正态总体下的四大分布

正态总体下的四大分布
正态总体下的四大分布

《概率论与数理统计》第六章样本及抽样分布

(2)正态总体下的四大分布:正态分布

设n x x x ,,,21 为来自正态总体),(2

σ

μN 的一个样本,则样本函数

).

1,0(~/N n

x u

def

σμ

-例:设总体ξ~2

12(1,2

),,,n N ξξξ 且是取自ξ的样本,则(

D )

A)

1(0,1)

2

N ξ-B)

1(0,1)

4N ξ-C)

(

)

1(0,1)

2

N ξ-D

)

(0,1)

N ξt 分布

设n x x x ,,,21 为来自正态总体),(2

σ

μN 的一个样本,则样本函数),

1(~/--n t n

s x t

def

μ其中t(n-1)表示自由度为n-1的t 分布。

分布

2χ设n x x x ,,,21 为来自正态总体),(2

σ

μN 的一个样本,则样本函数

),

1(~)1(22

2

--n S n w

def

χσ其中)1(2

-n χ

表示自由度为n-1的2χ

分布

例:已知F 0.1(7,20)=2.04,则F 0.9(20,7)=_______0.4902_____.

例.对于给定的正数α,10<<α

,设αu ,)(2

n α

χ,)(n t α,),(21n n F α分别是)1,0(N ,)(2n χ,)(n t ,),(21n n F 分布的下α

分位数,则下面结论中不正确...

的是(B )

(A)α

α

--=1u u (B))

()

(2

2

1n n ααχχ-=-(C))

()(1n t n t αα--=(D))

,(1

)

,(12211n n F αα=

-2、设X 、Y 相互独立,且都服从标准正态分布,则Z =

2

Y X 服从______t(1)_____分布(同时要写出

布的参数).

3.设ξ和η相互独立且都服从N(0,4),而41,ξξ 和41,ηη 分别是来自总体ξ和η的样本,则统计量2

4

2

141......ηηξξ++++=

U 服从的分布为

)

4(t 。

统计量及其抽样分布练习题

第六章 统计量及其抽样分布 练习题 一、填空题(共10题,每题2分,共计20分) 1.简单随机抽样样本均值X 的方差取决于_________和_________,要使X 的标准差降低到原来的50%,则样本容量需要扩大到原来的_________倍。 2. 设1217,,,X X X 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________。 3.若(5)X t ,则2X 服从_______分布。 4.已知0.95(10,5) 4.74F =,则0.05(5,10)F 等于___________。 5.中心极限定理是说:如果总体存在有限的方差,那么,随着_________的增加,不论这个总体变量的分布如何,抽样平均数的分布趋近于_____________。 6. 总体分布已知时,样本均值的分布为_________抽样分布;总体分布未知,大样本情况下,样本均值的分布为_________抽样分布。 7. 简单随机样本的性质满足_________和_________。 8.若(2,4)X N ,查分布表,计算概率(X 3)P ≥=_________。若(X )0.9115P a ≤=,计算a =_________。 9. 若12~(0,2),~(0,2),X N X N 1X 与2X 独立,则2212X X +()/2服从______分布。 10. 若~(16,4)X N ,则5X 服从___________分布。 二、选择题(共10题,每题1分,共计10分)

1.中心极限定理可保证在大量观察下 ( ) A . 样本平均数趋近于总体平均数的趋势 B . 样本方差趋近于总体方差的趋势 C . 样本平均数分布趋近于正态分布的趋势 D. 样本比例趋近于总体比例的趋势 2.设随机变量()(1)X t n n >,则21/Y X =服从 ( ) 。 A. 正态分布 B.卡方分布 C. t 分布 D. F 分布 3.某品牌袋装糖果重量的标准是(500±5)克。为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498克。下列说法中错误的是( ) A. 样本容量为10 B .抽样误差为2 C. 样本平均每袋重量是统计量 D. 498是估计值 4.设总体均值为100,总体方差为25,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都是服从或近似服从( ) A. (100/,25)N n B. N C. (100,25/)N n D. (100,N 5、设2(0,1),(5),X N Y χ且X 与Y 独立,则随机变量_________服从自由度为5的t 分布。 ( ) A. /X Y B. 5/Y X C. /X /

2.4.1正态分布

2. 4.1正态分布 【教学目标】 1.了解正态分布的意义,掌握正态分布曲线的主要性质及正态分布的简单 应用。 2.了解假设检验的基本思想,会用质量控制图对产品的质量进行检测,对 生产过程进行控制。 【教学重难点】 教学重点:1.正态分布曲线的特点; 2.正态分布曲线所表示的意义. 教学难点:1.在实际中什么样的随机变量服从正态分布; 2.正态分布曲线所表示的意义. 【教学过程】 一、设置情境,引入新课 这是一块高尔顿板,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,最后掉入高尔顿板下方的某一球槽内。 问题1.在投放小球之前,你能知道这个小球落在哪个球槽中吗? 问题 2.重复进行高尔顿板试验,随着试验次数的增加,掉入每个球槽中小球的个数代表什么? 问题 3.为了更好的研究小球分布情况,对各个球槽进行编号,以球槽的编号

