、增压流化床燃烧联合循环技术(P FBC-CC)、整体煤气化蒸汽-燃气联合循环技术(IGCC)。 另一类是在炉后,尾部烟气中进行脱硫脱硝。采用的主要的技术和方法主要有:(一)湿法烟气脱硫技术;(二)旋转喷雾半干烟气脱硫技术;(三)炉内喷钙尾部增湿脱硫技术;(四)电子束照射法;(五)磷铵肥法;(六)活性焦法等,统称为脱硫(脱硝)技术。 二、现状及国内外发展趋势 (一)煤清洁发电技术 1、国外发展趋势 (1)国外CFBC锅炉正向大型化方向迅速发展,循环流化床锅炉的炉型较多,各家公司都有自己独特的流派,竞争很激烈。目前国外已运行的CFBC锅炉的容量等级已达到100-180MW,且技术上比较成熟并正在设计和研制200-300 MW的CFBC锅炉,1995年由法国stein公司制造的250MWCFBC锅炉的投运,其容量上已接近300MW等级。 (2)在八十年代中期国外已开始建设PFBC-CC示范电站。瑞典ABB-Car bon公司在PFBC-CC的商业化进程中处于领先地位,开发的输入热功率为200M

W的P200装置首批五套已先后在瑞典、西班牙、美国和日本的电站投入运行。首台输入功率为800MW的P800装置也正在日本Karita电站建设中。 (3)经过净化处理的合成煤气为燃料的IGCC发电系统是目前最清洁高效的燃煤发电方式。目前国外已建成工业装置5套,正在建设和计划建设的电站超过2 4座,总容量超过8200MW,首台工业装置是1972年在德国克曼电厂建成的为1 70MW机组。1994年建成的荷兰Buggenum电厂,其净效率达到43.2%,是目前效率最高的IGCC装置;1995年在美国Wabash投运的262MW机组是目前世界投运最大的IGCC装置。 各家公司面向市场,展开激烈的竞争,针对各自的技术特点,开发大型洁净煤发电装置。随着IGCC的技术发展和成熟,今后的市场需求将会增大。 CFBC、PFBC及IGCC等洁净煤燃烧技术从今后国外市场来分析,尤其在亚洲地区是有发展前途的,主要是对这些地区的环境保护有利,对改造老的电厂有利,其中CFBC技术,由于我国已做了不少工作,取得了可喜的成果,并在此基础上积极采用引进技术或技贸结合等多种方式来加大开发研制的力度,使大型化100 MW级以上的产品趋于成熟,则在21世纪前期阶段,发挥我国的地理、价格等优势,在亚洲地区可占有较大份额。 2、国内发展趋势 (1)循环流化床燃烧技术(CFBC) 我国目前CFBC锅炉容量相对较小,已有数十台几种不同流派的75t/hCFBC 锅炉(12MW)投入运行。130t/h(25MW)、220t/h(50MW)CFBC锅炉正处于设计安装阶段。国内虽已有CFBC锅炉开发和相关研究,但大型化进程仍较为缓慢,远不能满足我国电力工业发展的需要。近年来国内各锅炉制造厂以各种方式与国外厂家合作,加快大型CFBC锅炉的开发和研制,东方锅炉厂为进口的410t/ hCFBC锅炉承担部份分包任务,后又引进美国FW公司大型CFBC锅炉设计制造

我国煤炭开采技术现状及实例分析

目录 一、理论研究 (2) 二、我国煤炭开采现状 (2) 三、煤炭开采技术的发展趋势 (4) 四、煤炭开采的发展方向 (4) 五、实例分析 (5) 六、结语 (6)

