专题复习:一次函数图像与性质

专题复习:一次函数图像与性质
专题复习:一次函数图像与性质

导学案一次函数及其图象

知识点在线

1. ( 1)一次函数、正比例函数的概念和图象

⑵一次函数与正比例函数的概念:

形如_____________ (k, b是常数,k工0的函数叫做一次函数;

形如_____________ (k是常数,k工0的函数叫做正比例函数.

(3) 一次函数的图像:

2. _________________________________________________________________ 设m>0 ,将直线y= kx + b向上平移m个单位长度得到直线 ___________________________________ ;向下平移m

个单位长度得到直线_____________________

3?利用待定系数法求一次函数解析式的主要步骤:

(1) 设函数关系式为 _______________________ ;

(2) 由已知条件得出关于k, b的方程(组);

(3) 解方程(组),求出k, b的值,从而求出解析式.

4?两个区别: (1)正比例函数和一次函数的区别:

正比例函数是一次函数的特殊情况,一次函数包括正比例函数.也就是说:如果一个函数

是正比例函数,那么一定是一次函数,但是,一个函数是一次函数,不一定是正比例函数.

⑵ 正比例和正比例函数的区别

成正比例的两个量之间的函数关系不一定是正比例函数,但正比例函数的两个量一定成

正比例.

【例题精讲】

例1 ( 1)若式子.k -1 - (k -1)0有意义,则一次函数y=(k-1)xV-k的图形可能经过的

象限是_______________

⑵对于一次函数y=—2x + 4,下列结论错误的是()

A .函数值随自变量的增大而减小

B. 函数的图象不经过第三象限

C. 函数的图象向下平移4个单位长度得y = —2x的图象

D .函数的图象与x轴的交点坐标是(0, 4)

例2 ( 1)如图,过A点的一次函数的图象与正比例函数

一次函数的解析式是_________________

【变式训练】

(1)直线与x轴交于点A (-4 , 0),与y轴交于点B,若点B到x轴的距离为2,求直线

的解析式。

(2)直线y=kx+ b与直线y=5-4x平行,且与直线y= -3( x-6)相交,交点在y轴上,求此

直线解析式。

例3如图,直线y=kx+b经过A(3 , 1)和B(6 , 0)两点, 1

求不等式组0 v kx + b v 的解集.

【变式训练】已知一次函数y = kx + b(k丰0)中自变量x的取值范围

为一2

例4已知一次函数 2 的图象与y轴交点的纵坐标为一1,

_(n_2)x十n _n_3

判断J? =(3_J5)x n七是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。

例5已知:一次函数 1 的图象与x轴、y轴分别交于A、B两点,过点C (4, 0作

y x -3

2

AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标。

【过关检测】:

1.(2014本溪)若实数a, b满足ab v 0,且a v b,则函数y = ax + b的图象可能是()

2.已知次函数y = kx

—1,若y随x的增大而增大,则它的图象经过(

A ?第一、二、三象限

B ?第一、二、四象限

C.第一、三、四象限 D ?第二、三、四象限

3. 直线y = 2x + 2沿y 轴向下平移6个单位后与x轴的交点坐标是()

4.设正比例函数y = mx的图象经过点A(m,4),且y的值随x值的增大而减小,

C. 4

8.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1, A2在直线y = x + 1上,点C1, C2在x轴上,已知A1点的坐标是(0 , 1),则点

9.已知一次函数y = kx + 3的图象经过点A(1,

(1)求这个一次函数的解析式;(2)试判断点B( —

1, 5), C(0 , 3) , D(2 , 1)是否在这个一次函数的图象上.

10.关于x的一次函数y = kx + k2+ 1的图象可能是()

11 .在平面直角坐标系中,将直线11:y =—2x —2平移后,得到直线

12

y = —2x +

4,

则下列平移作法正确的是()

A

?

将11向右平移3个单位长度

B. 将11向右平移6个单位长度

C

.