为横坐标,以小球落入各个球槽的频率值为纵坐标,你能画出它的频率分布直方图吗? 问题4.随着试验次数的增加,这个频率直方图的形状会发生什么样的变化? 二、合作探究,得出概念 随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线. 这条曲线可以近似下列函数的图像: 22 ()2,(),(,),2x x e x μσμσ?πσ -- = ∈-∞+∞ 其中实数(0)μσσ>和为参数,我们称,()x μσ?的图像为正态分布密度曲线,简称正态曲线。 问题 5.如果在高尔顿板的底部建立一个水平坐标轴,其刻度单位为球槽的宽度,X 表示一个随机变量,X 落在区间(,]a b 的概率为什么?其几何意义是什么? 一般地,如果对于任何实数a b <,随机变量X 满足

统计学第5-6章 正态分布、 统计量及其抽样分布知识分享

统计学第5-6章正态分布、统计量及其 抽样分布

第5-6章统计量及其抽样分布 5.1正态分布 5.1.1定义:当一个变量受到大量微小的、独立的随机因素影响时,这个变量一般服从正态分布或近似服从正态分布。 概率密度曲线图 例如:某个地区同年龄组儿童的发育特征:身高、体重、肺活量等某一条件下产品的质量 如果随机变量X的概率密度为 2 2 () 2 1 (), 2 x f x e x μ σ πσ -- =-∞<<∞ 则称X服从正态分布。 记做 2 (,) X Nμσ : ,读作:随机变量X服从均值为 μ ,方差为2 σ的正态分布 其中, μ -∞<<∞ ,是随机变量X的均值,0 σ>是是随机变量X 的标准差

5.1.2正态密度函数f(x)的一些特点: ()0 f x≥, 即整个概率密度曲线都在x轴的上方。 曲线 () f x相对于xμ =对称,并在xμ = 处达到最大值, 1 () 2 fμ πσ = 。 1 μ< 2 μ< 3 μ 曲线的陡缓程度由 σ 决定: σ 越大,曲线越平缓;σ越小,曲线越陡峭当 x 趋于无穷时,曲线以 x轴为其渐近线。 标准正态分布

当 0,1 μσ == 时, 2 2 1 () 2 x f x e π - = , x -∞<<∞ 称 (0,1) N 为标准正态分布。 标准正态分布的概率密度函数: ()x ? 标准正态分布的分布函数: ()x Φ 任何一个正态分布都可以通过线性变换转化为标准正态分布 设 2 (,) X Nμσ : ,则 (0,1) X Z N μ σ - =: 变量 2 11 (,) X Nμσ :与变量2 22 (,) Y Nμσ :相互独立,则有 22 1212 +(+,+) X Y Nμμσσ : 5.1.3 正态分布表:可以查的正态分布的概率值 ()1() x x Φ-=-Φ

抽样分布习题()

抽样分布习题 1.抽样分布是指( C ) A 一个样本各观测值的分布 B 总体中各观测值的分布 C 样本统计量的分布 D 样本数量的分布 2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为( A )。 A μ B x C 2σ D n 2 σ 3.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为( D )。 A μ B x C 2σ D n 2 σ 4.从一个均值μ=10,标准差σ=0.6的总体中随机选取容量为n=36的样本。假定该总体并不是很偏的,则样本均值x 小于 9.9的近似概率为( A )。 A 0.1587 B 0.1268 C 0.2735 D 0.6324 5.假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( B ) A 服从非正态分布 B 近似正态分布 C 服从均匀分布 D 服从2χ分布 6.从服从正态分布的无限总体中分别抽取容量为4,16,36的样

本,当样本容量增大时,样本均值的标准差( C )A 保持不变 B 增加 C 减小D 无法确定 7. 总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分布为( B )。 A 50,8 B 50,1 C 50,4 D 8,8 8.某大学的一家快餐店记录了过去5年每天的营业额,每天营业额的均值为2500元,标准差为400元。由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100天,并计算这100天的平均营业额,则样本均值的抽样分布是( B )。 A 正态分布,均值为250元,标准差为40元 B 正态分布,均值为2500元,标准差为40元 C 右偏分布,均值为2500元,标准差为400元 D 正态分布,均值为2500元,标准差为400元 9. 某班学生的年龄分布是右偏的,均值为22,标准差为4.45,如果采取重复抽样的方法从该班抽取容量为100的样本,则样本均值的抽样分布是( A ) A 正态分布,均值为22,标准差为0.445 B 分布形状未知,均值为22,标准差为4.45