我国煤炭开采技术现状及实例分析 摘要:煤炭是我国最主要的能源结构成分,在国民经济发展中起着关键作 用。煤炭开采技术作为我国一项重要的生产项目,煤炭开采技术也在不断提高,先进的开采技术不仅能提高媒体开采效率,也能降低煤炭生产安全事故的发生率,因此煤炭开采技术成为了人们关注和研究的热点。随着我国煤炭工业的快速发展,我国在煤炭机械化开采技术及装备的研发方面做了大量投入,煤炭机械化在开采技术及开采装备方面都有了很大提高,在很多技术难关上都取得了很大的突破,煤炭工业整体技术水平进步越来越快。煤炭开采具有技术结构多元化和发展迅速等特点。 据统计,我国2010年一次能源生产和消费结构中,煤炭的比重分别为77.4%和68.6%,煤炭在当前甚至是将来相当长时期内仍将是我国的主体能源。随着煤炭科技的发展,我国的煤炭开采也将不断地向着安全、高效、高利用和绿色开采发展。在煤炭开采技术发展过程中,最重要的两种技术分别是支炉技术和开采技术,这两种技术缺一不可,共同推动着煤炭开采技术的发展。 本文以我国煤炭开采技术为中心展开,阐述了我国煤矿开采技术的现状,分析了煤炭开采技术的发展趋势,提出了可行的创新发展措施,具有一定的借鉴价值。 关键词:煤炭开采技术;现状;发展;实例分析 一、理论研究 1、松动圈理论 天然岩体是一种特殊的非均质非线性材料,在各向应力作用下,岩体处于长期的平衡状态。在地质岩体内开挖巷道,围岩处于近似的二向应力状态,应力出现重分布,直至达到另一个平衡状态为止。在此期间巷道围岩内部出现一个破裂区,通常称为松动圈。董方庭教授提出的松动圈理论,为我国煤矿巷道的开挖和支护设计提供了很好的依据。 2、关键层理论 通常采煤工作面顶板分三个岩层:垮落带、裂隙带和缓沉带。钱鸣高院士基于理论分析和众多的实践经验,提出了岩层控制的关键层理论,认为:在采场覆岩层中存在着多层岩层时,对岩体活动全部或局部起控制作用的岩层称为关键层,关键层的断裂将导致全部或相当部分的上覆岩层产生整体运动。缪协兴又对采动覆岩中关键层的复合效应作了深入的分析,认为当覆岩中存在两层以上坚硬岩层时,无论上部或是下部坚硬岩层都将对下部或上部坚硬岩层的采动变形和破断产生影响,也即对采动覆岩变形、破断和移动全过程产生影响。两个硬岩层之间的复合效应主要与其间距有关,当间距与坚硬岩层厚度没有量级差别时,复合效应最明显。 二、我国煤炭开采现状 煤炭企业集团化发展,集团下属企业多、分布企业多、分布地域广,企业结构复杂,存在多级、多专业的管理部门。煤炭产品在生产、销售等过程中容易损耗;煤炭企业在生产经营中所需资金密集度打、所需物资种类繁多;在煤炭生产过程中不可控的因素较多,导致生产计划的不准确和材料消耗的随机性比较大,

煤的清洁燃烧技术

煤的先进清洁燃烧技术介绍 【摘要】中国作为世界上最大的发展中国家,每年都需要燃烧大量的煤。据可靠统计,2013年中国煤的燃烧量达到了36亿吨,比世界其他国家燃煤量的总和还要多。大量煤的燃烧不仅使中国煤炭资源急剧减少,而且严重污染了大气环境,所以发展煤的清洁燃烧技术迫在眉睫。本文从煤的污染物的产生原因和防止措施出发,详细介绍了当前比较先进的煤炭清洁燃烧技术。 【关键词】煤燃烧清洁 一、引言 燃烧是当今世界的主要能源来源,超过85%的全球一次能源消费都是由化石燃料的燃烧提供的。然而,全球能源需求量的不断增长与有限的化石能源储量之间存在着严重的矛盾,从而引发了一系列政治、经济和社会问题;化石燃料燃烧所排放的大量颗粒物、二氧化碳、二氧化硫、氮氧化物等大气污染物还会影响环境安全和人类健康。因此,如何实现高效清洁的燃烧已经成为包括我国在内的世界各国所面临的重大问题。 二、直接燃煤是我国城乡大气污染的主要原因 由于传统的燃煤方式和煤炭加工过程中产生大量的污染物,必然会导致严重的大气污染、酸雨和水污染,甚至造成生态环境与自然植物的破坏,特别是以煤为主要能源的动力燃料的消耗。每年我国电站锅炉、工业炉窑与工业锅炉,仅发电与其它工业耗煤就占了煤炭总消费量的2/3左右,而用于民用生活仅占1/10左右,用于城市供热的占不到1/20。因此,长期以来我国在能源生产与消费中,以煤炭作为主要能源而直接燃烧,又正是造成我国严重大气污染的主要原因之一。