将h向上平移2个单位长度

D

.

将11向上平移4个单位长度

【能力提升】

A ? ( —4 , 0)

B ? ( —1, 0) C?(0 , 2) D ? (2 , 0)

5?如图,直线y = kx+ b经过A(2 , 1), B( —1,—2)两点,则不等式x>kx

+ b> —2的解集为(

A ? x<2

B ? x> —1

C. x<1 或x>2 D? —1

6.—次函数y = kx + b(k丰0)的图象经过A(1 , 0)和B(0 , 2)两点,则它的

图象不经过第象限.

7.点(—1, y", (2 , y2)是直线y = 2x + 1上的两点,则y1y2.(填、”或=”或N ”)

12.如图,直线y =—x + m与y = nx + 4n(n丰0的交点的横坐标为一2,则关于x的不等式一x+ m > nx + 4n > 0的整数解为(

A. —1 B . —5 C. —4 D . —3

13?如图,已知直线y = x+ 3与x轴、y轴交于A,

B两点,直线I经过原点,与线段AB交于点C, 求直线I的解析式.

二次函数图像和性质专题训练(答案)

二次函数图象专题训练 1.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论①a 、b 异号;②当x =1和x=3时,函数值相等;③4a +b =0,④当y =4时,x 的取值只能为0.结论正确的个数有( ) 个 A .1 B.2 C.3 D.4 2、已知二次函数2y ax bx c =++(0a ≠)的 图象如图所示,有下列结论: ①240b ac ->; ②0abc >; ③80a c +>; ④930a b c ++<.其中,正确结论的个数是( ) A .1 B .2 C .3 D .4 3.已知二次函数2 y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x , ,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③ 20a c +>;④210a b -+>.其中正确结论的个数是 个. A .1 B .2 C .3 D .4 4、已知抛物线y =ax 2 +bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( ) A . a >0 B . b <0 C . c <0 D . a +b +c >0 5、如图所示的二次函数2 y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)2 40b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。你认为其中错误.. 的有 A .2个 B .3个 C .4个 D .1个 6、已知二次函数y =ax 2 +bx +c (a ≠0)的图象如图,则下列结论中正确的是( ) A .a >0 B .当x >1时,y 随x 的增大而增大 C .c <0 D .3 是方程ax 2 +bx +c =0的一个根

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

余弦函数图像和性质练习含答案

课时作业10 余弦函数、正切函数的图象与性质(一) 时间:45分钟 满分:100分 一、选择题(每小题6分,共计36分) 1.函数f (x )=cos(2x -π 6)的最小正周期是( ) A.π2 B .π C .2π D .4π 解析:本题考查三角函数的周期. T = 2π 2 =π. 余弦型三角函数的周期计算公式为2π ω (ω>0). 答案:B 2.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π 3个 单位长度后,所得的图象与原图象重合,则ω的最小值等于( ) A.13 B .3 C .6 D .9 解析:将f (x )向右平移π3个单位长度得g (x )=f (x -π 3)= cos[ω(x -π3)]=cos(ωx -π3ω),则-π 3 ω=2k π, ∴ω=-6k ,又ω>0,∴k <0,当k =-1时, ω有最小值6,故选C.

3.设f (x )是定义域为R ,最小正周期为3π 2 的函数,若f (x )= ????? cos x ? ?? ?? -π2≤x ≤0,sin x 0

三角函数正余弦函数的图像及性质复习汇总

一、正弦函数和余弦函数的图象: 正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,3,,,222ππ ππ 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。 (2)值域: 1、都是[]1,1-, 2、sin y x =,当()22 x k k Z π π=+ ∈时,y 取最大值1;当()322 x k k Z π π=+ ∈时,y 取最小值-1; 3、cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。 例:(1)若函数sin(3)6 y a b x π=-+的最大值为23,最小值为21 -,则=a __,=b _