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

抽样分布习题与答案

第 4 章抽样分布自测题选择题 1.抽样分布是指() A. 一个样本各观测值的分布C. 样本统计量的分布 B. 总体中各观测值的分布D. 样本数量的分布 2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为() 2 A. B. x C.2 D. n 3.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为() 2 A. B.x C.2 D. n 4.从均值为,方差为2 n 的样本,则()的任意一个总体中抽取大小为 A.当 n 充分大时,样本均值x 的分布近似服从正态分布 B.只有当 n<30 时,样本均值x的分布近似服从正态分布 C.样本均值 x 的分布与n无关 D. 无论 n 多大,样本均值x 的分布都是非正态分布 5.假设总体服从均匀分布,从该总体中抽取容量为 36 的样本,则样本均值的抽样分布() A. 服从非正态分布 B. 近似正态分布 C. 服从均匀分布 D. 服从 2 分布 6. 从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,则当样本容量增大时,样 本均值的标准差() A. 保持不变 B. 增加 C.减小 D.无法确定 7. 某大学的一家快餐店记录了过去 5 年每天的营业额,每天营业额的均值为2500 元,标准差为 400 元。由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100 天,并计算这100 天的平均营业额,则样本均值的抽样分布是() A. 正态分布,均值为250 元,标准差为40 元 B. 正态分布,均值为2500 元,标准差为40 元 C.右偏,均值为2500 元,标准差为400 元 D. 正态分布,均值为2500 元,标准差为400 元 8. 在一个饭店门口等待出租车的时间是左偏的,均值为12 分钟,标准差为 3 分钟。如果从饭店门口随机抽取 81 名顾客并记录他们等待出租车的时间,则样本均值的抽样分布是() A. 正态分布,均值为12 分钟,标准差为0.33 分钟 B. 正态分布,均值为12 分钟,标准差为 3 分钟 C. 左偏分布,均值为12 分钟,标准差为 3 分钟

正态分布分析

正态分布 以平均值为中心呈对称分布的钟形曲线。正态分布是最常见的统计分布,因为许多物理、生物和社会方面的测量值都自然近似于正态。许多统计分析均要求数据来自正态分布总体。 例如,居住在宾夕法尼亚州的所有成年男性的身高近似于正态分布。因此,大多数男性的身高都将接近于 69 英寸的平均身高。高于和矮于 69 英寸的男性的数量相近。只有一小部分身材特别高或特别矮。 平均值 (μ) 和标准差 (σ) 是定义正态分布的两种参数。平均值是钟形曲线的波峰或中心。标准差决定数据的散布情况。大约有 68% 的观测值与平均值相差不到 +/- 1 个标准差;95% 与平均值相差不到 +/- 2 个标准差;而 99% 的观测值与平均值相差不到 +/- 3 个标准差。 就宾夕法尼亚州男性的身高而言,平均身高为 69 英寸,标准差为 2.5 英寸。 大约68% 的宾夕法尼亚男性身高介于66.5 (μ- 1σ) 和71.5 (μ+ 1σ) 英寸之间。 大约95% 的宾夕法尼亚男性身高介于64 (μ- 2σ) 和74 (μ+ 2σ) 英寸之间。 大约99% 的宾夕法尼亚男性身高介于61.5 (μ- 3σ) 和76.5 (μ+ 3σ) 英寸之间。 过程能力

生产或提供满足根据客户需要定义的规格的产品或服务的能力。例如,影印机制造商要求橡胶辊筒的宽度必须介于 32.523 cm 与 32.527 cm 之间,才能避免卡纸。能力分析揭示了制造过程满足这些规格的程度,并提供有关如何改进该过程和维持改进的见解。 在评估过程能力之前,必须确保过程是稳定的。不稳定的过程是无法预测的。如果过程稳定,则可以预测将来的性能并改进其能力。 应定期测量并分析过程的能力。能力分析有助于回答以下问题: ?过程是否满足客户规格? ?过程将来的性能如何? ?过程是否需要改进? ?过程是保持了这些改进还是回复到了原来的未改进状态? 可使用过程指标(如 Cp、Pp、Cpk 和 Ppk)来分析过程能力。 潜在(组内)能力和整体能力 大多数能力评估都可以分组为两种类别中的一种:潜在(组内)能力和整体能力。每种能力都表示对过程能力的唯一度量。潜在能力通常称为过程的“权利”:它忽略子组之间的差异并表示当消除了子组之间的偏移和漂移时执行过程的方法。另一方面,整体能力是客户所体验到的;它考虑了子组之间的差异。评估潜在能力的能力指标包括 Cp、CPU、CPL 和 Cpk。评估整体能力的能力指标包括 Pp、PPU、PPL、Ppk 和 Cpm。 例如,您检查某一糖果厂的设备,其中包括将特定重量的糖果装入容器的机器。糖果每周从工厂出货一次。为评估此过程的能力,在一周内的每天,对袋子样本进行称重;每个样本在分析中表示一个子组。观察发现,每个子组内的变异性很小,但由于子组平均值每天都有偏移,因此袋子重量的总体变异性很大。因此,整个一周的出货在袋子重量上与给定日期内生产的袋子重量之间存在较大的变异性。在下图中,较小的分布表示连续七天内每天的袋子重量的分布。最上面的分布表示整周的出货,它是子组的合计。

