VC图像边缘检测算法研究报告与比较

VC图像边缘检测算法研究报告与比较
VC图像边缘检测算法研究报告与比较

目录

基于VC的图像边缘检测算法的研究与比较

摘要

图像的边缘是图像最基本的特征,它是灰度不连续的结果。图像分析和理解的第一步是边缘检测,因此边缘检测在图像处理中有着重要的作用。图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。

本文介绍了三种经典的图像边缘检测算子,并且运用强大的VC软件通过一个图像边缘检测的例子比较了它们的检测效果,分析了它们各自的特点,对学习边缘检测和具体工程应用具有很好的参考价值。

关键词: 图像处理,边缘检测, 算子,比较研究,VC

Comparison AndAnalysis ForImageEdgeDetection Algorithms

Based On VC

Abstract

Edge is the most basic feature of the image, it is the result of discontinuous gray. The first step in image analysis and understanding is edge detection, so edge detection plays an important role in image processing.Image edge detection significantly reduces the amount of data and removes irrelevant information,retains the important structural properties of images.

This article describes three types of classical edge detection operators, and the use the powerful software called VC to do the edge detection through a comparison of examples of the effect of their detection, analysis the characteristics,this is good reference value for their learning edge detection and application of specific projects.

Key Words:Image processing ,Edge detection ,Operator ,Comparative Study ,VC

第一章绪论

1.1数字图像基础

1.1.1数字图像概述

人眼能识别的自然景象或图像原也是一种模拟信号,为了使计算机能够记录和处理图像、图形,必须首先使其数字化。数字化后的图像、图形称为数字图像、数字图形,一般也简称为图像、图形。

数字图像可以看成一个矩阵,或一个二维数组,这是在计算机上表示的方式。一幅M ×N个像素的数字图像,其像素灰度值可以用M行、N列的矩阵[G]表示:

(1—1>

在存储数字图像时,一幅M行、N列的数字图像

1.1.2数字图像处理

数字图像处理

<1)处理精度高,再现性好。利用计算机进行图像处理,其实质是对图像数据进行各种运算。由于计算机技术的飞速发展,计算精度和计算的正确性都毋庸置疑;另外,对同一图像用相同的方法处理多次,也可得到完全相同的效果,具有良好的再现性。

<2)易于控制处理效果。在图像处理程序中,可以任意设定或变动各种参数,能有效控制处理过程,达到预期处理效果。这一特点在改善图像质量的处理中表现更为突出。

<3)处理的多样性。由于图像处理是通过运行程序进行的,因此,设计不同的图像处理程序,可以实现各种不同的处理目的。

<4)图像数据量庞大。图像中包含有丰富的信息,可以通过图像处理技术获取图像中包含的游泳的信息,但是,数字图像的数据量具大,一幅数字图像是由图像矩阵中的像素组成的,通常每个像素用红、绿、蓝三种颜色表示,每种颜色用8bit表示灰度级。则一幅1024×1024不经压缩的真彩色图像,数据量达3MB<即1024×1024×8bit×

3=24Mb)。如此庞大的数据量给存储、传输和处理都带来巨大的困难。如果精度及分辨率再提高,所需处理时间将大幅度增加。

<5)处理费时。由于图像数据量大,因此处理比较费时。特别是处理结果与中心像素邻域有关的处理过程花费时间更多。

<6)图像处理技术综合性强。数字图像处理涉及的技术领域相当广泛,如通信技术、计算机技术、电子技术、电视技术等,当然,数学、物理学等领域更是数字图像处理的基础。

1.2边缘检测介绍

图像的边缘对人的视觉具有重要意义,一般而言,当人们看见一个有边缘的物体的时候,首先感觉到的便是边缘。边缘是指周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,灰度或结构等信息的突变处成为边缘。边缘或许对应着图像中物体(的边界>或许并没有对应着图像中物体(的边界>,但是边缘具有十分令人满意的性质,它能大大地减少所要处理的信息但是又保留了图像中物体的形状信息,边缘是图像的最基本特征。

边缘在边界检测、图像分割、模式识别、机器视觉等中有很重要的作用。边缘检测是和中的基本问题,边缘检测的目的是标识中变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。这些包括

图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。

第二章图像边缘检测

2.1边缘检测

2.1.1边缘检测概念

图像的边缘是图像最基本的特征,它是灰度不连续的结果。通过计算一阶导数或者二阶导数可以方便检测出图像中每个像素在其领域内的灰度变化,从而检测出边缘。图像中具有不同灰度的相邻区域之间总存在边缘。常见的边缘类型有斜坡型、线状型和屋顶型。阶跃型边缘是一种理想的边缘,由于采样等缘故,边缘处总有一些模糊,因而边缘处会有灰度斜坡,形成了斜坡边缘。斜坡边缘的坡度与被模糊的程度成反比,模糊程度高的边缘往往表现为厚边缘。线状型边缘有一个灰度突变,对应图像中的细线条;而屋顶型边缘两侧的灰度坡度相对平缓,对应粗边缘[2]。

2.1.2微分算子

图 2.1给出了几种典型的边缘及其相应的一阶导数和二阶导数。对于斜坡型边缘,在灰度斜坡的起点和终点,其一阶导数均有一个阶跃,在斜坡处为常数,其它地方为零;其二阶导数在斜坡起点产生一个向上的脉冲,在终点产生一个向下的脉冲,其它地方为零,在两个脉冲之间有一个过零点,可以确定边缘的中心位置。对应线状型边缘,在边缘的起点和终点处,其一阶导数都有一个阶跃,分别对应极大值和极小值;在边缘的起点与终点处,其二阶导数都对应一个向上的脉冲,在边缘中心对应一个向下的脉冲,在边缘中心两侧存在两个过零点。因此,通过检测二阶差分的两个过零点,就可以确定线状型边缘的范围;检测二阶差分的极小值,可以确定边缘中心位置。屋顶型边缘的一阶导数和二阶导数与线状型类似,通过检测其一阶导数的过零点可以确定屋顶的位置。