(答:,12 a b ==或1b =-); ⑵ 函数y=-2sinx+10取最小值时,自变量x 的集合是_________________________。 (3)周期性: ①sin y x =、cos y x =的最小正周期都是2π; ②()sin()f x A x ω?=+和()cos()f x A x ω?=+的最小正周期都是2|| T πω=。 例:(1)若3 sin )(x x f π=,则(1)(2)(3)(2003)f f f f ++++=___(答:0) ; ⑵.下列函数中,最小正周期为π的是( ) A.cos 4y x = B.sin 2y x = C.sin 2x y = D.cos 4x y = (4)奇偶性与对称性: 1、正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2 x k k Z π π=+ ∈; 2、余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ? ?+∈ ???,对称轴是直线()x k k Z π=∈ (正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。 例:(1)函数522y sin x π?? =- ??? 的奇偶性是______(答:偶函数); (2)已知函数31f (x )ax b sin x (a,b =++为常数),且57f ()=,则5f ()-=______(答:-5); (5)单调性: ()sin 2,222y x k k k Z ππππ??=-+∈????在上单调递增,在()32,222k k k Z ππππ? ?++∈????单调递减; cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! ⑴函数y=sin2x 的单调减区间是( )

三角函数的图像与性质专题(含解析)

第讲三角函数的图像与性质 时间:年月日刘老师学生签名: 一、兴趣导入 二、学前测试 1.已知角α的终边上一点的坐标为 22 (sin,cos) 33 ππ ,则角α的最小正角是() A、 5 6 π B、 2 3 π C、 5 3 π D、 11 6 π 解析.D [角α在第四象限且 2 cos3 3 tan 23 sin 3 π α π ==-] 2.若α是第二象限的角,且|cos|cos 22 αα =-,则 2 α 是() A、第一象限角 B、第二象限角 C、第三象限角 D、第四象限角 解析C 22,(),,(), 2422 k k k Z k k k Z ππαπ παππππ +<<+∈+<<+∈ 当2,() k n n Z =∈时, 2 α 在第一象限;当21,() k n n Z =+∈时, 2 α 在第三象限; 而cos cos cos0 222 ααα =-?≤, 2 α ∴在第三象限; 3已知角α的终边与函数)0 (,0 12 5≤ = +x y x决定的函数图象重合,求 α α α sin 1 tan 1 cos- += 解析:在角α的终边上取点 1255 (12,5),13,cos,tan,sin 131213 P rααα -==-=-=

故αααsin 1tan 1cos - + =77 13 - 4.(湛江市实验中学2010届高三第四次月考)已知3 5 cos θ= ,且角θ在第一象限,那么2θ在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:B 3222542cos k k ππθπθπ= <∴+<<+,4242 k k ππθππ∴+<<+故2θ在第二象限. 三、方法培养 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ????π2,1 (π,0) ? ?? ??32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ????π2,0,(π,-1),? ?? ??3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 , k ∈Z } 图象 值域 [-1,1] [-1,1] R 对称性 对称轴:__ x =k π+π 2 (k ∈Z )__ _; 对称中心: _ (k π,0)(k ∈Z )__ _ 对称轴: x =k π(k ∈Z )___; 对称中心: _(k π+π 2,0) (k ∈Z )__ 对称中心:_? ?? ? ?k π2,0 (k ∈Z ) __ 周期 2π_ 2π π 单调性 单调增区间_[2k π- π2 , 2k π + 单调增区间[2k π-π,2k π] (k ∈Z ) ____; 单调增区间_(k π- π 2 ,k π+

专题08 一元二次函数的图像和性质(原卷版)

