考研数学习题课--1 极限与连续总结

考研数学习题课--1 极限与连续总结
考研数学习题课--1 极限与连续总结

考研数学习题课讲义

第一讲 函数、极限与连续

2016年大纲解读

考试内容

函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数, 基本初等函数的性质及其图形, 初等函数函数关系的建立; 数列极限与函数极限的定义及其性质, 函数的左极限与右极限; 无穷小量和无穷大量的概念及其关系, 无穷小量的性质及无穷小量的比较; 极限的四则运算, 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限: ll ll ll

xx→00

ssll ss xx xx

=11, ll ll ll nn→∞

?11+11nn ?nn =ll ll ll xx→∞

?11+11xx ?xx

=ee .

函数连续的概念, 函数间断点的类型, 初等函数的连续性, 闭区间上连续函数的性质.

考试要求

1. 理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。

2. 了解函数的有界性、单调性、周期性和奇偶性。

3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。

5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系。

6. 掌握极限的性质及四则运算法则。

7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

知识细节:

1. 确定函数的几种方式:

(1) 显函数 (2) 隐函数 (3) 参数方程

(4) 幂指函数(对数恒等式) yy =ff (xx )gg (xx )=ee gg (xx )ll ss ff (xx ) (5) 变限积分函数 yy =∫ff (tt )ddtt xx

aa 或 yy =∫ff (tt )ddtt φφ(xx )

aa

(6) 由极限确定的函数: yy =ll ll ll nn→∞ff (xx ,nn ) 或 yy =ll ll ll tt→xx

ff (xx ,tt )

2. 几个关于函数的性质的结论

(1) 设 f (x ) 在区间[?l , l ]上有定义, 则 f (x ) + f (?x )为偶函数, f (x ) ? f (?x ) 为奇函数.

(2) 设 f (x ) 为可导的偶函数(或奇函数), 则 f ′(x ) 为奇函数(或偶函数); 若 f (x ) 为可导的周期函数, 则 f ′(x ) 为同周期的周期函数.

(3) 设 f (x ) 连续, FF (xx )=∫ff (tt )ddtt xx

00+CC (C 为任意常数), 则 f (x ) 为奇函数 ? F (x ) 为偶函数; 若 f (x ) 为偶函数, 则只有 ∫ff (tt )ddtt xx

00 是奇函数.[说

明: 周期函数的原函数不一定是周期函数, 如 f (x ) = cos x + 1 的周期为 2π, 但 F (x ) = sin x + x 不是周期函数.]

(4) 单调函数的导数和原函数不一定是单调函数. 3. 关于极限的运算法则的说明

(1) 极限的四则运算法则的前提(和差积商可拆)是各部分的极限存在(处理的依然是类似于数的运算法则----有限可算, 拆开时部分式不能有∞, 分母不能出现0);

(2) 凡是极限中出现有悖于数的运算法则的, 均要按极限的方式处理(未定式极限);

(3) 若 lim f (x ) 与 lim g (x ) 一个存在一个不存在, 则 lim[ f (x ) ± g (x )]一定不存在; 若 lim f (x ) 与 lim[ f (x ) ± g (x )] 都存在, 则 lim g (x )一定存在; 若 lim f (x ) 与 lim g (x ) 一个存在一个不存在, 则 lim f (x )g (x ) 可能存在也可能不存在, 若存在时一般为0(有界量与无穷小的乘积还是无穷小)[两个都不存在时lim f (x )g (x )可能存在也可能不存在].

(4) 幂指函数极限运算常用公式: ll ll ll ff (xx )gg (xx )=AA BB (ll ll ll ff (xx )=AA >00,ll ll ll gg (xx )=BB ); ll ll ll uu (xx )→00vv (xx )→∞

(11+uu (xx ))vv (xx )=ee

ll ll ll uu (xx )vv (xx )

.(1∞)

4. 几个常用结论

(1)

>∞<==++++++??∞→m

n m n m n b a b

x a x b a x a x a m m m n n n x ,,0,lim 0

101001

0100

(2) 几个常见易出错的不存在极限: ;

arctan lim ;lim x e x x x ∞

→∞

→x

e x x

x 1

arctan

lim ;lim 0

10

→→及它们的变形 (3) 常用的数列极限: ll ll ll nn→∞

√aa nn

=11(aa >00),ll ll ll nn→∞

√nn nn

=11.