三、煤粉富氧燃烧技术 燃烧中碳捕集即富氧燃烧技术,它是在现有电站锅炉系统基础上,用高纯度的氧气 代替助燃空气,同时辅助以烟循环的燃烧技术,可获得高达富含80%体积浓度的C0 2 烟 气,从而以较小的代价冷凝压缩后实现C0 2 的永久封存或资源化利用:具有相对成本低、易规模化、可改造存量机组等诸多优势,被认为是最可能大规模推广和商业化的CCUS 技术之一。其系统流程:由空气分离装置(ASU)制取的高纯度氧气(0 2 纯度95%以上),按一定的比例与循环回来的部分锅炉尾部烟气混合,完成与常规空气燃烧方式类似的燃 烧过程,锅炉尾部排出的具有高浓度C0 2 的烟气产物,经烟气净化系统(FGCD)净化处理 后,再进入压缩纯化装置(CPU),最终得到高纯度的液态C0 2 ,以备运输、利用和埋存。 国际能源署在减少温室气体排放的研究与开发计划中明确指出,在全球能源与电力 生产如此多样化的今天,不能仅用一种方法来达到减少和控制 CO 2 排放的目的,应采用不同的方法或相互的结合来适应各种不同的燃料资源、环境和地区的具体条件。从技术创新角度来说,可采用提高电站的效率、采用超高参数的发电机组、联合循环等方法; 而 从燃煤烟气产物中捕集CO 2、储存和利用这些高浓度 CO 2 被认为是近期内减缓CO 2 排放 的根本方法,也是真正实现无碳化、低碳化较为可行的措施与技术。中国在发展空间受制、减排压力不断增大的严峻挑战下,积极推动温室气体减排与控制技术的研究与应用尤为重要。 四、浓淡燃烧技术 煤粉浓淡燃烧技术是指通过一定的措施把一次风分成煤粉浓度高的浓气流和煤粉浓度低的淡气流喷入炉内进行燃烧。理论和实践均证明:采用浓淡燃烧技术可提高煤粉着火的稳定性和有效地降低 NOx 排放量。 NOx 生成机理: 再燃区:

2018国家公务员考试时政热点:推广清洁煤炭技术势在必行

2018国家公务员考试时政热点:推广清洁煤炭技术 势在必行 时政热点是公职类考试的命题来源之一,不仅笔试会有相关的内容,面试中也会根据一些热门的新闻进行命题,在这里中公教育专家整理了一些近期时政热点相关的资料分享给各位考生,希望对各位的考试能有所帮助。 需要更多指导,请选择在线咨询一对一解答。 据报道,国家发改委办公厅和国家能源局日前联合发布关于加大清洁煤供应确保群众温暖过冬的通知。通知称,要因地制宜推进清洁供暖,鼓励推广使用清洁煤代替劣质煤;要加快煤炭优质产能释放,进一步加快对符合条件的优质产能煤矿核增生产能力;要加大清洁煤供应力度。 清洁煤以及能源技术,无疑是现时中国需要的、惠民的技术。经济增长以及国民生活水平提高的一个必然结果,就是人均燃料使用量的成倍增加。也正因此,污染防治成为今后3年经济工作中要重点抓好的三大攻坚战之一。 污染防治有路可循,但无捷径可走。具体而言,污染防治尤其是治理雾霾绝非“去煤化”那么简单。正如上述通知所说,去年入冬以来,部分地区天然气供需出现结构性、时段性、区域性矛盾,影响部分群众冬季采暖,而推广使用清洁煤,可以有效缓解当前冬季供暖压力,也是推进散煤治理、构建清洁供暖体系的重要途径。 结构性、时段性、区域性“缺气”的现实,凸显了以现有的天然气进口、运输和处理能力及其体制难以满足需求的严峻现实。中国已经成为世界上最大的石化产品进口国。在正常贸易体系下,进口量多寡与进口量排名,更多只是影响市

场价格的因素。作为煤炭储量和生产大国,无论从什么角度看,中国“去煤化”都不是一个周全的选项。尤其是在世界清洁煤炭技术已达到相当高水平的情况下,中国完全可以引进、跟进、开发煤炭清洁技术,从而提升煤炭开采和利用效率,从整体上降低单位GDP的燃料成本和污染物排放量,提高经济效率和效益,提升国民生活品质。 与美国、俄罗斯等国家既是煤炭储量大国,也是石化资源储量大国不同,中国只是煤炭储量和生产大国。如果说美俄两国在能源战略选择上,只是比较煤炭的清洁化与石化燃料的开采、处理、使用等方面的成本的话,那么中国在能源战略选择上,必须更多地考量国内外运输、国际市场价格波动以及输入地局部危机所带来的风险成本。这些风险成本,正是中国以使用煤炭清洁技术作为污染防治重要途径的经济根据。 以发达工业化国家已有的清洁能源技术,尤其是昔日煤炭进口大国日本的煤炭清洁技术,将煤炭作为清洁能源使用的主要技术障碍已不存在。虽然在工业发达国家,由于石化燃料资源的储备量大或因价格以及进口的便利,在大规模使用石化燃料之后,已经减少或停止了在清洁煤炭技术方面的研发,但是对于煤炭储量大而石化燃料资源缺乏的中国来说,完全有必要在引进相关技术的基础上,进一步研发、开发和应用煤炭清洁技术,将这个可以立竿见影的惠民技术开发出来、推广开去。 以中国现有的科技水平,应该可以将清洁煤炭技术发展至世界一流,这不仅将惠及中国,而且也将惠及世界。 (作者:何人可) 更多内容,一起来看看宁夏公职类考试课程是如何设置教学的!