专题08 一元二次函数的图像和性质一、知识点精讲 【问题1】函数y=ax2与y=x2的图象之间存在怎样的关系? 为了研究这一问题,我们可以先画出y=2x2,y=1 2 x2,y=-2x2的图象,通过这些函数图象与函数y=x2 的图象之间的关系,推导出函数y=ax2与y=x2的图象之间所存在的关系. 先画出函数y=x2,y=2x2的图象. 先列表: x …-3 -2 -1 0 1 2 3 … x2…9 4 1 0 1 4 9 … 2x2…18 8 2 0 2 8 18 从表中不难看出,要得到2x2的值,只要把相应的x2的值扩大两倍就可以了. 再描点、连线,就分别得到了函数y=x2,y=2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y=2x2的图象可以由函数y=x2的图象各点的纵坐标变为原来的两倍得到. 同学们也可以用类似于上面的方法画出函数y=1 2 x2,y=-2x2的图象,并研究这两个函数图象与函数y= x2的图象之间的关系. 通过上面的研究,我们可以得到以下结论: 二次函数y=ax2(a≠0)的图象可以由y=x2的图象各点的纵坐标变为原来的a倍得到.在二次函数y=ax2(a≠0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小. 【问题2】函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?

同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点. 类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论: 二次函数y =a(x +h)2+k(a≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. 由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c(a≠0)的图象的方法: 由于y =ax 2 +bx +c =a(x 2 +b x a )+c =a(x 2 +b x a +224b a )+c - 24b a 2 24()24b ac b a x a a -=++ , 所以,y =ax 2+bx +c(a≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c(a≠0)具有下列性质: (1)当a >0时,函数y =ax 2 +bx +c 图象开口向上;顶点坐标为2 4(,)24b ac b a a --, 对称轴为直线x =-2b a ;当x <2b a - 时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b a -时,函数取最小值y =2 44ac b a -.

正余弦函数的图像与性质

正余弦函数的图像与性质 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

高三数学函数图像与性质专题

2020高三数学培优专练1:函数的图像与性质 例1:对于函数()f x ,若a ?,b ,c ∈R ,都有()f a ,()f b ,()f c 为某一三角形的三条边,则称 ()f x 为“可构造三角形函数”,已知函数()1 x x e t f x e +=+(e 为自然对数的底数)是“可构造三角形函数”, 则实数t 的取值范围是( ) A .[0,)+∞ B .[0,2] C .[1,2] D .1,22 ?????? 【答案】D 【解析】由题意可得:()()()f a f b f c +>,对a ?,b ,c ∈R 恒成立, 1 ()111 x x x e t t f x e e +-==+++,当10t -=时,()1f x =,()()()1f a f b f c ===,满足条件, 当10t ->时,()f x 在R 上单调递减,∴1()11f a t t <<+-=, 同理:1()f b t <<,1()f c t <<, ∵()()()f a f b f c +>,所以2t ≥,∴12t <≤. 当10t -<时,()f x 在R 上单调递增,∴()1t f a <<, 同理:()1t f b <<,()1t f c <<,∴21t ≥,12t ≥ .∴1 12 t ≤<. 综上可得:实数t 的取值范围是1,22?????? . 培优一 函数的图象与性质 一、函数的单调性 二、函数的奇偶性和对称性

例2:设函数()f x 、()g x 分别是定义在R 上的奇函数和偶函数,且()()2x f x g x +=,若对[1,2]x ∈, 不等式()(2)0af x g x +≥恒成立,则实数a 的取值范围是( ) A .[ )1,-+∞ B .) 22,?-+∞? C .17,6?? - +∞???? D .257,60?? - +∞???? 【答案】C 【解析】∵()f x 为定义在R 上的奇函数,()g x 为定义在R 上的偶函数, ∴()()f x f x -=-,()()g x g x -=, 又∵由()()2x f x g x +=,结合()()()()2x f x g x f x g x --+-=-+=, ∴1()(22)2x x f x -= -,1 ()(22)2 x x g x -=+, 又由()(2)0af x g x +≥,可得 221 (22)(22)022 x x x x a ---++≥, ∵12x ≤≤,∴ 315 2224 x x -≤-≤, 令22x x t -=-,则0t >,将不等式整理即得:2a t t ? ?≥-+ ?? ? . ∵31524t ≤≤,∴172257660t t ≤+≤,∴176 a ≥-.故选C . 例3:定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[0,2)x ∈时,2()48f x x x =-+.若在 区间[,]a b 上,存在(3)m m ≥个不同的整数i x (1i =,2,L ,m ),满足1 11 ()()72m i i i f x f x -+=-≥∑ , 则b a -的最小值为( ) A .15 B .16 C .17 D .18 【答案】D 三、函数的周期性