(4) 无穷小的和差运算规则: 和差取大(低阶)

常考题型及其解法与技巧

题型一 求函数表达式

注意: 在利用给定条件求复合函数的表达式时, 注意换元与迭代的思想.

例1 设,1||,01

||,1)(

>≤=x x x f 则 f {f [ f (x )]}等于 ( ). (A) 0 (B) 1 (C) ,1

||,01

||,1

>≤x x (D) ,1

||,11

||,0

>≤x x 例2 设 gg (xx )=?22?xx ,xx ≤00xx +22,xx >00,ff (xx )=?xx 22,xx <00

?xx ,xx ≥00, 则g [f (x )] = _______.

练习 设 ff (xx )=?xx , xx ≤00

xx +xx 22,xx >00

, 则 f [ f (x )] = _____________________.

题型二 对函数性质的理解

例2 当 x → 0 时, ff (xx )=11

xx 22ssll ss 11

xx 是 ( ).

(A) 无穷小量 (B) 无穷大量

(C) 有界但非无穷小量 (D) 无界但非无穷大量

例3 设 f (x ) 是连续函数, F (x ) 是 f (x ) 的一个原函数, 则 ( ). (A) 当 f (x ) 是奇函数时, F (x ) 必是偶函数 (B) 当 f (x ) 是偶函数时, F (x ) 必是奇函数

(C) 当 f (x ) 是周期函数时, F (x ) 必是周期函数

(D) 当 f (x ) 是单调增加函数时, F (x ) 必是单调增加函数

练习

(1) 设 f (x ) 是奇函数, 除 x = 0 外处处连续, x = 0 为其第一类间断点, 则

x

t t f 0

)(d 是

(A) 连续的奇函数 (B) 连续的偶函数 (C) 在 x = 0 间断的奇函数 (D) 在 x = 0 间断的偶函数 (2) 设f (x )连续, 则下列函数中, 必为偶函数的是

∫x t t f A 0

2

)()(d ∫x

t t f B 0

2)()(d

∫??x t t f t f t C 0

)]()([)(d ∫?+x

t t f t f t D 0

)]()([)(d

题型三 数列的极限

一、 对概念、性质的理解

注意: 此类问题主要考查对极限定义与性质的理解, 一般借助于极限存在的几何意义处理更有效;另外要注意几个基本的结论:子列原理、单调有界原理. 例4 数列{x n } 收敛于实数 a 等价于 ( )

(A) 对任给 ε > 0, 在 (a ? ε, a + ε) 内有数列的无穷多项 (B) 对任给 ε > 0, 在 (a ? ε, a + ε) 内有数列的有穷多项 (C) 对任给 ε > 0, 在 (a ? ε, a + ε) 外有数列的无穷多项 (D) 对任给 ε > 0, 在 (a ? ε, a + ε) 外有数列的有穷多项

例 5 设函数 f (x ) 在 (?∞, +∞) 内单调有界, {x n } 为数列, 下列命题正确的是 ( ).

(A) 若 {x n } 收敛, 则 {f (x n )} 收敛 (B) 若{x n } 单调, 则 {f (x n )} 收敛 (C) 若{f (x n )} 收敛, 则 {x n } 收敛 (D) 若{f (x n )} 单调, 则 {x n } 收敛 练习

(1) “存在正数 ε0, 使满足 |xx nn ?AA |≥εε00的 x n 有无穷多项”是数列{x n }不收敛于 A 的 ( ).

(A) 充分必要条件 (B) 必要但非充分条件 (C) 充分但非必要条件 (D) 既非充分又非必要条件

(2) 设数列{x n }是数列, 下列命题不正确的是( ).(2015年数学三) (A) 若 ll ll ll nn→∞

xx nn =aa , 则ll ll ll nn→∞

xx 22nn =ll ll ll nn→∞

xx 22nn+11=aa ;

(B) 若ll ll ll nn→∞

xx 22nn =ll ll ll nn→∞

xx 22nn+11=aa , 则ll ll ll nn→∞

xx nn =aa .

(C) 若 ll ll ll nn→∞

xx nn =aa , 则ll ll ll nn→∞

xx 33nn =ll ll ll nn→∞

xx 33nn+11=aa ; (D) 若ll ll ll nn→∞

xx 33nn =ll ll ll nn→∞

xx 33nn+11=aa , 则ll ll ll nn→∞

xx nn =aa .