由上述分析可以得出以下结论:一阶导数的幅度值可以用来检测边缘的存在;通过检测二阶导数的过零点可以确定边缘的中心位置;利用二阶导数在过零点附近的符号可以确定边缘像素位于边缘的暗区还是亮区。另外,一阶导数和二阶导数对噪声非常敏感,尤其是二阶导数。因此,在边缘检测之前应考虑图像平滑,减弱噪声的影响。在数字图像处理中,常利用差分近似微分来求取导数。边缘检测可借助微分算子在空间域通过模板卷积来实现。2.2边缘检测基本思想

边缘检测的基本思想是首先利用边缘增强算子,突出图像中的局部边缘,然后定义像素的“边缘强度”,通过设置阈值的方法提取边缘点集 。但是由于噪声和图像模糊的原因,检测到的边界可能会有间断的情况发生,所以边缘检测包含2 个内容:(1>用边缘算子提取边缘点集。

(2>在边缘点集合中去除某些边缘点并填充一些边缘点,将得到的边缘点集连接为线。

(a> 斜坡型 (b> 线状型 (c> 屋顶型

图2.1 典型边缘的一阶导数和二阶导数

2.3边缘检测算法

2.3.1边缘检测算法步骤

边缘检测算法包含有以下四个步骤:

(1>滤波边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能。需要指出 ,大多数滤波器在降低噪声的同时也导致了边缘强度的损失。因此增强边缘和降低噪声之间需要折中。

(2>增强增强边缘的基础是确定图像各点邻域强度的变化值 ,增强算法可以将邻域(或局部>强度值有显著变化的点显现出来,边缘增强一般是通过计算梯度幅值来完成的。

(3>检测在图像中有许多点的梯度幅值比较大,而这些点在特定的应用领域中并不都是边缘,所以应该用某种方法来确定哪些点是边缘点。最简单的边缘检测判据是梯度幅值阈值判据。

(4>定位如果某一应用场合要求确定边缘位置,则边缘的位置可在子像素分辨率上来估计,边缘的方位也可以被估计出来。

2.3.2边缘检测算法流程图

图2.2 边缘检测流程图

边缘检测流程图比较形象直观地描述了边缘检测的步骤,通过滤波、增强、检测、定位来达到边缘检测的目的。

2.4边缘检测算法中算子的分类

在大部分情况下,都是把图像的边缘全部看作是阶梯形边缘, 然后求得检测这种边

缘的各种最优滤波器,用于实践中。边缘检测主要是(图像的>灰度变化的度量、检测和定位。有很多种不同的边缘检测方法,同一种方法使用的滤波器也不尽相同。边缘检测就是研究更好的边缘检测方法和检测算子。检测出的边缘并不等于实际目标的真实边缘。由于图像数据是二维的,而实际物体是三维的,从三维到二维的投影必然会造成信息的丢失,再加上成像过程中的光照不均和噪声等原因的影响,使得有边缘的地方不一定能被检测出来,而检测出来的边缘也不一定代表实际边缘。这就需要我们根据不同类型的图像,来选取合适的边缘检测算子。就一些经典的边缘检测算子分类,如图2.3。2.5经典边缘检测算子

2.5.1 Roberts 边缘检测算子 1、理论基础[3]

Roberts 边缘算子采用的是对角方向相邻的两个像素之差。从图像处理的实际效果来看,边缘定位准,对噪声敏感。Roberts 边缘检测算子是一种利用局部差分算子寻找边缘的算子,它有下式给出。Roberts 算子:

(3—1>

(3—2>

基础边缘检测算子

Roberts 微分算子 Sobel 微分算子 Prewitt 微分算子

Laplace 微分算子 Wallis 算子 Kirsch 算子 Log 算子

Dog 算子

二阶导数过零点

Canny 算子

图2.3 数字图像边缘检测算子分类

其中表示处理后点的灰度值,表示处理前该点的灰度值。是具有整数像素坐标的输入图像,平方根运算使该处理类似于在人类视觉系统中发生的是过程。

该算法的算子如下:

(3—3>

2.5.2 Sobel边缘检测算子

理论基础:

(1>卷积

卷积可以简单的看成加权求和的过程。卷积时使用的权用一个很小的矩阵来表示,矩阵的大小是奇数,而且与使用的区域的大小相同。这种权矩阵叫做卷积核,区域中的每一个像素分别与卷积核中的每个元素相乘,所有乘积之和即区域中心像素的新值。比如,对于一个3×3的区域p与卷积核k卷积后,区域p的中心像素p5表示如下:

(3—4>

其中(3—5>

卷积核中各元素叫做卷积系数。卷积核中卷积系数的大小、方向及排列次序决定了卷积的图像处理效果。大多数常用的卷积核都是3×3的,所有的卷积核的行、列都是奇数。进行卷积时会遇到一些复杂的问题,首先是图像边界的问题。当在图像上逐个移动卷积核时,只要卷积核移动到了图像边界,即卷积核悬挂在图像边界上时,就会出现计算上的问题。这时在原图像上就不能完整的找到与卷积核中系数相对应的9个图像像素。解决这个问题的两个简单方法是:或者忽略图像边界数据,或者在图像的四周复制图像的边界数据。

Sobel边缘检测算子是先做加权平均再微分,然后求梯度,即

(3—

6>

(3—

7>

(3—8>

以下两个卷积核形成了Sobel边缘检测算子,图中的每个点都用这两个核做卷积,一个核对通常的垂直边缘影响很大,而另一个对水平边缘影响很大。边缘检测算子的中心与中心像素相对应,进行卷积运算。两个卷积核的最大值作为该点的输出位。运算结果是一幅边缘幅度图像。在边缘检测中,Sobel算子对于像素的位置的影