二项分布与正态分布

第七章假设检验 第一节二项分布 二项分布的数学形式·二项分布的性质 第二节统计检验的基本步骤 建立假设·求抽样分布·选择显著性水平和否定域·计算检验统计量·判定第三节正态分布 正态分布的数学形式·标准正态分布·正态分布下的面积·二项分布的正态近似法 第四节中心极限定理 抽样分布·总体参数与统计量·样本均值的抽样分布·中心极限定理 第五节总体均值和成数的单样本检验 σ已知,对总体均值的检验·学生t分布(小样本总体均值的检验)·关于总体成数的检验 一、填空 1.不论总体是否服从正态分布,只要样本容量n足够大,样本平均数的抽样分布就趋于()分布。 2.统计检验时,被我们事先选定的可以犯第一类错误的概率,叫做检验的( ),它决定了否定域的大小。 3.假设检验中若其他条件不变,显著性水平的取值越小,接受原假设的可能性越(),原假设为真而被拒绝的概率越()。 4.二项分布的正态近似法,即以将B(x;n,p)视为()查表进行计算。 5.已知连续型随机变量X~N(0,1),若概率P{X ≥λ}=0.10,则常数λ=()。 6.已知连续型随机变量X~N(2,9),函数值 9772 .0 )2( = Φ ,则概率 }8 {< X P= ()。 二、单项选择 1.关于学生t分布,下面哪种说法不正确()。 A 要求随机样本 B 适用于任何形式的总体分布 C 可用于小样本 D 可用样本标准差S代替总体标准差σ 2.二项分布的数学期望为()。 A n(1-n)p B np(1- p) C np D n(1- p)。 3.处于正态分布概率密度函数与横轴之间、并且大于均值部分的面积为()。 A 大于0.5 B -0.5 C 1 D 0.5。

03 第三节 正态总体的抽样分布

第三节 正态总体的抽样分布 分布图示 ★ 抽样分布 ★ 单正态总体的抽样分布 ★ 例 1 ★ 例 2 ★ 例 3 ★ 双正态总体的抽样分布 ★ 例 4 ★ 例 5 ★ 内容小结 ★ 课堂练习 ★ 习题12-3 内容要点 一、抽样分布 有时, 总体分布的类型虽然已知, 但其中含有未知参数,此时需对总体的未知参数或对总体的重要数字特征(如数学期望、分差等) 进行统计推断, 此类问题称为参数统计推断.在参数统计推断问题中, 常需利用总体的样本构造出合适的统计量, 并使其服从或渐近地服从已知的总体分布. 统计学中泛称统计量分布为抽样分布. 二、单正态总体的抽样分布 设总体X 的均值μ,方差为2σ,n X X X ,,,21 是取自X 的一个样本,X 与2S 分别为该样本的样本均值与样本方差, 则有 ,)(,)(2σμ==X D X E )(2S E .2 σ= 定理1 设总体),,(~2σμN X n X X X ,,,21 是取自X 的一个样本, X 与2S 分别为该样本的样本均值与样本方差, 则有 (1) )/,(~2n N X σμ; (2) ).1,0(~/N n X U σμ-= 定理2 设总体),,(~2σμN X n X X X ,,,21 是取自X 的一个样本, X 与2S 分别为该样本的样本均值与样本方差, 则有 (1) 2χ=);1(~)(1 1 212222--=-∑=n X X S n n i i χσσ (2) X 与2S 相互独立. 定理3 设总体),,(~2σμN X n X X X ,,,21 是取自X 的一个 样本, X 与2S 分别为该样本的样本均值与样本方差, 则有 (1) )(~)(121222n X n i i χμσχ∑=-= (2) ).1(~/--=n t n S X T μ 三、双正态总体的抽样分布 定理 4 设),(~211σμN X 与),(~222σμN Y 是两个相互独立的正态总体, 又设 1 ,,,21n X X X 是取自总体X 的样本, X 与21S 分别为该样本的样本均值与样本方差. 2 ,,,21n Y Y Y 是取自总体Y 的样本, Y 与22S 分别为此样本的样本均值与样本方差. 再记2w S 是21S 与22 S 的加权平均, 即

正态总体下的四大分布

《概率论与数理统计》第六章样本及抽样分布 (2)正态总体下的四大分布:正态分布 设n x x x ,,,21 为来自正态总体),(2 σ μN 的一个样本,则样本函数 ). 1,0(~/N n x u def σμ -例:设总体ξ~2 12(1,2 ),,,n N ξξξ 且是取自ξ的样本,则( D ) A) 1(0,1) 2 N ξ-B) 1(0,1) 4N ξ-C) ( ) 1(0,1) 2 N ξ-D ) (0,1) N ξt 分布 设n x x x ,,,21 为来自正态总体),(2 σ μN 的一个样本,则样本函数), 1(~/--n t n s x t def μ其中t(n-1)表示自由度为n-1的t 分布。 分布 2χ设n x x x ,,,21 为来自正态总体),(2 σ μN 的一个样本,则样本函数 ), 1(~)1(22 2 --n S n w def χσ其中)1(2 -n χ 表示自由度为n-1的2χ 分布