二、 通项是 n 项和的数列的极限 设 xx nn =∑aa ii nn ii=11, 求 ll ll ll nn→∞

xx nn .

一般解法:

(1) 求出和的通项(相对简单:拆项相消、等比数列等); (2) 定积分定义(注意转换) ∑ff (ξξii )ΔΔxx ii nn ii =11→∫ff (xx )ddxx bb

aa ; (3) 夹逼准则.

例 6 求下列数列的极限:

(1) ll ll ll nn→∞?

11

?nn +11

+

11

?nn +22

+?+11

?nn +nn ?

(2) ll ll ll nn→∞

11nn ?

11?nn +11+nn

+

22

?nn +22+nn

+?+

nn

?nn +nn+nn

?

练习

(1) 求 ll ll ll nn→∞

?11

nn 22+11+22

nn 22+22+?+nn

nn 22+nn ? ;

(2) 求 ll ll ll nn→∞

?ssll ss

ππnn

nn+11+

ssll ss

22ππ

nn nn+11+?+

ssll ss ππnn+

11?

三、 通项是 n 项乘积的数列的极限

设 xx nn =∏aa ii nn ii=11, 求 ll ll ll nn→∞

xx nn .

一般解法: (1) 求出积的通项; (2) 利用对数化为和的形式; (3) 夹逼准则. 例7 求下列数列极限

(1) ll ll ll nn→∞

11nn ?nn (nn +11)(nn +22)…(22nn ?11)nn

(2) ll ll ll

nn→∞11?33?55?… ?(22nn?11)

22?44?66?… ?(22nn )

四、 通项由递推公式给出的数列的极限

设 xx nn+11=ff (xx nn ), 求ll ll ll nn→∞

xx nn . (注意: 通项也可能是其他形式).

一般解法: 先利用单调有界原理证明极限存在, 再令ll ll ll nn→∞

xx nn =aa , 通过递推

公式解方程求出极限.

例8 (2006年数学一) 数列 {x n } 满足 0 < x 1 < π, x n +1 = sin x n (n = 1, 2, …). (1) 证明 n n x ∞

→lim 存在, 并求其极限;

(2) 计算 .lim 2

1

1n

x n n n x x

+∞→

练习

(1) 设 x 1 > 0, x n +1 = 11?ee ?xx nn , n = 1, 2, ….

(i) 证明 n n x ∞

→lim 存在, 并求其极限;

(ii) 计算ll ll ll nn→∞xx nn xx

nn+11

xx nn

?xx

nn+11

.

(2) 设 a > 0, x 1 > 0, 且定义 xx nn+11=1144?33xx nn +aa

xx nn

33?(nn =11,22,…), 证明当 n →∞时,

数列 {x n } 的极限存在并求出该极限值.

五、 利用函数的极限求数列极限

注意: 一般是含有 n 的未定式极限, 应该按数列极限处理, 若用到罗比达法则, 最好先求出 x →+∞ 时的极限, 再利用函数极限与数列的极限关系(结论也可以用来说明极限不存在)得出结果.

例9 .arctan 2lim n

n n

∞→π

练习

求 ll ll ll nn→∞

nn ?ee ?11+11nn ??nn

?11?.

题型四 函数的极限

一、分段函数的极限

求分段函数在分段点处的极限, 要利用:

.)(lim )(lim )(lim 0

A x f x f A x f x x x x x x ==?=?+→→→

例11 (2000年数学一) 求.||sin 11lim /4/10

+++→x x x x x e e

例12 当 x → 1 时, 函数

xx 22?11xx?11

ee

11xx?11

的极限为 ( ).

(A) 2 (B) 0 (C) ∞ (D) 不存在

二、未定式极限

未定式的类型: “0000,∞

∞; ∞?∞,00?∞; 11∞,0000,∞00”. 注意各部分均为极限、罗

比达法则不是万能的(先确定极限的类型,再考虑方法,一定要与数的运算分开).

1.

0000,∞∞

型未定式

常用方法: 无穷小的等价代换(代换原则: 因式替代); 罗比达法则(注意条件, 使用罗比达法则后及时整理并分离出极限存在的因式); 无穷大转换为无穷小等. 例13 求.)(arcsin arcsin lim

3

x x

x x ?→

例14 求.ln ln lim 2

x

t dt x x

x ∫

+∞

例15 求.sin 1

14lim 2

2x

x x x x x +++?+?∞

例16 求.)