响做了加权,加权平均边宽像素,因此效果更好。

(3—9>

2.5.3 Prewitt边缘检测算子

理论基础

以下两个卷积核形成了Prewitt边缘检测算子。同使用的Sobel算子的方法一样,图像中的每个点都用这两个核进行卷积,取最大值作为输出。Prewitt边缘检测算子也产生一幅边缘增强图像。Prewitt边缘检测算子为:

(3—10>

除此之外,还有Krish边缘检测算子、拉普拉斯边缘检测算子、Canny边缘检测算子等都是比较常用的图像边缘检测算子。

第三章 Visual C++图像编程

3.1 Visual C++概述

VC++是开发的一个(集成开发环境>,换句话说,就是使用C++的一个开发平台。严格的来说VC++不是门语言,虽然它和C++之间有密切的关系,如果形象点比喻的话,可以把C++看作为一种“工业标准”,而VC++则是某种操作系统平台下的“厂商标准”,而“厂商标准”是在遵循“工业标准”的前提下扩展而来的。

采用VC++来实现图像编程的主要原因是,与Java和C#等现代编程语言相比,C++在程序运行的效率、内存使用的可控性和编程的灵活性上具有优势。

图像处理需要大量的图像数据运算,经常使用复杂、费时的算法,因此图像处理程序的运行效率非常重要。C++代码被编译成汇编语言,可以直接在处理器上运行,效率很高。

对庞大的图像数据进行处理需要使用大量的内存,而计算机的物理内存往往是有限的,因此需要有效地控制内存的操作。C++直接控制内存的分配和释放,这虽然很繁琐,而且容易出错,但却能有效地控制内存的使用。

C++中大量使用指针,使得编程的灵活性很高,便于程序员施展编程技巧来提高程序的效率[4]。

3.2 VC++的特点

本文介绍的Visual C++是数字图像处理运动检测系统的开发工具,本运动检测系统是以VC++为软件平台建立起来的。Visual C++是Microsoft公司推出的开发Win32环境程序,面向对象的可视化集成编程系统。从功能上来看,它除了继承了MFC1.0的全部功能外,还增加了以下新的特性:

全面支持文件的Open、Save和Save As等菜单项,并且采用了最近才使用的文件列表形式。

可以方便地进行打印和打印预显。

支持滚动窗口和切分窗口

支持工具条

能够处理Microsoft Visual Basic控制。

能够方便地实现上下文相关帮助

能够自动处理进入对话框中的数据。

实现OLE的接口更加简单、方便。

因此,它现在已经成为开发Win32程序,包括图像处理程序的主要开发工具。

3.3 VC++的组成

Visual C++包含了两套完整的Windows应用开发系统。由以下的部分组成:

(1>Visual工作平台和创建过程:这是一个运行于Windows上的交互式开发环境,它是直接从Microsoft QuickC for Windows演化而来的。

(2>App Studio资源编辑器:堪称是Windows应用,同时它本身就是通过使用

Visual C++工具及类库编写而成的,可以对自身的资源进行编辑。

(3>C/C++编译器:Visual C++的编译器可以处理C和C++源代码,它通过源代码文件后缀来识别代码本身所使用的语言。

(4>连接器:为了生成EXE文件,Visual C++的连接器需要对编译器所生成的OBJ 文件进行处理。

(5>资源编译器:在编译状态和联编状态都要用到资源编译器。

(6>调试器:为了能够对程序进行调试,在创建程序时必须设置编译器和连接器相应的选项以便产生相应的可调试信息。

(7>AppWizard:它会按照用户通过对话框指定的特性、类名及源代码文件名来产生Windows应用的工作构架。

(8>ClassWizard:能够给出原型、函数体以及将消息同应用框架相联系的相应代码。

(9>源程序浏览器:能够使人们从类或函数的角度来了解程序。

(10>联机帮助:有关WindowsSDK参考手册及类库参考手册的全部内容都包含在Visual C++的联机帮助中。

(11>Windows诊断工具:用于对手工编制的make文件进行处理的NMAKE程序。

图3.1 VC++运行流程图

3.4 VC++与matlab的比较

Matlab比较适合于做研究,因为它提供了大量的算法库,只用写简简单单的几句代码就可以完成某一算法或者某一功能,因此对于算法研究它具有较好的优势。同时它也提供了接口供VC使用,并且Matlab的开发速度比较快,见效也比较快,也比较容易实现。但是,如果你要写应用程序的话,最好用VC,不要用Matlab,也不要和Matlab集成,然后自己完成所有的算法,这样便于后续的扩展,在构建应用程序的时候也非常方便,而且还可以不断升级以适应更加复杂的情况,使用起来也更加灵活。VC本来就是一个功能很强大的软件,可以完成几乎所有的事情。缺点就是开发进度比较慢,特别是对于初学者来说,需要一段时间来适应VC的开发环境和开发理念,如果以后要跨平台了,实现起来也是很容易的。主要看做图像处理的目的了,是研究用还是做工程用!如果做工程用,那就用VC。

本次毕业设计主要用VC来实现数字图像边缘检测算法,原因主要有二:一是VC使用C++语言来实现的,C++语言与Java和C#相比在程序运行效率、内存使用可控性、编程灵活性上都具有优势;二是VC是注重应用的,这将为今后的工作在工程的研发上打下良好的基础。

第四章边缘检测算子的编程实现4.1程序运行界面

通过VC来实现边缘检测算子的功能,先对Roberts算子、Sobel算子、Prewitt算子进行函数定义,然后再进行函数调用,从而达到边缘检测的不同效果。

图4.1 程序运行界面

每种算子都是在此界面下进行功能实现的,左半边显示原图,右半边实现边缘检测的实现结果。

4.2 Roberts算子程序及结果

实现步骤:

<1)取得原图的数据区指针

<2)开辟一个和原图相同大小的图像缓冲区,并设定新图像初值为全白<255)

<3)每个像素依次循环,用Roberts边缘检测算子分别计算图像中各点灰度值,对它们先求平方之和;再开方;将缓冲区中的数据复制到原图数据区。

编程实现:

函数名称:Roberts(>

函数类型:void

功能:用罗伯特算子对图像进行边缘检测

void BianYuanJianCedib::Robert

{

LPBYTE p_data。 //原图数据区指针

int wide ,height。 //原图高、宽

int i,j。 //循环变量

int pixe[4]。 // Roberts算子

p_data=this->Getdata(>。

wide=this->GetWidth(>。

height=this->Getheight(>。

LPBYTE temp=new BYTE[wide*height]。 //新图像缓冲区

//设定新图像初值为255

Memset(temp,255, wide*height>

//由于使用2×2的模板,为防止越界,所以不处理最下边两行和最右边的两列像素for(j=0。j

for(i=0。j

{

//生成Roberts算子

pixel[0]=p_data[j*wide+i]。

pixel[1]=p_data[j*wide+i+1]。

pixel[2]=p_data[(j+1>*wide+i]。

pixel[3]=p_data[(j+1>*wide+i+1]。

//处理当前像素

temp[j*wide+i]=(int>sqrt((pixel[0]-pixel[3]>*(pixel[0]-

pixel[3]>+(pixel[1]-pixel[2]>*(pixel[1]-pixel[2]>>

}

//将缓冲区中的数据复制到原图数据区

memcpy(p_data,temp, wide*height>。

//删除缓冲区

Delete temp;

}

void CDynSplitView2::OnRobert(>

{

clearmem(>。

CDibNew1->Robert(>。 //调用Robert算子检测处理函数

Invalidate(>。

}

实现结果:

图4.2 Robert算子实现结果

4.3 Sobel算子程序及结果

实现步骤:

<1)取得原图像的数据区指针

<2)开辟两个和原图相同大小的图像缓冲区,将原图复制到两个缓冲区

<3)分别设置Sobel边缘检测算子的两个模板,调用Templat<)模板函数分别对两个缓冲区的图像进行卷积运算;

<4)两个缓冲图像每个像素依次循环,取两个缓冲中各个像素灰度值较大者

<5)将缓冲区的图像复制到原图数据区

经典图像边缘检测

经典图像边缘检测(微分法思想)——Sobel算子 2008-05-15 15:29Sobel于1970年提出了Sobel算子,与Prewitt算子相比较,Sobel算子对检测点的上下左右进一步加权。其加权模板如下: 经典图像边缘检测(微分法思想)——Roberts交叉算子 2008-05-14 17:16 如果我们沿如下图方向角度求其交叉方向的偏导数,则得到Roberts于1963年提出的交叉算子边缘检测方法。该方法最大优点是计算量小,速度快。但该方法由于是采用偶数模板,如下图所示,所求的(x,y)点处梯度幅度值,其实是图中交叉点处的值,从而导致在图像(x,y)点所求的梯度幅度值偏移了半个像素(见下图)。

上述偶数模板使得提取的点(x,y)梯度幅度值有半个像素的错位。为了解决这个定位偏移问题,目前一般是采用奇数模板。 奇数模板: 在图像处理中,一般都是取奇数模板来求其梯度幅度值,即:以某一点(x,y)为中心,取其两边相邻点来构建导数的近似公式:

这样就保证了在图像空间点(x,y)所求的梯度幅度值定位在梯度幅度值空间对应的(x,y)点上(如下图所示)。 前面我们讲过,判断某一点的梯度幅度值是否是边缘点,需要判断它是否大于设定的阈值。所以,只要我们设定阈值时考虑到加权系数产生的影响便可解决,偏导数值的倍数不是一个问题。 经典图像边缘检测(微分法思想)——Prewitt算子 2008-05-15 11:29 Prewitt算子 在一个较大区域中,用两点的偏导数值来求梯度幅度值,受噪声干扰很大。若对两个点的各自一定领域内的灰度值求和,并根据两个灰度值和的差来计算x,y的偏导数,则会在很

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

Matlab做图像边缘检测的多种方法

Matlab做图像边缘检测的多种方法 1、用Prewitt算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'prewitt',0.04); % 0.04为梯度阈值 figure(1); imshow(I); figure(2); imshow(BW1); 2、用不同σ值的LoG算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'log',0.003); % σ=2 imshow(BW1);title('σ=2') BW1 = edge(I,'log',0.003,3); % σ=3 figure, imshow(BW1);title('σ=3') 3、用Canny算子检测图像的边缘 I = imread('bacteria.BMP'); imshow(I); BW1 = edge(I,'canny',0.2); figure,imshow(BW1); 4、图像的阈值分割 I=imread('blood1.tif'); imhist(I); % 观察灰度直方图,灰度140处有谷,确定阈值T=140 I1=im2bw(I,140/255); % im2bw函数需要将灰度值转换到[0,1]范围内 figure,imshow(I1); 5、用水线阈值法分割图像 afm = imread('afmsurf.tif');figure, imshow(afm); se = strel('disk', 15); Itop = imtophat(afm, se); % 高帽变换 Ibot = imbothat(afm, se); % 低帽变换 figure, imshow(Itop, []); % 高帽变换,体现原始图像的灰度峰值 figure, imshow(Ibot, []); % 低帽变换,体现原始图像的灰度谷值 Ienhance = imsubtract(imadd(Itop, afm), Ibot);% 高帽图像与低帽图像相减,增强图像figure, imshow(Ienhance); Iec = imcomplement(Ienhance); % 进一步增强图像