例:已知F 0.1(7,20)=2.04,则F 0.9(20,7)=_______0.4902_____. 例.对于给定的正数α,10<<α ,设αu ,)(2 n α χ,)(n t α,),(21n n F α分别是)1,0(N ,)(2n χ,)(n t ,),(21n n F 分布的下α 分位数,则下面结论中不正确... 的是(B ) (A)α α --=1u u (B)) () (2 2 1n n ααχχ-=-(C)) ()(1n t n t αα--=(D)) ,(1 ) ,(12211n n F αα= -2、设X 、Y 相互独立,且都服从标准正态分布,则Z = 2 Y X 服从______t(1)_____分布(同时要写出 分 布的参数). 3.设ξ和η相互独立且都服从N(0,4),而41,ξξ 和41,ηη 分别是来自总体ξ和η的样本,则统计量2 4 2 141......ηηξξ++++= U 服从的分布为 ) 4(t 。

正态分布练习含答案

正态分布 一.选择题: 1.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。 A .μ越大 B .μ越小 C .σ越大 D .σ越小 答案: C 。解析:由正态密度曲线图象的特征知。 2. 已知随机变量X 服从正态分布N (3,σ2 )则P (X <3)等于 ( ) A.15 B.14 C.13 D.12 解析:由正态分布图象知,μ=3为该图象的对称轴,P (X <3)=P (X >3)=12. 答案:D 3.设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ2 2)(σ2>0)的密度函数图象如图所示,则有 ( ) A .μ1<μ2,σ1<σ2 B .μ1<μ2,σ1>σ2 C .μ1>μ2,σ1<σ2 D .μ1>μ2,σ1>σ2 解析:由图可知,μ2>μ1,且σ2>σ1. 答案:A 4.设随机变量ξ服从正态分布)1,0(N ,则下列结论不正确的是 。 A .)0)(|(|)|(|)|(|>=+<=-<=<-=>-=

B .分数在120分以上的人数与分数在60分以下的人数相同 C .分数在110分以上的人数与分数在50分以下的人数相同 D .该市这次考试的数学成绩标准差为10 解析:由密度函数知,均值(期望)μ=80,标准差σ=10,又曲线关于直线x =80对称,故分数在100分以上的人数与分数在60分以下的人数相同,所以B 是错误的. 答案:B 6. 已知随机变量X ~N (3,22 ),若X =2η+3,则D η等于 ( ) A .0 B .1 C .2 D .4 解析:由X =2η+3,得DX =4D η,而DX =σ2 =4,∴D η=1. 答案:B 7. 在一次英语考试中,考试的成绩服从正态分布)36,100(,那么考试成绩在区间(]112,88内的概率是 ( ) A .0.6826 B .0.3174 C .0.9544 D .0.9974 答案:C 。解析:由已知X —N (100,36), 故88100112100 (88112)( )(22)2(2)10.954466 P X P Z P Z P Z --<≤=<≤=-<≤=≤-=。 8. 某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80 分到90分的人数是 ( ) A. 32 B. 16 C. 8 D. 20 答案:B 。解析:数学成绩是X —N(80,102 ), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 二.填空题 9. 若随机变量X ~N (μ,σ2 ),则P (X ≤μ)=________. 解析:由于随机变量X ~N (μ,σ2 ),其概率密度曲线关于x =μ,对称,故P (X ≤μ)=1 2 . 答案:12 10. 已知正态分布总体落在区间(0.2,+∞)的概率为0.5,那么相应的正态曲线f (x )在x =________时达到最高点. 解析:∵P (X >0.2)=0.5,∴P (X ≤0.2)=0.5,

习题六 样本及抽样分布.

习题六样本及抽样分布 一、填空题 1.设来自总体的一个样本观察值为:2.1,5.4,3.2,9.8,3.5,则样本均值 = 4.8 ,样本方差 =; 2.在总体中随机地抽取一个容量为 36 的样本,则均值落在4与6之间的概率 = 0.9332 ; 3.设某厂生产的灯泡的使用寿命 (单位:小时,抽取一容量为9的样本,得到 ,则; 4.设为总体的一个样本,则 0.025 ; 5.设为总体的一个样本,且服从分布,这里, ,则1/3 ; 6.设随机变量相互独立,均服从分布且与分别是来自总体的简单随机样本,则统计量服从参数为 9 的 t 分布。 7.设是取自正态总体的简单随机样本且 ,则 0.05 , 0.01 时,统计量服从分布,其自由度为 2 ;