1ln()cos 1(1sin

)cos 1(sin 3lim

x x x x x x ++?+→

练习:求下列极限 (1) 2

13lim

21

?++??→x x x

x x

(2) .13cos 21lim 3

?

+→x x x x

(2004年数学二) (3) 30sin arctan lim x x

x x ?→(2007年数学二) (4) ll ll ll

xx→?∞

?33xx 22+xx?11+xx?11?xx +ccccss xx

2. ∞?∞,00?∞型未定式

方法: 转化为 0000,∞

∞ 型(通分、构造分母等)

例17 求.11ln lim 2

+?∞→x x x x

例18 求.2arctan 2lim 22x x x ?∞→π

练习: 求下列极限

(1) .cos sin 1lim 2220

?→x x x x (2) .lim

??++∞→x x x x x

3. 11∞,0000,∞00型未定式

方法: 非1∞类型常使用对数恒等式(或取对数后化为00?∞型未定式).

uu (xx )vv (xx )=ee vv (xx )ll ss uu (xx ).; 1∞类型: ll ll ll uu (xx )

→00vv (xx )→∞

(11+uu (xx ))vv (xx )=ee

ll ll ll uu (xx )vv (xx )

.

例19 求.arcsin lim 2

1

0x x x x

例20 求.lim ln 10

x

k

x x

+→+

例21 求ll ll ll xx→+∞

(ll ss xx )11xx?11

练习: 求下列极限

(1) )1ln(1

2

)(cos lim x x x +→(2003年数学一)

(2) .sin 1tan 1lim 3

1

0x x x x

++→

三、极限的综合题

说明: 这类题目涉及面稍微广泛, 比如导数的定义、已知一个极限求另一个极限等。解此类题目要注意极限的形式与因果判断。

例22 已知 f (x ) 在 x = a 处可导, 且 f (a ) ≠ 0, 求 .)()1(lim n

n a f n a f

+∞→

例23 已知,4cos 1)(1ln 121lim 0=

?+?→x x f x x 求.)(lim 30x x f x →

练习: 设 f (x ) 在 x = 0 的某邻域内二阶可导, 且 ,0)(3sin lim 230=

+→x x f x

x x 求 f (0), f ′(0), f ″(0) 及 .3

)(lim

2

x

x f x +→

题型五 极限的反问题

一般指已知某个极限存在求极限中的常数. 主要涉及连续、极限存在(或给出极限值)、等价无穷小(高阶、同阶)、洛必达法则与泰勒公式等知识的应用.

例24 若5)(cos sin lim 0=??→b x a

e x

x x , 求 a , b .

例25 确定正数 a 和 b 使得 .2sin 1

lim 0

220=+?∫→x x t t

a t x bx d

练习: (1) 若,2)

1()21ln()cos 1(tan lim

2

=?+??+?→x x c x x b x a e

则a =_____.

(2) 设函数bx

a x

x f e +=

)(在(?∞, +∞) 内连续, 且 ,0)(lim =?∞→x f x 则常数a , b 满足

(A) a < 0, b < 0 (B) a > 0, b > 0 (C) a ≤ 0, b > 0 (D) a ≥ 0, b < 0

题型六 无穷小量的比较

一、比较给定的无穷小量

主要考查比较给定的无穷小量的同阶、高阶、等价等,解法主要是对无穷小的阶的理解与各自的定义。

例26 当 x →0+时, 与 √xx 等价的无穷小量是

D C B A x x x

x e

x

cos 1)(11)(11ln

)(1)(??+?+?

二、已知无穷小量的比较结果, 确定参数

解法: (1) 利用定义; (2) 带皮亚诺余项的泰勒公式

例27 设当x →0 时, (1 ? cos x )ln(1 + x 2) 是比 x sin x n 高阶的无穷小, 而 x sin x n 是比 ee xx 22

?11高阶的无穷小, 则正整数 n 等于

(A) 1 (B) 2 (C) 3 (D) 4

例28 当 x → 0 时, f (x ) = x ? sin ax 与 g (x ) = x 2 ln(1 ? bx ) 是等价无穷小, 则 ____.