图像的阈值分割及边缘检测技术

数字图像处理实验报告 题目:图像的阈值分割及边缘检测技术 班级: 姓名: 学号:

图像的阈值分割及边缘检测技术 一、实验目的 1、了解图像的分割技术,掌握图像的全局阈值分割技术并通过MATLAB实现; 2、了解图像的边缘检测,掌握梯度算子图像边缘检测方法。 二、实验内容 1、基于直方图的全局阈值图像分割方法; 2、Edge命令(roberts,perwitt,sobel,log,canny),实现边缘检测。 三、实验原理 1、全局阈值是最简单的图像分割方法。其中,直方图法的原理如下:想做出图 像的直方图,若其直方图呈双峰且有明显的谷底,则可以讲谷底点所对应的灰度值作为阈值T,然后根据该阈值进行分割,九可以讲目标从图像中分割出来。这种方法是用于目标和背景的灰度差较大且直方图有明显谷底的情况。 2、用于边缘检测的梯度算子主要有Roberts算子、Prewitt算子、Sobel算子。 这三种检测算子中,Roberts算子定位精度较高,但也易丢失部分边缘,抗噪声能力差,适用于低噪声、陡峭边缘的场合。Prewitt算子、Sobel算子首先对图像做平滑处理,因此具有一定的抑制噪声的能力,但不能排除检测结果中的虚假边缘,易出现多像素宽度。

四、实验步骤 1、全局阈值分割: ①读取一张图像; ②生成该图像的直方图; ③根据直方图双峰产生的低谷估计阈值T; ④依次读取图像各个点的像素,若大于阈值,则将像素改为255,若小于 阈值,则将该像素改为0; 实验代码如下: I=imread('cameraman.tif'); %读取一张图像 subplot(221);imshow(I); %显示该图像 subplot(222);imhist(I); %生成该图像的直方图 T=60; %根据直方图估计阈值T为60 [m,n]=size(I); %取图像的大小为【m,n】 for i=1:m %依次读取图像各个点的像素,若大于阈 值,则将像素改为255,若小于阈值, 则将该像素改为0 for j=1:n if I(i,j)>=T I(i,j)=255; else I(i,j)=0; end end

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较摘要:边缘是图像最基本的特征,边缘检测是图像分析与识别的重要环节。基于微分算子的边缘检测是目前较为常用的边缘检测方法。通过对Roberts,Sobel,Prewitt,Canny 和Log 及一种改进Sobel等几个微分算子的算法分析以及MATLAB 仿真实验对比,结果表明,Roberts,Sobel 和Prewitt 算子的算法简单,但检测精度不高,Canny 和Log 算子的算法复杂,但检测精度较高,基于Sobel的改进方法具有较好的可调性,可针对不同的图像得到较好的效果,但是边缘较粗糙。在应用中应根据实际情况选择不同的算子。 0 引言 边缘检测是图像分析与识别的第一步,边缘检测在计算机视觉、图像分析等应用中起着重要作用,图像的其他特征都是由边缘和区域这些基本特征推导出来的,边缘检测的效果会直接影响图像的分割和识别性能。边缘检测法的种类很多,如微分算子法、样板匹配法、小波检测法、神经网络法等等,每一类检测法又有不同的具体方法。目前,微分算子法中有Roberts,Sobel,Prewitt,Canny,Laplacian,Log 以及二阶方向导数等算子检测法,本文仅将讨论微分算子法中的几个常用算子法及一个改进Sobel算法。 1 边缘检测

在图像中,边缘是图像局部强度变化最明显的地方,它主要存在于目标与目标、目标与背景、区域与区域( 包括不同色彩) 之间。边缘表明一个特征区域的终结和另一特征区域的开始。边缘所分开区域的内部特征或属性是一致的,而不同的区域内部特征或属性是不同的。边缘检测正是利用物体和背景在某种图像特征上的差异来实现检测,这些差异包括灰度、颜色或纹理特征,边缘检测实际上就是检测图像特征发生变化的位置。边缘的类型很多,常见的有以下三种: 第一种是阶梯形边缘,其灰度从低跳跃到高; 第二种是屋顶形边缘,其灰度从低逐渐到高然后慢慢减小; 第三种是线性边缘,其灰度呈脉冲跳跃变化。如图1 所示。 (a) 阶梯形边缘(b) 屋顶形边缘 (b) 线性边缘 图像中的边缘是由许多边缘元组成,边缘元可以看作是一个短的直线段,每一个边缘元都由一个位置和一个角度确定。边缘元对应着图像上灰度曲面N 阶导数的不连续性。如果灰度曲面在一个点的N 阶导数是一个Delta 函数,那么就

图像边缘检测方法比较研究

图像边缘检测方法比较研究 作者:关琳琳孙媛 来源:《现代电子技术》2008年第22期 摘要:边缘检测在数字图像处理中有着重要的作用。系统分析目前具有代表性的边缘检测方法,并用IDL6.3软件实现各种算法。实验结果表明,各种方法均有各自的优缺点和适用条件,在做图像边缘检测之前,应对图像进行分析,针对图像的特点和应用需求选用合适的方法。 关键词:边缘检测;检测算子;高通滤波;小波变换 中图分类号:TP391文献标识码:A 文章编号:1004-373X(2008)22-096-03 Comparison of Image Edge Detection Methods GUAN Linlin1,SUN Yuan2 (1.Department of Resource Science and Technology,Beijing Normal University,Beijing,100875,China; 2.96656 Unit of Second Artillery F orces,Chinese People′s Liberation Army,Beijing,100820,China) Abstract:Edge detection plays an important role in digital image processing.This paper comprehensively analyze the representative methods of edge detection at present,and realizes each algorithm with the IDL6.3 software.Results indicate that each method has some advantages and limitations.It should be carefully selected according to the characteristics of the image as well as application needs before conducting edge detection. Keywords:edge detection;detective operators;high-pass filtering;wavelet transform 1 引言 边缘检测技术是图像特征提取中的重要技术之一,也是图像分割、目标区域识别、区域形状提取等图像分析方法的基础。近年来,边缘检测技术被广泛地应用在各个领域,例如工程技术中零件检查[1]、医学中器官病变状况观察[2]、遥感图像处理中道路等典型地物的提取[3]以及估算遥感平台的稳定精度[4]等。这使得如何快速、准确地获得边缘信息成为国内外研究的热点。边缘检测方法在空间域和频域中均可以实现,而且不断涌现出新技术新方法。这些方法