低氮分级燃烧技术介绍

低氮分级燃烧技术 一.低NO x优化燃烧技术的分类及比较 为了实现清洁燃烧,目前降低燃烧中NO、排放污染的技术措施可分为两大类:一类是炉内脱氮,另一类是尾部脱氮。 1.1炉内脱氮 炉内脱氮就是采用各种燃烧技术手段来控制燃烧过程中NO x的生成,又称低NO x燃烧技术,下表给出了现有几种典型炉内脱氮技术的比较。 表2

1.2尾部脱氮 尾部脱氮又称烟气净化技术,即把尾部烟气中已经生成的氮氧化物还原或吸附,从而降低NO x排放。烟气脱氮的处理方法可分为:催化还原法、液体吸收法和吸附法三大类。 催化还原法是在催化剂作用下,利用还原剂将NO x还原为无害的N2。这种方法虽然投资和运转费用高,且需消耗氨和燃料,但由于对NO x效率很高,设备紧凑,故在国外得到了广泛应用,催化还原法可分为选择性非催化还原法和选择性催化还原法相比,设备简单、运转资金少,是一种有吸引力的技术。 液体吸收法是用水或者其他溶液吸收烟气中的NO x。该法工艺简单,能够以硝酸盐等形式回收N进行综合利用,但是吸收效率不高。 吸附法是用吸附剂对烟气中的NO x进行吸附,然后在一定条件下使被吸附的NO x脱附回收,同时吸附剂再生。此法的NO x脱除率非常高,并且能回收利用。但一次性投资很高。 炉内脱氮与尾部脱氮相比,具有应用广泛、结构简单、经济有效等优点。表2中各种低NO x燃烧技术是降低燃煤锅炉NO x排放最主要也是比较成熟的技术措施。一般情况下,这些措施最多能达到50%的脱除率。当要进一步提高脱除率时,就要考虑采用尾部烟气脱氮的技术措施,SCR和SNCR法能大幅度地把NO x 排放量降低到200mg/m3,但它的设备昂贵、运行费用很高。 根据我国发展现状和当前经济实力还不雄厚的国情,以及相对宽松的国家标准CB13223一2003,在今后相当长一段时间内,我国更适合发展投资少、效果也比较显着的炉内脱氮技术。即使采用烟气净化技术,同时采用低NO x燃煤技术来控制燃烧过程NO x的产生,以尽可能降低化设备的运行和维护费用。 表2中各炉内脱氮技术又以燃料分级效率较高。燃料再燃技术是有效的降低NO x排放的措施,早在1980年日本的三菱公司就将天然气再燃技术应用于实际锅炉,NO x排放减少50%以上。美国能源部的“洁净煤技术”计划也包括再燃技术,其示范项目分别采用煤或天然气作为再燃燃料,NO x排放减少30%到70%。在日本、美国、欧洲再燃技术大量应用于新建电站锅炉和已有电站锅炉的改造,在商业运行中取得良好的环境效益和经济效益。在我国燃料再燃烧技术研究和应用起步较晚,主要是因为我国过去对环保的要求较低,另一方面则是出于技术经

煤的清洁燃烧

煤的清洁燃烧 第一章 1.储量:经过详查或勘探,达到控制或探明的程度,在进行了预可行性或可行性研究,扣除了设计和采矿损失,能实际采出的矿产资源数量。 2.能源的计量—标准煤当量(tce)。 3.中国能源储量结构—化石能源煤炭为主,石油储量偏低,天然气贫乏。 4.生物质能—从植物和其衍生物以及某些动物获得的能量。 5.环境—作用于人类的所有外界事物的总合。 6.生态系统—特定范围内,生物和非生物成分通过物质循环、能量流动等相互作用、演变制约形成动态平衡的功能体系。 7.环境污染—环境的化学组分和或物理状态发生变化,环境质量恶化,扰乱或破坏了原有的生态系统或正常的生产生活条件。 8.化石能源利用对环境的影响:煤炭和石油都会对环境造成污染和影响,天然气对环境友好,影响最小。 9.PM—空气中的有机、无机颗粒物。 10.霾—大气悬浮的细微烟、尘或盐类。 11.酸雨:降水pH<5.6 12.煤的清洁燃烧广义定义:煤炭从开采到利用的全过程中,为了减少排放和提高效率而进行的煤炭加工、燃烧、转化及污染控制等高新技术的总称。 第二章 1.煤燃烧的三种方式:煤粉燃烧、层燃、流化床燃烧 2.三种燃烧方式的特征:流化床燃烧特征①燃烧在整个燃烧室进行②气固之间大相对速度③气固高湍流度④横向混合⑤低温动力控制燃烧800~950℃ 第三章污染物控制(粉尘,NO X,SO X,重金属) 粉尘 1.颗粒密度—单颗粒粉尘单位体积(包含颗粒孔隙体积)粉尘的重量。 2.堆积密度—粉尘松散堆积状态下单位体积(包含颗粒孔隙体积和颗粒间体积)粉尘的重量。 3.粉尘的比电阻—截面积和长度均为1时粉尘颗粒的电阻值(Ω˙cm)。 比电阻怎么影响电除尘器的工作? 粉尘比电阻—最适宜比电阻为104~5×1011Ωcm 比电阻ρ↓→感应正电荷→相斥→尘粒重新进入气流 比电阻ρ↑→较密负电荷→排斥荷电尘粒靠近收尘极板 4.活性—粉尘中的组分与其它物质在特定条件下化学反应的能力。