6

1,1)(?==b a A 61,1)(==b a B 61,1)(=?=b a C 61

,1)(?=?=b a D

三、确定无穷小量的阶

解法: 注意无穷小阶的比较的定义(基本); 泰勒公式(灵活). 例29 已知当 x → 0 时, ff (xx )=√11+

xx 22

?ccccss xx ,gg (xx )=

∫ssll ss tt ddtt ll ss (11?xx 22)

00

, hh (xx )=aaaaccssll ss xx ?xx 都是无穷小, 则它们关于 x 的阶数从低到高的顺序为

( ).

(A) f (x ), g (x ), h (x ) (B) h (x ), f (x ), g (x ) (C) f (x ), h (x ), g (x ) (D) h (x ), g (x ), f (x ) 例30 已知x → 0 时, xx ??aa +bbee xx 22

?ssll ss xx 是关于 x 的5阶无穷小. 求常数 a , b .

练习: (1) 把

x → 0+时的无穷小量∫

∫===x

x x

t t t t t t d d d 0

30

2

sin ,tan ,cos 2

γβα

排列

起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是

(A) α, β, γ (B) α, γ, β (C) β,α, γ (D) β, γ, α (2) 若x →0时, x x ax sin 1)1(4

12与??是等价无穷小, 则 a =________.

(3) 当 x → 0 时, α(x ) = kx 2 与 x x x x cos arcsin 1)(?+=β是等价无穷小, 则k =___.

(4) 试确定 A, B , C 的值, 使得),(1)1(32x o Ax Cx Bx e x ++=++其中 o (x 3) 是当 x → 0 时比 x 3 高阶的无穷小.

题型七 函数的连续性

主要考查函数在某点连续的定义(ll ll ll xx→xx 00

ff (xx )=ff (xx 00), 本质是考查极限).

例30 设函数,0

,0,2arcsin 1)(2tan

≤>?=x a x x x f x x

e e 在 x = 0 处连续, 则 a = _________.

例31 设函数ff (xx )=?

ll ss ccccss (xx?11)11?ssll ss ππ22

xx

,xx ≠11

11, xx =11

, 问 f (x ) 在 x = 1处是否连续? 若不连

续, 修改 f (x ) 在 x = 1 处的定义, 使之连续.

练习: 设).1,2

1[,)1(1sin 11)(∈??+=

x x x x x f πππ试补充定义 f (1) 使 f (x ) 在 [1/2, 1] 上连续.

题型八 函数的间断点与间断点的类型

解法: 依据间断点的定义. 例32 设函数 ,1

1

)(1

?=

?x x x f e 则

(A) x = 0, x = 1都是 f (x )的第一类间断点 (B) x = 0, x = 1都是 f (x )的第二类间断点

(C) x = 0是 f (x )的第一类间断点, x = 1是 f (x ) 的第二类间断点 (D) x = 0是 f (x )的第二类间断点, x = 1是 f (x ) 的第一类间断点

例33 求极限 .sin sin lim sin sin x

t x x t x t ?→

记此极限为 f (x ), 求函数f (x )的间断点并指

出其类型.

练习:

(1) 函数)

(tan )()(11e e x x e e x f x

x

?+=

在 [?π, π ] 上的第一类间断点是 x = _____.

(A) 0 (B) 1 22)(π

π (D) C ?

(2) 设函数,sin 1

ln )(x x x x f ?=

则 f (x ) 有 _____ .

(A) 1个可去间断点, 1个跳跃间断点 (B) 1个可去间断点, 1个无穷间断点

(C) 2个无穷间断点 (D) 2个跳跃间断点

(3) 设函数 f (x ) 在 [?1, 1] 上连续, 则 x = 0 是函数x

t t f x g x

∫=

d )()(的

(A) 跳跃间断点 (B) 可去间断点

(C) 无穷间断点 (D) 震荡间断点

(4) 函数 x

x x x f πsin )(3

?=的可去间断点的个数为 _____ .

(A) 1 (B) 2 (C) 3 (D) 无穷多个

题型九 曲线的渐近线

解法: 渐近线的定义, 不可遗漏(铅直\水平\斜渐近线)

例34 曲线x x x

x y cos 25sin 4?+=的水平渐近线方程为 __________ .