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

图像边缘检测算法体验步骤

图像边缘检测算法体验步骤 图像边缘检测算法体验步骤(Photoshop,Matlab)1. 确定你的电脑上已经安装了Photoshop和Matlab2. 使用手机或其他任何方式,获得一张彩色图像(任何格式),建议图像颜色丰富,分辨率比较高,具有比较明显的图像边界(卡通图像,风景图像,桌面图像)3. 将图像保存到一个能够找到的目录中,例如img文件夹(路径上没有汉字)4. 启动Photoshop,打开img文件夹中的图像5. 在工具箱中选择“矩形选择”工具,到图面上选择一个区域(如果分辨率比较高,建议不要太大,否则计算过程比较长)6. 点击下拉菜单【文件】-【新建】,新建一个与矩形选择框同样尺寸的Photoshop图像,不要求保存该图像7. 将该彩色图像转换为亮度图像,即点击下拉菜单【图像】-【模式】-【灰度】,如提示是否合并,选择“Yes”8. 将该单色的亮度图像另存为Windows的BMP文件,点击下拉菜单【文件】-【存储为】,在“存储为”窗口中,为该文件起一个名字,例如test1(保存为test1.bmp)9. 启动Matlab,将当期路径(Current Directory)定位到图像文件夹,例如这里的img文件夹10. 使用imread命令读入该图像,在命令行输入:>> f = imread(test1.bmp);11. 在Matlab中显示该图像,在命令行输入:>> figure, imshow(f)12. 然后,分别使用Matlab图像工具箱中的Edge函数,分别使用Sobel算法,高斯-拉普拉斯(Log)算法和Canny算法得到的边缘图像:在命令行输入:>> g_sobel = edge(f, sobel, 0.05); >> g_log = edge(f, log, 0.003, 2.25); >> g_canny = edge(f, canny, [0.04 0.10], 1.5);13 得到边缘图像计算结果后,显示这些边缘图像: >> figure, imshow(g_sobel) >> figure, imshow(g_log) >> figure, imshow(g_canny)14 可以用不同的图像做对比,后续课程解释算法后,可以变换不同的阈值,得到不同的边缘图像

图像边缘检测方法的研究与实现刘法200832800066

图像边缘检测方法的研究与实现刘法200832800066

青岛大学专业课程设计 院系: 自动化学院 专业: 电子信息工程 班级: 08级电子信息工程3班学生姓名: 刘法 指导教师: 王汉萍庄晓东 日期: 2011年12月23日

题目:图像边缘检测方法的研究与实现 一、边缘检测以及相关概念 1.1边缘,边缘检测的介绍 边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection). 边缘检测是指使用数学方法提取图像像元中具有亮度值(灰度)空间方向梯度大的边、线特征的过程。 在讨论边缘算子之前,首先给出一些术语的定义: 边缘点:图像中具有坐标] ,[j i且处在强度显著变化的位置上的点.边缘段:对应于边缘点坐标] i及其方位 ,边缘的方位可能是梯度角. ,[j 边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法. 轮廓:边缘列表,或是一条表示边缘列表的拟合曲线. 边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序. 边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程. 边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘. 1.2 边缘检测算子 边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键. 边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。 边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。

基于matlab的图像边缘检测算法研究和仿真设计

基于matlab的图像边缘检测算法研究和仿真 目录 第1章绪论 1 1.1 序言 1 1.2 数字图像边缘检测算法的意义 1 第2章传统边缘检测方法及理论基础 2 2.1 数字图像边缘检测的现状与发展 2 2.2 MATLAB和图像处理工具箱的背景知识 3 2.3 数字图像边缘检测关于边缘的定义 4 2.4 基于一阶微分的边缘检测算子 4 2.5 基于二阶微分的边缘检测算子 7 第3章编程和调试 10 3.1 edge函数 10 3.2 边缘检测的编程实现 11 第4章总结 13 第5章图像边缘检测应用领域 13 附录参考文献 15

第1章绪论 §1.1 序言 理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在图像中均有边缘产生。图像边缘是分析理解图像的基础,它是图像中最基本的特征。在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。 图像边缘主要划分为阶跃状和屋脊状两种类型。阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和分形理论等。 Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。另外其相对简单的算法使得整个过程可以在较短的时间实现。实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果[1]。 §1.2 数字图像边缘检测算法的意义 数字图像处理是控制领域的重要课题,数字图像边缘检测是图像分割、目标区域识别和区域形状提取等图像分析领域十分重要的基础,是图像识别中提取图像特征的一个重要方法。边缘中包含图像物体有价值的边界信息,这些信息可以用于图像理解和分析,并且通过边缘检测可以极降低后续图像分析和处理的数据量。图像理解和分析的第一步往往就是边缘检测,目前它已成为机器视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。 图像的边缘检测技术是数字图像处理技术的基础研究容,是物体识别的重要基础。边缘特征广泛应用于图像分割、运动检测与跟踪、工业检测、目标识别、双目立体视觉等领域。现有边缘检测技术在抑制噪声方面有一定的局限性,在阈值参数选取方面自适