煤矿开采技术

煤矿开采技术毕业设计 编制人: 编制日期:2009年9月2日

目录 第一章摘要 (3) 第一节概述 (3) 第二节编写依据 (3) 第二章地质说明书 (4) 第三章巷道布置及支护说明书 (4) 第一节巷道布置 (4) 第二节支护设计 (4) 第三节支护工艺 (8) 第四章施工工艺 (12) 第一节施工方法 (12) 第二节凿岩方式 (12) 第三节爆破作业 (12)

第一章摘要 第一节概述 一、巷道名称 巷道名称为-700轨道下山上部车场。 二、掘进目的及用途 形成33采区提升运输系统,供33采区通风、行人、运输和管路敷设用。 三、巷道设计长度和服务年限 巷道设计长度为100m。 服务年限:10年。 四、施工方式 钻眼爆破、耙装机扒矸、矿车运输。 五、作业方式 两掘一喷。 六、支护形式 锚喷支护,顶板不完整时采用一掘一喷并挂网支护。 第二节编写依据 本设计编制依据《煤矿安全规程》,天能集团《煤矿生产技术管理规定》、《-700轨道下山上部车场设计说明书》,-700轨道下山上部车场平面布置图、《-700轨道下山上部车场掘进地质说明书》以及公司、矿有关文件规定。

第二章地质说明书 一、概况: -700轨道下山上部车场位于0—02勘探线之间,在-520车场14点前37.3m 处开窝,方位为35°55′24″,进尺 70.4m后,调方位为305°25′24″,全长100m。标高为-521m ,相应地面为季节性农田,对掘进无影响。 地面标高+32.2~+32.8m。 地势东南高西北低,第四系冲积层厚37.40~95.00m,平均51.52m,覆盖在煤系地层之上,无基岩出露,地表为农田。 -700轨道下山上部车场井上、下对照关系情况。见下表: 1、二叠系下统下石盒子组沉积环境 本矿区该地层厚205~232m,平均222m,为本区主要含煤地层之一,是在滨海内陆冲积平原环境下形成砂泥含煤沉积。其岩性为:上部非含煤段厚130m,由杂色泥岩、粉砂质泥岩,深灰色粉砂岩,褐灰色铝质泥岩、灰绿~灰白色细砂岩及少量砂岩组成。杂色泥岩多含菱铁矿鲕粒,粉砂岩中常见植物碎片化石,岩石具缓波壮水平层理及斜层理,下部含煤段厚80m左右,主要为灰、深灰色泥岩、粉砂岩、灰白色细-中砂岩和煤层。以灰绿-灰色含砾中、粗砂岩(分界砂岩)为界,与下伏山西组地层呈整合接触。 2、该巷道所处地层 该道自3煤底板施工,距3煤最远点为31m,最近点为13m,该道为穿层巷道,穿过岩层顺次为:杂色泥岩、细砂岩、泥岩。 岩性描述见综合柱状图及预想剖面图 三、施工岩石的岩石力学性质 粉砂岩内摩擦角36°30′凝聚力20Mpa 抗压强度57.4~62.0Mpa 抗拉强度2.05~33.4Mpa 细砂岩内摩擦角36°30′凝聚力16 抗压强度 43.9~119.7Mpa 抗拉强度 2.61 ~4.85Mpa 平均3.45Mpa 泥岩:内摩擦角36°30′凝聚力20Mpa 抗拉强度 0.72~1.84Mpa 平均1.78Mpa 粘土岩:内摩擦角36°30′凝聚力20Mpa 抗压强度 3.47~43.8Mpa 抗拉强度 1.53 ~2.53Mpa 平均2.03Mpa 岩石稳定性为Ⅲ类 四、构造:

选煤技术发展状态下煤炭清洁利用分析

选煤技术发展状态下煤炭清洁利用分析 摘要:煤炭这类不可再生的稀缺资源,是在古代植物埋藏地底经过极其复杂的 物理化学变化以及生物化学变化而成的一种固态可燃性矿物质。一直以来,煤炭 都被人们誉为“黑金”,其珍稀程度可见一斑。正是由于这样的原因,研究选煤技 术发展状态下的煤炭清洁利用才显得意义非凡。不过就目前阶段来看,我国选煤 技术依旧存在各种各样的问题,如果不及时地进行改善,很有可能导致未来的国 家煤炭发展形势走向没落。 关键词:选煤技术;发展状态;煤炭清洁;利用 引言 当前,我国选煤技术主要还是依靠传统的选煤方法,这种方法不仅会对环境 造成污染,同时也造成了人力,物力,财力的极大浪费。显然传统的选煤技术己 经无法满足我国选煤行业快速发展的步伐。如果我国的煤炭工业想要走的更远, 就必须要有新的煤炭选煤技术来满日益增大的煤炭需求问题。选煤技术的革新和 设备的更新已成为煤炭工业发展的必然趋势。 1煤炭清洁技术的具体利用与价值 1.1提高煤炭的使用质量 利用煤炭清洁的相关技术,可以将原煤中的矸石与煤炭进行有效的分离,进 而再提炼浓度不一的煤炭产品。随着对于环境保护问题的愈发重视,煤炭的洗选 加工工艺也得到了国家的高度关注,进而推动了煤炭清洁技术的利用。具体的煤 炭清洁主要步骤其实就在于对煤炭的洗选,它的工作原理是将原煤中的矸石性杂 质进行分离,然后得到纯度更高的煤炭,从而提高煤炭的使用质量。不过我国的 煤炭行业目前依然在资金、技术等各方缺少补给,需要国家给予一定的地方性支 援政策。 1.2推进节能环保事业的发展 煤炭洗选工艺还可以降低煤炭当中的烟尘(TSP)、硫分、灰分等占比,从而减少二氧化硫以及各种氮氧化物,提升对环境的保护。经过清洗得出的高灰分煤 泥以及矸石还可以进行再利用,利用这些物质来充填塌陷区、铺路,或者制作成 水泥、砖块等,从这一层面来看,煤炭洗选其实还可以为国家的能源节约提供一 定的帮助。另外一方面,经过煤炭清洗之后得到的煤炭,由于其杂质较少,所以 在燃烧的时候就不需要太多的电能消耗,而且与传统的煤炭相比,同样热能耗所 需要的高纯度煤炭远远小于低纯度的传统煤炭。简而言之,煤炭清洗技术的利用,还可以推进国家的节能环保事业。 1.3优化煤炭产业结构 利用清洁技术处理过后的煤炭,不仅纯度更高,还可以根据市场需求制成质 量等级各异的不同类别产品。例如经过精煤提纯之后的中煤就可以提供给诸如化 肥加工厂、焦油化工厂、电力厂等,因为这些产业并不需要质量太高的煤炭进行 燃烧,而中煤的采购价格将远远低于市场高纯度煤炭产品,这样就可以为这些企 业缩减生产成本。而对于经过煤炭清洗得到的煤泥,则可以将其进行电解,从中 把电解铝等各种材质提炼出来,进而为相关的铝制企业所使用。就此看来,煤炭 清洁技术的利用,还可以优化煤炭企业的产业结构,一改过去产业链短小、经济 格局单一的局面,从而帮助煤炭企业打造更加互惠互利的共享经济模式。 2选煤技术发展状态下煤炭清洁利用要点

清洁燃烧

煤的清洁燃烧 热能与动力工程3班蒋辉跃 目前,国内外的所采用的脱硫脱硝的技术与方法有许多的不同之处。究其原因,首先,国外的对环保节能的要求比较严格;其次,国外的技术比较先进和成熟;而中国的环保理念不够强烈和技术都没有发展起来。这就导致了国内的环保形势严峻状况。 煤是一种由C,H,O,N,S等元素组成的,缩聚了程度不同、结构复杂的高分子有机物与多种无机物混合的固溶胶体。煤在现有的燃烧工艺设备中,燃烧效率较低,煤在炉中燃烧后,炉植中还会有大量未燃物;烟气中也含有大量的有害气体.煤中内能没有被充分转化为热能释放出来。由于火力发电燃煤锅炉仍在广泛的使用,而大部分火电厂未对燃煤排气中的SO2、NOX采取措施脱除,因此造成对环境的污染越来越严重。所以的要实现煤的清洁燃烧,就必须考虑对燃煤排气中的SO2、NOX采取处理措施。 由于煤炭仍然是当今和今后世界能源的重要组成部分,因此,我国对清洁煤燃烧技术的研究与开发,一直没有停止投入大量人力和资金,从而取得了重大进展,特别是一些企业与长期从事热能工程、燃烧技术与环保工程等有关方面的科研工作者,对煤的洁净技术进行了大量的研究与实践,并使之市场化与商品化。其主要技术概括起来,主要包括煤燃烧前的处理和净化技术如:煤的洗选处理、型煤加工.水煤浆技术,以及高效低污染的煤的转化技术,含煤炭气化技术,煤炭液化技术(水煤浆、煤转油),煤、油共炼技术,以及煤层甲烷气的利用等煤炭燃烧中的净化技术,包括各种脱硫、脱硝