例35 曲线)1ln(1

x e x

y ++=渐近线的条数为_______.

(A) 0 (B) 1 (C) 2 (D) 3

练习 曲线1

22

+=x x y 的斜渐近线方程为________________.

题型十闭区间上连续函数的性质(命题证明)

说明: 重点考查介值定理与零点定理, 注意结论形式, 构造辅助函数.

例36 设 f (x) 在[0, 1] 上非负连续, 且 f (0) = f(1) = 0, 证明对实数 a (0 < a < 1), 必有ξ∈ [0, 1) 使得f (ξ+ a) = f (ξ).

例37 设 f (x) 在[a, b] 上可微, ?x ∈[a, b], a < f (x) < b, 且 f ′(x) ≠ 1, x∈(a, b). 证明: 在(a, b) 内方程 f (x) = x 有唯一实根.

练习:

(1)设函数f (x) 在[0, 1]上连续, f (0) = 0, f (1) = 1, 证明: 存在ξ∈ (0, 1)使得f (ξ)

= 1?ξ.

(2)设函数f (x), g(x) 在[a, b] 上连续, 在(a, b) 内存在相等的最大值, f (a) =

g(a), f (b) = g(b), 证明: 存在η∈ (a, b), 使得f (η) = g(η).

2020年考研高数知识点:极限中的“极限”

2020年考研高数知识点:极限中的“极限” 说到极限应该是我们三大计算中的第一大计算,每年考研真题必出,无论是数一数二数三还是经济类数学,能够出选择题也能够出填 空题,更能够出解答题,题目类型不同,分值也不同,4分或者10分,极限的思想也就更是重要之重了,原因就是后来所有的概念都是以极 限的形式给出的。 第一,极限的定义。理解数列极限和函数极限的定义,记住其定义。 第二,极限的性质。性,有界性,保号性和保不等式性要理解, 重点理解保号性和保不等式性,在考研真题里面经常考查,而性质的 本身并不难理解,关键是在做题目的时候怎么能想到,所以同学们在 做题目的时候能够看看什么情况下利用了极限的保号性,例如:题目 中有一点的导数大于零或者小于零,或者给定义数值,能够根据这个 数值大于零或小于零,像这样的情况,就能够写出这个点的导数定义,利用极限的保号性,得出相对应的结论,切记要根据题目要求来判断 是否需要,但首先要有这样的思路,希望同学们在做题时多去总结。 第三,极限的计算。这个部分是重中之重,这也是三大计算中的 第一大计算,每年必考的题目,所以需要同学们能够熟练地掌握并会 计算不同类型的极限计算。首先要知道基本的极限的计算方法,比如:四则运算、等价无穷小替换、洛必达法则、重要极限、单侧极限、夹 逼定理、单调有界收敛定理,除此之外还要泰勒展开,利用定积分定 义求极限。其次还要掌握每一种极限计算的注意事项及拓展,比如: 四则运算中掌握“抓大头”思想(两个多项式商的极限,是无穷比无穷 形式的,分别抓分子和分母的次计算结果即可),等价无穷小替换中要 掌握等价无穷小替换只能在乘除法中直接应用,加减法中不能直接应用,如需应用必须加附加条件,计算中要掌握基本的等价无穷小替换 公式和其推广及凑形式,进一步说就是第一要熟练掌握基本公式,第 二要知道怎么推广,也就是将等价无穷小替换公式中的x用f(x)来替

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

考研数学极限知识点全解

2017考研数学极限知识点全解 来源:文都图书 极限是高数中的重要知识点,也是考研数学的重要考点,我们一起来了解一下极限在考研大纲中的相关考点,及其题型等。 一、极限在考研数学中的要求 根据考研大纲,极限需要理解和掌握的是:极限的概念,函数左右极限的概念以及函数极限存在与左右极限的关系,极限的性质及四则运算法则,极限存在的两个准则,利用两个重要极限计算极限的方法,无穷小量、无穷大量的概念,无穷小的比较方法。 要求会求和了解的是:利用极限存在的两个准则求极限,用等价无穷小量求极限。 二、极限是高等数学的基础 1、极限是高数三大基本工具(极限、微分、积分)中最基本的工具,也是微分与积分的基础。另外高等数学中很多概念都是通过极限来定义的,如连续的概念,导数的概念,定积分的概念以及级数的概念都是通过极限来定义的。考研数学虽然大多数题目是计算题,但是只记住计算步骤,死记硬背,是万万不行的。要想考高分,需要对基本概念的理解到位,否则你学的知识就如同浮光掠影,很难取得好成绩。因此,我们从最基础的极限开始就要学习到位,基本概念理解好,极限计算要熟练,为以下各章节的学习打好基础。 2、考研中的很多题目也间接与极限有联系,尤其是极限的计算一定要过关,因为很多题目的计算都会用到极限的计算。如判断函数的连续性,找函数的间断点的类型,求渐近线,求函数一点数的导数,级数的敛散性的判别,求幂级数的收敛半径和收敛域,这些问题都会用到极限,如果极限不会求这些题目就无法做出来。所以考生在复习极限这章的时候一定要到位,计算尤其要过关,否则后患无穷。 三、极限在考研数学中的常见题型