实验三图像分割与边缘检测

数字图像处理实验报告 学生姓名王真颖 学生学号L0902150101 指导教师梁毅雄 专业班级计算机科学与技术1501 完成日期2017年11月06日

计算机科学与技术系信息科学与工程学院

目录 实验一.................................................................................................. 错误!未定义书签。 一、实验目的.................................................................................................... 错误!未定义书签。 二、实验基本原理 ........................................................................................... 错误!未定义书签。 三、实验内容与要求....................................................................................... 错误!未定义书签。 四、实验结果与分析....................................................................................... 错误!未定义书签。实验总结............................................................................................... 错误!未定义书签。参考资料.. (3) 实验一图像分割与边缘检测 一.实验目的 1. 理解图像分割的基本概念; 2. 理解图像边缘提取的基本概念; 3. 掌握进行边缘提取的基本方法;

图像边缘检测方法研究综述_段瑞玲

第31卷第3期2005年5月 光学技术 OP T ICA L T ECHN IQ U E V ol.31No.3 M ay 2005 文章编号:1002-1582(2005)03-0415-05 图像边缘检测方法研究综述 段瑞玲,李庆祥,李玉和 (清华大学精密仪器及机械学系,北京 100084) 摘 要:图像的边缘是图像最基本也是最重要的特征之一。边缘检测一直是计算机视觉和图像处理领域的经典研究课题之一。图像分析和理解的第一步常常是边缘检测。边缘检测的目的是去发现图像中关于形状和反射或透射比的信息,是图像处理、图像分析、模式识别、计算机视觉以及人类视觉的基本步骤之一。其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。对一些传统的边缘检测方法和近年来广泛收到关注的边缘检测算法进行了简单介绍。综述中只涉及到检测方面,而没有讨论滤波、边缘定位、算法的复杂程度和边缘检测器性能的评价。 关键词:图像处理;边缘检测;梯度算法;差分边缘检测 中图分类号:T P751 文献标识码:A Summary of image edge detection DU AN Rui_ling,LI Qin g_xiang,LI Yu_he (Department of P recisio n I nstrument and M echanology,Tsing hua University,Beijing 100084,China) Abstract:Edg e is one of the most fundamental and sig nificant features.Edge detection is alw ay s one of the most classical studying projects o f computer vision and image processing field.T he fist step of image analy sis and understanding is edg e de tec-tion.T he g oal of edge detection is to recover information about shapes and reflectance o r transmittance in an image.I t is one of the fundamental steps in image processing,mage analy sis,image patter recognition,and computer vision,as well as in human vision.T he correctness and reliability of its results affect directly the comprehension machine system made fo r objective w orld. T he summary for basic edge de tection metho ds was made.It involv ed the detection methods only but no t filtering,edge loca-tion,analy sis of algorithm complexity and functional evaluation about a detecto r. Key words:image processing;imag e detection;gradient arithmetic; 1 引 言 早在本世纪初,人类为了用图片及时传输世界各地发生的新闻事件,便开始了对图像处理技术的研究。用计算机进行图像处理,改善图像质量的有效应用开始于1964年美国喷气推进实验室对太空传回的大批月球照片进行处理,并收到了明显的效果。然而,图像处理技术的真正发展还是在上世纪60年代末,其原因一方面是由于受到航天技术发展的刺激,另一方面是作为图像处理工具的数字计算机和各种不同类型的数字化仪器及显示器的突飞猛进发展。迄今为止,数字图像作为一门崭新的学科,日益受到人们的重视,并且在科学研究、工农业生产、军事技术和医疗卫生等领域发挥着越来越重要的作用。 机器视觉主要是利用计算机实现人类的视觉功能,对客观世界的三维场景的感知、识别和理解。边缘是图像的最基本特征,边缘检测通常是机器视觉系统处理图像的第一个阶段,是机器视觉领域内经典的研究课题之一,其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。 2 图像边缘定义 图像的大部分信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,即图像中灰度变化比较剧烈的地方。因此,我们把边缘定义为图像中灰度发生急剧变化的区域边界。根据灰度变化的剧烈程度,通常将边缘划分为阶跃状和屋顶状两种类型[1]。阶跃边缘两边的灰度值变化明显,而屋顶边缘位于灰度值增加与减少的交界处。那么,对阶跃边缘和屋顶边缘分别求取一阶、二阶导数就可以表示边缘点的变化。因此,对于一个阶跃边缘点,其灰度变化曲线的一阶导数在该点达到极大值,二阶导数在该点与零交叉;对于一个屋顶边缘点,其灰 415 收稿日期:2004-06-01;收到修改稿日期:2004-10-20 E-mail:duanrl03@mails.ts https://www.360docs.net/doc/571415198.html, 作者简介:段瑞玲(1979_),女,山西人,清华大学博士研究生,从事装配系统及微观图像处理研究。

边缘检测原理(内含三种算法)

边缘检测原理的论述

摘要 数字图像处理技术是信息科学中近几十年来发展最为迅速的学科之一。图像边缘是图像最基本的一种特征,边缘在图像的分析中起着重要的作用。边缘作为图像的一种基本特征,在图像识别、图像分割、图像增强以及图像压缩等的领域中有较为广泛的应用,其目的就是精确定位边缘,同时更好地抑制噪声。目前,数字图像处理技术被广泛应用于航空航天、通信、医学及工业生产等领域中。图像边缘提取的手段多种多样,本文主要通过MATLAB语言编程分别用不同的算子例如Roberts算子、Prewitt算子、Sobel算子、Kirsch 算子、Laplacian算子、Log算子和Canny算子等来实现静态图像的边缘检测,并且和检测加入高斯噪声的图像进行对比。阐述了不同算子在进行图像边缘提取的特点,并在此基础上提出利用小波变换来实现静态图像的边缘检测。 【关键字】图像边缘数字图像边缘检测小波变换 背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年