8.设总体 X 服从正态分布,而是来自总体的简单随机样 本,则随机变量 服从 F 分布,参数为 10,5 ; 9.设随机变量则 F(n,1 ; 10.设随机变量且,A为常数,则 0.7 二、选择题 1.设是来自总体的简单随机样本,是样本均值, 记 则服从自由度的分布的随机变量是( A ); A. B. C. D. 2.设是经验分布函数,基于来自总体的样本,而是总体的分布函数,则下列命题错误的为,对于每个给定的( B ) A.是分布函数 B.依概率收敛于 C.是一个统计量 D.其数学期望是

3.设总体服从0-1分布,是来自总体的样本,是样本均值,则下列各选项中的量不是统计量的是( B ) A. B. C. D. 4.设是正态总体的一个样本,其中已知而未知,则下列各选项中的量不是统计量的是( C )。 A. B. C. D. 5.设和分别来自两个正态总体和的样本,且相互独立,分别为两个样本的样本方差,则服从的统计量是( B ) A. B. C. D. 6.设是正态总体的一个样本,和分别为样本均值和样本方差,则下面结论不成立的有( D ) A.相互独立; B.与相互独立; C.与相互独立D.与相互独立。

与正态总体有关的抽样分布定理证明

定理:设12,,,n X X X 是来自正态总体2(,)N μσ的一个随机样本,记 1 n i i X X n == ∑,2 2 1 ()n i i X X S n =-= ∑ 则有如下性质存在: (1)2 ~, X N n σμ?? ?? ? (2) 2 22 ~(1)nS n χσ - (3 ~(1)X t n - 证明: (1) 已知 ..212,, ,~(,)i i d n X X X N μσ 根据正态分布的性质有 212~(,)n X X X N n n μσ++ + 样本均值为 12n X X X X n ++ += 它的抽样分布为 2~(,)X N μσ (2) 对样本12,, ,n X X X 进行正交变换 Z AX = 其中()12,, ,n X X X X '=,()12,,,n Z Z Z Z '=,A 为正交矩阵

00 A n ?? ? ? ? ? ? = ? ? - ? ? ? ? ? 正交变换之后, i Z,1,2,, i n =相互独立,且 2 112 ~ (0,) Z X X Nσ = 2 2123 ~(0,) Z X X X Nσ =+ 2 112 ~(0,) ( n n Z X X X N n n σ- =++- ? 2 12 ~,) n n Z X X X N n σ =++ 即正交变换之后 2 ~(0,) i Z Nσ,1,2,,1 i n =- 2 ~,) n Z Nσ 由 i Z相互独立,且2 ~(0,) i Z Nσ,1,2,,1 i n =-,推导出 ~(0,1) i Z N σ ,1,2,,1 i n =- 标准正态分布的平方和服从2 χ分布,即有 1 2 2 1 2 ~(1) n i i Z n χ σ - =- ∑ 又因为

正态分布的前世今生(完整版)

正态分布的前世今生
一、正态分布,熟悉的陌生人
学过基础统计学的同学大都对正态分布非常熟悉。这个钟型的分布曲线不但形状优雅, 其密度函数写成数学表达式
12π??√σexp(?(x?μ)22σ2)
也非常具有数学的美感。其标准化后的概率密度函数
12π??√exp(?x22) 更加的简洁漂亮,两个最重要的数学常量 π,e 都出现在了公式之中。在我个人的审美之中,
它也属于 top-N 的最美丽的数学公式之一, 如果有人问我数理统计领域哪个公式最能让人感觉 到上帝的存在,那我一定投正态分布的票。因为这个分布戴着神秘的面纱,在自然界中无处不 在,让你在纷繁芜杂的数据背后看到隐隐的秩序。
【正态分布曲线】
正态分布又通常被称为高斯分布,在科学领域,冠名权那是一个很高的荣誉。早年去 过德国的兄弟们还会发现,德国的钢镚和 10 马克的纸币上都留有高斯的头像和正态密度 曲线。正态分布被冠名高斯分布,我们也容易认为是高斯发现了正态分布,其实不然,不 过高斯对于正态分布的历史地位的确立是起到了决定性的作用。
1

【德国马克上的高斯头像和正态分布曲线】 正态曲线虽然看上去很美,却不是一拍脑袋就能想到的。我们在本科学习数理统计的 时候,课本一上来介绍正态分布就给出密度分布函数,却从来不说明这个分布函数是通过 什么原理推导出来的。所以我一直搞不明白数学家当年是怎么找到这个概率分布曲线的, 又是怎么发现随机误差服从这个奇妙的分布的。我们在实践中大量的使用正态分布,却对 这个分布的来龙去脉知之甚少,正态分布真是让人感觉既熟悉又陌生。直到我读研究生的 时候,我的导师给我介绍了陈希儒院士的《数理统计学简史》这本书,看了之后才了解了 正态分布曲线从发现到被人们重视进而广泛应用,也是经过了几百年的历史。 正态分布的这段历史是很精彩的,我们通过讲一系列的故事来揭开她的神秘面纱。
二、邂逅,正态曲线的首次发现
第一个故事和概率论的发展密切相关,主角是棣莫弗(De Moivre)和拉普拉斯 (Laplace)。拉普拉斯是个大科学家,被称为法国的牛顿;棣莫弗名气可能不算很大,不 过大家应该都熟悉这个名字,因为我们在高中数学学复数的时候我们都学过棣莫弗定理
(cosθ+isinθ)n=cos(nθ)+isin(nθ). 古典概率论发源于赌博,惠更斯、帕斯卡、费马、贝努利都是古典概率的奠基人,他们那
会研究的概率问题大都来自赌桌上,最早的概率论问题是赌徒梅累在 1654 年向帕斯卡提出的 如何分赌金的问题。 统计学中的总体均值之所以被称为期望(Expectation), 就是源自惠更斯、 帕斯卡这些人研究平均情况下一个赌徒在赌桌上可以期望自己赢得多少钱。
棣莫弗(De Moivre)
拉普拉斯 (Laplace)
2