正余弦函数的图像与性质(周期性)

第一课时 题目:正弦函数、余弦函数的图象 授课时间:3月25日,星期一 课型:新授课 教学目标: 理解借助单位圆中的三角函数线(正弦线)画出y sin x =的图象,进而画出 y cos x =的图象;会用“五点法”画y sin x =和y cos x =在一个周期内的简图。 教学重点和难点: 重点:利用三角函数线画正弦函数[]x 0,2 蝡的图象,用“五点法”画y sin x =和 y cos x =在一个周期内的简图。 难点:正弦函数与余弦函数图象间的关系、图象变换。 学情分析: 学生在之前已经学了一次函数、二次函数、指数函数、对数函数和幂函数,已掌握了一些基础函数的图像和性质,并了解一些函数图像的画法。而且刚分班学生的学习动力很足,但学生分析、理解能力较差,对具体形象的事物比较感兴趣,但对学习抽象理论知识存在畏难情绪,缺乏学习主动性,因此在教学中要注意引导学生积极思考和多动手画图练习。 教学方法: 通过多媒体展示正弦函数的形成,是学生更直观形象的了解正弦函数的形成,加深印象增加兴趣。并配合适当讲授法。在五点法画图中要学生动手实践,加深印象和理解。 教具、学具的准备:多媒体、直尺、圆规 教学过程: (一)知识链接 1、正弦线的概念 2、诱导公式(六) (二)情景设置 在初中和必修一的函数学习中,我们知道函数的图像为我们解决相关的函数问题提供了重要的方法和工具,那么三角函数的图像是怎样的呢? 这节课让我们来共同探讨正、余弦函数的图像问题。 【设计意图】从原有知识出发,类比联想,引入问题情景,学生主动参与,积极思考 (三)课题导入 提问1、如何作正弦函数的图象? ①列表描点法: 步骤:列表、描点、连线 大家试着画出正弦函数sin y x =[]0,2x π∈的图像

三角函数正余弦函数的图像及性质复习汇总

课题三角函数的图像及性质 1.借助单位圆中的三角函数线推导出诱导公式( π2/±α , π的±正α弦、余弦、正切) 教学目标 2.利用单位圆中的三角函数线作出y sin x,x R的图象,明确图象的形状; 3.根据关系cosx sin(x ) ,作出y cosx,x R的图象; 2 4.用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题; 重点、难点 1、正确地用三角函数线表示任意角的三角函数值 2、作余弦函数的图象。 教学内容 、正弦函数和余弦函数的图象: -1 正弦函数y sin x 和余弦函数y cos x图象的作图方法:五点法:先取横坐标分别为0,, ,3 ,2 22 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数y sin x(x R) 、余弦函数y cosx(x R) 的性质: ( 1)定义域:都是R。 (2)值域: 1、都是1,1 , 2、y sinx ,当x 2k k 2 3、y cosx ,当x 2k k Z 例: ( 1)若函数y a bsin(3 x Z 时,y 取最大值1 ;当x 时,y 取最大值1,当x 2k ) 的最大值为3,最小值为 62 3 2k 3 k Z 时,y 取最小值-1; 2 k Z 时,y 取最小值- 1 。 1,则 a __, b _ 2 3 y -2 1 y=cosx -3 -5 -32 -4 -7 -2 -3 22