代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。(2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 边缘是图象最基本的特征.边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息.所以边缘检测是图像分析和模式识别的主要特征提取手段。 所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。因此它是图象分割所依赖的重要的特征,也是纹理特征的重要信息源和形状特征的基础;而图象的纹理形状特征的提取又常常依赖于图象分割。图象的边缘提取也是图象匹配的基础,因为它是位置的标志,对灰度的变化不敏感,它可作为匹配的特征点。 图象的其他特征都是由边缘和区域这些基本特征推导出来 的.边缘具有方向和幅度两个特征.沿边缘走向,像素值变化比较平缓;而垂直与边缘走向,则像素值变化比较剧烈.而这种剧烈可能呈

图像边缘检测算子

课程设计任务书 学院信息科学与工程专业电子信息工程 学生姓名*** 班级学号09******* 课程设计题目图像边缘检测算子 课程设计目的与要求: 设计目的: 1.熟悉几种经典图像边缘检测算子的基本原理。 2.用Matlab编程实现边缘检测,比较不同边缘检测算子的实验结果。设计要求: 1.上述实验内容相应程序清单,并加上相应的注释。 2.完成目的内容相应图像,并提交原始图像。 3.用理论对实验内容进行分析。 工作计划与进度安排: 2012年 06月29 日选题目查阅资料 2012年 06月30 日编写软件源程序或建立仿真模块图 2012年 07月01 日调试程序或仿真模型 2012年 07月01 日结果分析及验收 2012年 07月02 日撰写课程设计报告、答辩 指导教师: 2012年 6月29日专业负责人: 2012年 6月29日 学院教学副院长: 2012年 6月29日

摘要 边缘检测是数字图像处理中的一项重要内容。本文对图像边缘检测的几种经典算法(Roberts算子、Sobel算子、Prewitt算子)进行了分析和比较,并用MATLAB实现这几个算法。最后通过实例图像对不同边缘检测算法的效果进行分析,比较了不同算法的特点和适用范围。 关键词:图像处理;边缘检测;Roberts算子;Sobel算子;Prewitt算子

目录 第1章相关知识.................................................................................................... IV 1.1 理论背景 (1) 1.2 数字图像边缘检测意义 (1) 第2章课程设计分析 (3) 2.1 Roberts(罗伯特)边缘检测算子 (3) 2.2 Prewitt(普瑞维特)边缘检测算子 (4) 2.3 Sobel(索贝尔)边缘检测算子 (5) 第3章仿真及结果分析 (7) 3.1 仿真 (7) 3.2 结果分析 (8) 结论 (10) 参考文献 (11)

图像边缘检测方法的研究与实现刘法200832800066

青岛大学 专业课程设计 院系: 自动化学院 专业: 电子信息工程 班级: 08级电子信息工程3班 学生姓名: 刘法 指导教师: 王汉萍庄晓东 日期: 2011年12月23日 题目:图像边缘检测方法的研究与实现 一、边缘检测以及相关概念 1.1边缘,边缘检测的介绍 边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection). 边缘检测是指使用数学方法提取图像像元中具有亮度值(灰度)空间方向梯度大的边、线特征的过程。 在讨论边缘算子之前,首先给出一些术语的定义: 边缘点:图像中具有坐标] i且处在强度显著变化的位置上的点. ,[j 边缘段:对应于边缘点坐标] i及其方位 ,边缘的方位可能是梯度角. ,[j 边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法. 轮廓:边缘列表,或是一条表示边缘列表的拟合曲线. 边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序. 边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程. 边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.

边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘. 1.2 边缘检测算子 边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键. 边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。 边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。 Roberts,Sobel,Prewwit是基于一阶导数的边缘检测算子,图像的边缘检测是通过2*2或者3*3模板作为核与该图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。 Laplace边缘检测算子是基于二阶导数的边缘检测算子,该算子对噪声敏感。Laplace算子的改进方式是先对图像进行平滑处理,然后再应用二阶导数的边缘检测算子,其代表是拉普拉斯高斯(LOG)算子。前边介绍的边缘检测算法是基于微分方法的,其依据是图像的边缘对应一阶导数的极大值点和二阶导数过零点。Canny算子是另外一类边缘检测算子,它不是通过微分算子检测边缘,而是在满足一定约束条件下推导出的边缘检测最优化算子。 1.3 边缘检测算法 对于边缘的检测常常借助于空域微分算子进行,通过将其模板与图像卷积完成。两个具有不同灰度值的相邻区域之间总存在灰度边缘。灰度边缘是灰度值不连续(或突变) 的结果,这种不连续常可利用求一阶和二阶导数方便地检测到。已有的局部技术边缘检测方法,主要有一次微分(Sobel 算子、Robert s 算子等) 、二次微分(拉普拉斯算子等)。这些边缘检测器对边缘灰度值过渡比较尖锐且噪声较小等不太复杂的图像,大多数提取算法均可以取得较好的效果。但对于边缘复杂、采光不均匀的图像来说,则效果不太理想。主要表现为边缘模糊、边缘非单像素宽、弱边缘丢失和整体边缘的不连续等方面。 用算子检测图像边缘的方法是用小区域模板对图像进行处理,即采用卷积核作为掩模模板在图像中依次移动,完成图像中每个像素点同模板的卷积运算,最终输出的边缘幅度结果可以检测出图像的边缘。卷积运算是一种邻域运算。图像处理认为:某一点像素的结果不但和本像素灰度有关,而且和其邻域点值有关。运用模板在图像上依此对每一个像素进行卷积, 即模板上每一个点的值与其在图像上当前位置对应的像素点值相乘后再相加,得出的值就是该点处理后的新值。 边缘检测算法有如下四个步骤:

相关文档
最新文档