正态分布教案导学案

2.4.1正态分布 【教学目标】 1. 了解正态分布的意义,掌握正态分布曲线的主要性质及正态分布的简单应用。 2. 了解假设检验的基本思想,会用质量控制图对产品的质量进行检测,对生产过程进行控制。 【教学重难点】 教学重点:1.正态分布曲线的特点; 2.正态分布曲线所表示的意义. 教学难点:1.在实际中什么样的随机变量服从正态分布; 2.正态分布曲线所表示的意义. 【教学过程】 一、 设置情境,引入新课 这是一块高尔顿板,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,最后掉入高尔顿板下方的某一球槽内。 问题1.在投放小球之前,你能知道这个小球落在哪个球槽中吗? 问题2.重复进行高尔顿板试验,随着试验次数的增加,掉入每个球槽中小球的个数代表什么? 问题3.为了更好的研究小球分布情况,对各个球槽进行编号,以球槽的编号为横坐标,以小球落入各个球槽的频率值为纵坐标,你能画出它的频率分布直方图吗? 问题4.随着试验次数的增加,这个频率直方图的形状会发生什么样的变化? 二、合作探究,得出概念 随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线 . 这条曲线可以近似下列函数的图像: 22 ()2,1(),(,),2x x e x μσμσ?πσ --= ∈-∞+∞ 其中实数(0)μσσ>和为参数,我们称,()x μσ?的图像为正态分布密度曲线,简称正态曲

线。 问题5.如果在高尔顿板的底部建立一个水平坐标轴,其刻度单位为球槽的宽度,X 表示一个随机变量,X 落在区间(,]a b 的概率为什么?其几何意义是什么? 一般地,如果对于任何实数a b <,随机变量X 满足 ,(

统计学第5-6章 正态分布、 统计量及其抽样分布讲解学习

第5-6章 统计量及其抽样分布 5.1正态分布 5.1.1定义:当一个变量受到大量微小的、独立的随机因素影响时,这个变量一般服从正态分布或近似服从正态分布。 概率密度曲线图 例如:某个地区同年龄组儿童的发育特征:身高、体重、肺活量等 某一条件下产品的质量 如果随机变量X 的概率密度为 22 ()21 (),2x f x e x μσπσ --=-∞<<∞ 则称X 服从正态分布。 记做 2 (,)X N μσ:,读作:随机变量X 服从均值为μ,方差为2 σ的正态分布 其中, μ-∞<<∞,是随机变量X 的均值,0σ>是是随机变量X 的标准差 5.1.2正态密度函数f(x)的一些特点: ()0f x ≥,即整个概率密度曲线都在x 轴的上方。 曲线 ()f x 相对于x μ=对称,并在 x μ=处达到最大值,

1 () 2 fμ πσ = 。 1 μ< 2 μ< 3 μ 曲线的陡缓程度由 σ 决定:σ越大,曲线越平缓;σ越小,曲线越陡峭当 x 趋于无穷时,曲线以x轴为其渐近线。 标准正态分布 当 0,1 μσ == 时, 2 2 1 () 2 x f x e π - = , x -∞<<∞ 称 (0,1) N 为标准正态分布。

标准正态分布的概率密度函数: ()x ? 标准正态分布的分布函数: ()x Φ 任何一个正态分布都可以通过线性变换转化为标准正态分布 设 2 (,) X Nμσ : ,则 (0,1) X Z N μ σ - =: 变量 2 11 (,) X Nμσ :与变量2 22 (,) Y Nμσ :相互独立,则有 22 1212 +(+,+) X Y Nμμσσ : 5.1.3 正态分布表:可以查的正态分布的概率值()1() x x Φ-=-Φ 例:设 (0,1) X N :,求以下概率 (1) ( 1.5) P X< (2) (2) P X> (3) (13) P X -<≤

正态分布推导72927

正态分布的推导 斯特林(Stirling)公式的推导 斯特林(Stirling)公式: 这个公式的推导过程大体来说是先设一个套,再兜个圈把结果套进来,同时把公式算出来。Stirling太强了。 1,Wallis公式 证明过程很简单,分部积分就可以了。 由x的取值可得如下结论: 即 化简得 当k无限大时,取极限可知中间式子为1。所以