1 答: a 1 2,b 1或b 1); ⑵ 函数 y=-2sinx+10 取最小值时,自变量 x 的集合是 3)周期性 : (正(余)弦型函数的对称轴为过最高点或最低点且垂直于 x 轴的直线,对称中心为图象与 x 轴的交 点)。 5)单调性 : 别忘了 k Z ! ⑴函数 y=sin2x 的单调减区间是( ① y sin x 、 y cos x 的最小正周期都是 2 ; ② f ( x) A sin( x )和 f (x) Acos( 2 x ) 的最小正周期都是 T 2 sin 3x ,则 f (1) f (2) ⑵.下列函数中,最小正周期为 例: (1)若 f (x) f (3) L 的是( A. y cos 4x B. y sin 2x C.y f (2003) = 答: 0); x sin 2 D.y x cos 4 ( 4)奇偶性与对称性 : 1、正弦函数 y sin x ( x R ) 是奇函 数, 对称中心是 k ,0 k Z ,对称轴是直线 x k k Z ; 2 2、余弦函数 y cosx (x R ) 是偶函数, 对称中心是 k 2 ,0 k Z ,对称轴是直线 x k k Z 5 例:(1) 函数 y sin 5 2 2x 的奇偶性是 答:偶函数); 2)已知函数 f ( x ) a x bsin 3 x 1( a,b 为常数), 且 f (5 ) 7, 则 f ( 5) 答:- 5); y sin x 在 2k , 2k 2 k Z 上单调递增,在 2k , 2k 2 3 k Z 单调递减; 2 y cosx 在 2k ,2 k Z 上单调递减,在 2k ,2k k Z 上单调递增。 特别提醒 ,

专题复习·函数的图像与性质

专题复习·函数的图像与性质(1) 班级 姓名 学号 一.选择题 1.一次函数y =2x +1的图象经过( ) A 、第二、三、四象限 B 、第一、三、四象限 C 、第一、二、四象限 D 、第一、二、三象限 2.下列各点中,在函数2 y x = 图象上的点是( ) A .(2,4) B .(-1,2) C .(-2,-1) D .(2 1-,1-) 3.如果已知一次函数y =kx +b 的图象不经过第三象限,也不经过原点,那么k 、b 的取值范围是( ) A k >0且b >0 B k >0且b <0 C k <0且b >0 D k <0且b <0 4.直线y x =与抛物线2y x 2=-的两个交点的坐标分别是( ) A (2,2),(1,1) B (2,2),(-1,-1) C (-2,-2)(1,1) D (-2,-2)(-1,1) 5.如图,直线l 1和l 2的交点坐标为( ) A.(4,-2) B. (2,-4) C. (-4,2) D. (3,-1) 6.一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计算;方式B 除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。若上网所用时问为x 分.计费为y 元,如图.是在同一直角坐标

① 图象甲描述的是方式A : ② 图象乙描述的是方式B ; ③ 当上网所用时间为500分时,选择方式B 省钱. 其中,正确结论的个数是( ) A. 3 B. 2 C. 1 D. 0 7.二次函数2y x 2x 1=-+与x 轴的交点个数是( ) A .0 B .1 C .2 D .3 8.下列函数中,当x >0时,y 值随x 值增大而减小的是( ) A 、2y x = B 、y x 1=- C 、3y x 4 =错误!未找到引用源。 D 、 1 y x = 错误!未找到引用源。 9.在函数y k x k =>()0的图象上有三点Ax y 111 (),、A x y A x y 222333()(),、,,已知x x x 1230<<<,则下列各式中,正确的是( ) A . y y 130<< B . y y 310<< C . y y y 213 << D . y y y 312<< 10.已知二次函数2y ax bx c(a 0)=++≠的图象如图所示,有下列5个结论: ① abc 0>;② b a c <+;③ 4a 2b c 0++>;④ 2c 3b <;⑤ a b m(am b)+>+,(m 1≠的实数)其中正确的结论有( )