技术与消烟除尘技术。如流化床脱硫脱硝燃烧技术、炉内喷钙脱硫与烟气脱硫技术、型煤固硫技术等。煤炭燃烧后的除尘技术,主要是采用各种机械、湿式、电除尘器与袋式除尘器技术等 目前主要有两类常用的方式对燃煤排放气体中的SO2、NOX 进行处理。 一类是在炉内通过燃烧技术的改进,降低SO2、NOX 排放量,这种技术主要应用于常规燃煤发电厂,称之为煤清洁发电技术。目前已有商业应用。煤的清洁发电技术主要有:循环流化床燃烧技术(CFBC)、增压流化床燃烧联合循环技术(PFBC-CC)、整体煤气化蒸汽-燃气联合循环技术(IGCC)。 另一类是在炉后,尾部烟气中进行脱硫脱硝。采用的主要的技术和方法主要有:1.湿法烟气脱硫技术、2.旋转喷雾半干烟气脱硫技术、3.炉内喷钙尾部增湿脱硫技术、4.电子束照射法、5.磷铵肥法、6.活性焦法等,统称为脱硫(脱硝)技术。 工业化国家脱硫脱硝法规均相当严格。因此,大型燃煤装备的脱硫脱硝系统普及率已达90%以上。由于技术发展的原因,这些系统一般采用两套装置为湿法工艺外加脱硝技术的湿法系统分别进行,但目前普遍形成后处理障碍。湿法废弃物石膏的出路问题已经困扰了这些国家的可持续性发展。因此近年来日本、美国、德国都投入相当的力量开发成功了干法脱硫脱硝一体化技术作为下世纪的储备技术。该技术适用于大型燃煤装备的脱硫脱硝工艺。 我国是世界耗煤第一大国,主要用于火力发电燃煤锅炉排硫量相

清洁煤燃烧器的技术

清洁煤燃烧器的技术 摘要循环流化床燃烧技术是国际80年代在锅炉上得到成功应用的清洁煤燃烧技术。提高可靠性、经济性和文明生产程度贯穿了循环流化床燃烧技术的发展历史。围绕分离器的形式和整体布置,循环床燃烧技术已经历了三代的发展,作者认为冷却型紧凑布置的循环床燃烧技术是未来的发展方向。 关键词循环流化床锅炉分离器发展方向 引言 循环流化床锅炉(CFB)燃烧技术是一项近20年来发展起来的燃 煤技术。它具有燃料适应性广、燃烧效率高、氮氧化物排放低、负荷调节比大和负荷调节快等突出优点。自循环流化床燃烧技术出现以来,循环流化床锅炉已在世界范围内得到广泛的应用,大容量的循环流化床电站锅炉已被发电行业所接受。世界上最大容量的250MW循环流化床锅炉已在1997年投运,多台200~250MW大容量循环流化床锅炉也已投产。我国集中于中型CFB的研制与开发,目前已完全商业化。到1998年底,我国已投运及订货的35t/h以下的循环流化床锅炉共计约600台,已开始走向电力市场,并且开始大型CFB的研制工作。 主循环回路是循环流化床锅炉的关键,其主要作用是将大量的高温固体物料从气流中分离出来,送回燃烧室,以维持燃烧室的稳定的流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应,以提高燃烧效率和脱硫效率。主循环回路不仅直接影响整个循环流化床锅炉的总体设计、系统布置,而且与其运行性能有直接关系。分离器是主循环回路的主要部件,因而人们通常把分离器的形式,工作状态作为循环流化床锅炉的标志。 1 循环流化床的发展现状 气固分离器是CFB系统的核心部件之一。其之所以关键,从运行机理上来讲,只有当分离器完成了含尘气流的气固分离并连续地把收