第一部分到此结束,k!被引入一个等式之中。 2,Stirling公式的求解 继续兜圈。 关于lnX的图像的面积,可以有三种求法,分别是积分,内接梯形分隔,外切梯形分隔。分别是: 显然, 代入第一部分最后公式得

(注:上式中第一个beta为平方) 所以得公式: 正态分布推导 在一本俄国的概率教材上看到以下一段精彩的推导,才知道原来所谓正态分布并不是哪位数学家一拍脑门想起来的。记得大学时的教材上只告诉了我们在抽样实验中当样本总量很大时,随机变量就服从正态分布,至于正态分布是怎么来的一点都不提。大学之前,我始终坚信数学是世界上最精致的艺术。但是上了大学之后,发现很多数学上很多问题教材中都是语焉不详,而且很多定义没有任何说明的就出来了,就像一致连续,一致收敛之类的,显得是那么的突兀。这时候数学就像数学老师一样蛮横,让我对数学极其反感,足足有四年之久。只到前些日子,在CSDN上读到孟岩的一篇并于矩阵的文章,才重新对数学发生兴趣。最近又读到了齐民友所写的《重温微积分》以及施利亚耶夫所写的《概率》,才知道原来每一个定义,和每一个定理都有它的价值和意义。 前几天在网上遇到老文,小小的探讨了一下这个问题,顺便问起他斯特林公式的证明过程。他说碰巧最近很是在研究这个公式,就写出来放在百度上以供来者瞻仰吧。于是就有了这篇文章: 斯特林(Stirling)公式的推导 如果哪位在读本篇之前想要知道斯特林公式是怎么来的,请阅读之。 本来是想和老文一块发的,怎奈一个小小的公式编辑器让我费了两个晚上才搞定。于是直至今日,方才有这篇小文字。 本篇是斯特林公式的一个应用。本篇的推导全部抄自施利亚耶夫著《概率》,本文的证明完成了棣莫弗——拉普拉斯定理推导的前半部分,后半部分以及其与伯努利大数定律的关系在以后再往上贴吧。其实也不是很难,自己动动手也是能推出来的。 这次推导可以说是“连续性随机变量”第一次出现在该书中,作为理解连续性随机变量的基础,正态分布是十分重要的。 斯特林公式: 根据斯特林公式,

习题六__样本及抽样分布解答

样本及抽样分布 一、填空题 1.设来自总体X 的一个样本观察值为:2.1,5.4,3.2,9.8,3.5,则样本均值 = 4.8 ,样本方差 =22.716; 2.在总体~(5,16)X N 中随机地抽取一个容量为 36 的样本,则均值X 落在4与6之间的概率 = 0.9332 ; 4.设127,,...,X X X 为总体2 ~(0,0.5)X N 的一个样本,则7 21(4)i i P X =>=∑ 0.025 ; 5.设126,,...,X X X 为总体~(0,1)X N 的一个样本,且cY 服从2χ分布,这里, 22123456()()Y X X X X X X =+++++,则c =1/3 ; 6.设随机变量,X Y 相互独立,均服从2(0,3)N 分布且129,,...,X X X 与129,,...,Y Y Y 分别是来自总体,X Y 的简单随机样本,则统计量U =服从参数为 9 的 t 分布。 7.设1234,,,X X X X 是取自2~(0,2)X N 正态总体的简单随机样本且 22!234(2)(34),Y a X X b X X =-+-,则a = 0.05 ,b = 0.01 时,统计量Y 服从 2χ分布,其自由度为 2 ; 8.设总体 X 服从正态分布2~(0,2)X N ,而1215,,...,X X X 是来自总体的简单随机 样本,则随机变量 22 110 22 1115...2(...) X X Y X X ++=++服从 F 分布,参数为 10,5 ; 9.设随机变量21 ~()(1),,X t n n Y X >= 则~Y F(n,1) ; 10.设随机变量~(,)X F n n 且()0.3P X A >=,A 为常数,则1 ()P X A > = 0.7 14 设随机变量X 和Y 相互独立且都服从正态分布)3,0(2 N ,而91,,X X 和91,,Y Y 分别是来自总体X 和Y 简单随机样本,则统计量29 2 1 91Y Y X X U ++++= 服从 分布。t (9)

河北省张家口一中选修2-3 2.4 正态分布 教案

教学目标: 知识与技能:掌握正态分布在实际生活中的意义和作用 。 过程与方法:结合正态曲线,加深对正态密度函数的理理。 情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质 。 教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。 教学难点:通过正态分布的图形特征,归纳正态曲线的性质。 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.即总体密度曲线在区间(a ,b )上得定积分。 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 22()2,(),(,)2x x x μσμσ?πσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσ?的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

1.一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X b x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2 σμN . 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

相关文档
最新文档