正、余弦函数的图象和性质

xx -xx 学年度下学期 高中学生学科素质训练 高一数学同步测试(6)—正、余弦函数的图象和性质 一、选择题(每小题5分,共60分,请将正确答案填在题后的括号内) 1.函数)4 sin(π +=x y 在闭区间( )上为增函数. ( ) A .]4 ,43[ππ- B .]0,[π- C .]4 3 ,4[ππ- D .]2 ,2[π π- 2.函数)4 2sin(log 2 1π + =x y 的单调减区间为 ( ) A .)(],4(Z k k k ∈- ππ π B .)(]8,8(Z k k k ∈+- π πππ C .)(] 8 ,83(Z k k k ∈+-π πππ D .)(]8 3 ,8(Z k k k ∈++ππππ 3.设a 为常数,且π20,1≤≤>x a ,则函数1sin 2cos )(2 -+=x a x x f 的最大值为 ( ) A .12+a B .12-a C .12--a D .2 a 4.函数)2 5 2sin(π+=x y 的图象的一条对称轴方程是 ( ) A .2 π - =x B .4 π - =x C .8π=x D .π4 5=x 5.方程x x lg sin =的实根有 ( ) A .1个 B .2个 C .3个 D .无数个 6.下列函数中,以π为周期的偶函数是 ( ) A .|sin |x y = B .||sin x y = C .)32sin(π + =x y D .)2 sin(π +=x y 7.已知)20(cos π≤≤=x x y 的图象和直线y=1围成一个封闭的平面图形,该图形的面积 是 ( ) A .4π B .2π C .8 D .4 8.下列四个函数中为周期函数的是 ( )

正弦函数与余弦函数的图像与性质练习题

正弦函数与余弦函数的图像与性质 1.已知函数f (x )=sin(x -π2 )(x ∈R ),下面结论错误的是________. ①函数f (x )的最小正周期为2π ②函数f (x )在区间[0,π2 ]上是增函数 ③函数f (x )的图象关于直线x =0对称 ④函数f (x )是奇函数 2.函数y =2cos 2(x -π4 )-1是________.①最小正周期为π的奇函数 ②最小正周期为π的偶函数 ③最小正周期为π2的奇函数 ④最小正周期为π2 的偶函数 3.若函数f (x )=(1+3tan x )cos x ,0≤x <π2 ,则f (x )的最大值为________. 4.已知函数f (x )=a sin2x +cos2x (a ∈R )图象的一条对称轴方程为x = π12,则a 的值为________. 5.设f (x )=A sin(ωx +φ)(A >0,ω>0)的图象关于直线x =π3 对称,它的最小正周期是π,则f (x )图象上的一个对称中心是________(写出一个即可). 6.设函数f (x )=3cos 2x +sin x cos x -32 . (1)求函数f (x )的最小正周期T ,并求出函数f (x )的单调递增区间; (2)求在[0,3π)内使f (x )取到最大值的所有x 的和. B 组 1.函数f (x )=sin(23x +π2)+sin 23 x 的图象相邻的两条对称轴之间的距离是________.

2.给定性质:a 最小正周期为π;b 图象关于直线x = π3 对称.则下列四个函数中,同时具有性质ab 的是________. ①y =sin(x 2+π6) ②y =sin(2x +π6) ③y =sin|x | ④y =sin(2x -π6 ) 3.若π40)在[-2π3,2π3 ]上单调递增,则ω的最大值为________. 6.设函数y =2sin(2x +π3)的图象关于点P (x 0,0)成中心对称,若x 0∈[-π2 ,0],则x 0=________. 7.已知函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为 π2 ,直线x =π3 是其图象的一条对称轴,则下面各式中符合条件的解析式是________. ①y =4sin(4x + π6) ②y =2sin(2x +π3)+2 ③y =2sin(4x +π3)+2 ④y =2sin(4x +π6 )+2 8.有一种波,其波形为函数y =sin π2x 的图象,若在区间[0,t ]上至少有2个波峰(图象的