煤炭清洁利用技术发展方向及作用论文

煤炭清洁利用技术发展方向及作用论文 所谓煤炭清洁利用技术就是指以煤炭洗选为源头、以煤炭高效 洁净燃烧为先导、以煤炭气化为核心、以煤炭转化和污染控制为重要内容的技术体系,主要包括煤炭加工、煤炭高效洁净燃烧和转化等技术手段。近年来,随着我国经济的快速发展.煤炭的产生量和消费量节节攀升。我国已经成为全球最大的煤炭生产国和煤炭消费国。因此, 发展煤炭清洁利用技术,对发挥我国煤炭资源优势、提高能源 效率、加强环境保护、实现可持续发展具有重要意义。 煤炭加工技术主要包括洗选煤技术、型煤技术以及水煤浆技术等。 1.1选煤技术 我国煤炭工业实际生产中往往采用物理选煤和化学选煤两大常 用技术,目的是为了筛除煤中的矿物质和燃烧后造成大气污染的成分,比如常见的煤炭脱硫工艺,但是多数情况下还是采用物理选煤方法,比如跳汰、重力分离等工艺就是利用煤和其中其它成分的密度不同进行初步的筛选,这种工艺操作简单可靠,成本也较低,因此成为选煤技术的主流方向。

1.2型煤技术 型煤顾名思义就是具有一定几何形状的煤,加工方法是采用机械设备将粉状煤制成一定形状的煤,目的是减少煤在燃烧过程中粉尘的排放量,含硫量较高的煤在成型时同时要加入化学试剂进行除硫,减少硫燃烧后的氧化物污染水源和大气。 我国对型煤的相关技术的研究起步较晚,建国后,我国才开始有关型煤的制造加工工艺的研究,60年代后期型煤才开始在全国形成大规模的研究热潮,经过半个世纪的努力,我国在型煤方面的研究和工艺均已达到国际先进水平,并形成了自己的加工流水线。型煤气化在未来也是一个极具潜力的研究方向,因此受到各级部门尤其是能源部门的高度重视,这方面的学术交流也日渐频繁,这为型煤气化起到了积极的推进作用。 1.3水煤浆技术 水煤浆是由大约65%的煤、34%的水和1%的添加剂通过物理加工得到的一种低污染、高效率、可管道输送的代油煤基流体燃料。 水煤浆技术引入我国时间较早,实践化也较成熟,研究也比较充分,经过数十年的不断探索,我国在水煤浆技术方面积累了大量的

清洁煤技术

清洁煤技术是指在煤炭从开发到利用全过程中,旨在减少污染排放与提高利用效率的加工、燃烧、转化和污染控制等新技术的总称。 清洁煤技术主要包括两个方面: 一是直接烧煤洁净技术。这是在直接烧煤的情况下,需要采用相应的技术措施: ①燃烧前的净化加工技术,主要是洗选、型煤加工和水煤浆技术。 ②燃烧中的净化燃烧技术,主要是流化床燃烧技术和先进燃烧器技术。 ③燃烧后的净化处理技术,主要是消烟除尘和脱硫脱氮技术。 二是煤转化为洁净燃料技术。主要是煤的气化以及液化技术、煤气化联合循环发电技术和燃煤磁流体发电技术。清洁煤技术是当前国际上解决环境问题的主导技术之一,也是高技术国际竞争的重要领域之一。多年来,我国围绕提高煤炭开发利用效率、减轻对环境污染进行了大量的研究开发和推广工作,并随着国家宏观发展战略的转变,已把清洁煤技术作为可持续发展和实现两个根本转变的战略措施之一,得到了中央政府的大力支持。 目前,我国的清洁煤技术在四个领域: 煤炭加工、煤炭高效洁净燃烧、煤炭转化、污染排放控制与废弃物处理)的十多项技术方面,通过引进技术和自主开发、创新已建设了一大批示范工程,

有效地促进丁我国洁净煤技术的发展和应用,个别方面已领先于国际水平。但是,由于相关政策的不配套,以及清洁煤技术重在社会效益和长远的综合经济效益的结合,一般都具有投入大、回收期长的特点,各级地方政府推进的积极性不高,使得这些技术的推广运用情况并不理想。 清洁煤概念是20世纪80年代中期美国首先提出的,是指在煤炭开发和加工利用全过程中旨在减少污染与提高利用效率的加工﹑燃烧﹑转换及污染控制等技术的总称,是使煤作为一种能源应达到最大限度潜能的利用,而释放的污染物控制在最低水平,达到煤的高效清洁利用的技术。 采用煤炭加工技术,可有效降低原料煤的灰分和硫分,实现煤炭燃前脱硫降灰,大幅度减少大气污染物排放,减少煤炭利用的外部成本。 发展煤基合成燃料可以促进能源供应来源的多样性,改善单一的能源结构,在相当程度上缓解我国石油、天然气供应不足的问题,且经济投入和运行成本大大低于采用石油和天然气,有利于我国清洁能源的发展及长远的能源安全。 洁净煤技术汇集了电子、信息、自动化、环境科学等高新技术,已不再是传统的煤利用技术。 总之,洁净煤技术的开发与应用正处方兴未艾之势,国民经

相关文档
最新文档