1-专题一:基本初等函数图像及其性质

1.指数函数图像及其性质 2.对数函数

对数的定义 ①若 (0,1) x a N a a =>≠ 且,则x叫做以a为底N的对数,记作log a x N = ,其中a叫做底数, N叫做真数. ②负数和零没有对数. ③常用对数与自然对数 常用对数:lg N,即 10 log N ;自然对数:ln N,即 log e N (其中 2.71828 e=…). 3.对数函数图像及其性质

定义域 (0,) +∞ 值域R 过定点图象过定点(1,0),即当1 x=时,0 y=. 奇偶性非奇非偶 单调性在(0,) +∞上是增函数在(0,) +∞上是减函数函数值的变化情况 log0(1) log0(1) log0(01) a a a x x x x x x >> == <<< log0(1) log0(1) log0(01) a a a x x x x x x <> == ><< a变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高. 4.幂函数 (1)幂函数的定义:一般地,函数 y xα =叫做幂函数,其中x为自变量,α是常数. (2)幂函数的图象 1 x y O (1,0) 1 x= log a y x = 1 x y O(1,0) 1 x= log a y x =

(3)幂函数的性质 ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象 分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限 (图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则 幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当 q p α= (其 中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为 奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q p y x =是非奇 非偶函数.

专题一 函数的图像与性质练习题

专题一函数的图像与性质 函数及其表示 1.函数的基本概念 (1)函数的定义 设A,B是非空的________,如果按照某种确定的对应关系f,使对于集合A中的________一个数x,在集合B中都有____________的数f(x)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作____________. (2)函数的定义域、值域 在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的__________;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的________.显然,值域是集合B的子集. (3)函数的三要素:__________、________和____________. (4)相等函数:如果两个函数的__________和____________完全一致,则这两个函数相等,这是判断两函数相等的依据. 2.函数的表示法 表示函数的常用方法有:________、________、________. 3.映射的概念 设A、B是两个非空集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中______________确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的______________. 4.函数与映射的关系 由映射的定义可以看出,映射是________概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A,B必须是______________. 要点梳理 1.(1)数集任意唯一确定y=f(x),x∈A (2)定义域值域(3)定义域值域 对应关系(4)定义域对应关系 2.解析法图象法列表法 3.都有唯一一个映射 4.函数非空数集

正弦函数与余弦函数的图像与性质

2018年全国卷数学文科第一轮复习资料 第三节 正弦函数与余弦函数的图像与性质 A 组 1.已知函数f (x )=sin(x -π2 )(x ∈R ),下面结论错误的是. ①函数f (x )的最小正周期为2π②函数f (x )在区间[0,π2 ]上是增函数 ③函数f (x )的图象关于直线x =0对称④函数f (x )是奇函数 2.函数y =2cos 2(x -π4 )-1是________. ①最小正周期为π的奇函数 ②最小正周期为π的偶函数 ③最小正周期为π2的奇函数 ④最小正周期为π2 的偶函数 3.若函数f (x )=(1+3tan x )cos x ,0≤x <π2 ,则f (x )的最大值为________. 4.已知函数f (x )=a sin2x +cos2x (a ∈R )图象的一条对称轴方程为x =π12 ,则a 的值为________. 5.(原创题)设f (x )=A sin(ωx +φ)(A >0,ω>0)的图象关于直线x =π3 对称,它的最小正周期是π,则f (x )图象上的一个对称中心是________(写出一个即可). 6.设函数f (x )=3cos 2x +sin x cos x -32 . (1)求函数f (x )的最小正周期T ,并求出函数f (x )的单调递增区间; (2)求在[0,3π)内使f (x )取到最大值的所有x 的和. B 组 1.函数f (x )=sin(23x +π2)+sin 23 x 的图象相邻的两条对称轴之间的距离是________.

2.给定性质:a最小正周期为π;b图象关于直线x=π 3 对称.则下列四个函数中,同时具 有性质ab的是________.

二次函数的图像与性质专题练习

二次函数的图像与性质 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 【说明】这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质:

5. 二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当 2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成

相关文档
最新文档