极限这部分不计间接命题,直接命题的分值一般是一道小题(4分)和一道大题(10分左右),足见本章内容的重要性。 直接命题常见题型: (1)考查极限的概念,常见于选择题; (2)求极限式中的未知参数; (3)直接计算函数的极限; (4)考查极限的概念,常见于选择题; (5)利用收敛准则,求数列极限,常见于数一、数二。 (6)结合无穷小的比较考查极限的计算; 上面总结归纳了考研数学极限知识点的相关知识点,并且对题型进行了分析,考生们认真学习吧,希望对你们的备考有帮助,汤家凤编写的《2017考研数学硕士研究生入学考试高等数学辅导讲义》这本书按照考研大纲所编写,并且附有相关练习题,基础、强化、巩固一体,可以好好利用哦,加油。

最全大学高等数学函数、极限与连续

第一章 函数、极限和连续 §1.1 函数 一、 主要容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ? ??∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1 (y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1 )=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 单调减少( ); 若f(x 1)<f(x 2), 则称f(x)在D 严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x

考研数学:教你如何轻松求解数列极限

考研数学:教你如何轻松求解数列极限 [摘要]极限是考研数学每年必考的内容,所占比重相当大,在此整理求数列极限的方法教大家轻松解决此理问题。极限平均每年在考研数学中所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。 一、极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。熟练掌握求解极限的方法是的高分地关键,极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。以下我们就极限的内容简单总结下。 二、极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。 三、与极限计算相关知识点包括: 1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限; 2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在; 3、渐近线,(垂直、水平或斜渐近线); 4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。 下面我们重点讲一下数列极限的典型方法。

2016考研数学:求极限的一般题型

2016考研数学:求极限的一般题型 下面总结一下,求极限的一般题型: 1、求分段函数的极限,当函数数含有绝对值符号时,就很有可能是有分情况讨论的了!当X趋近无穷时候存在e的x次方的时候,就要分情况讨论应为E的x次方的函数正负无穷的结果是不一样的! 2、极限中含有变上下限的积分如何解决嘞?说白了,就是说函数中现在含有积分符号,这么个符号在极限中太麻烦了你要想办法把它搞掉! 解决办法: 1、求导,边上下限积分求导,当然就能得到结果了,这不是很容易么?但是!有2个问题要注意!问题1:积分函数能否求导?题目没说积分可以导的话,直接求导的话是错误的!!!!问题2:被积分函数中既含有t又含有x的情况下如何解决? 解决1的方法:就是方法2微分中值定理!微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!解决2的方法:当x与t的函数是相互乘的关系的话,把x看做常数提出来,再求导数!!当x与t是除的关系或者是加减的关系,就要换元了!(换元的时候积分上下限也要变化!) 3、求的是数列极限的问题时候:夹逼或者分项求和定积分都不可以的时候,就考虑x趋近的时候函数值,数列极限也满足这个极限的,当所求的极限是递推数列的时候:首先:判断数列极限存在极限的方法是否用的单调有界的定理。判断单调性不能用导数定义!!数列是离散的,只能用前后项的比较(前后项相除相减),数列极限是否有界可以使用归纳法最后对xn与xn+1两边同时求极限,就能出结果了! 4、涉及到极限已经出来了让你求未知数和位置函数的问题。 解决办法:主要还是运用等价无穷小或者是同阶无穷小。因为例如:当x趋近0时候f(x)比x=3的函数,分子必须是无穷小,否则极限为无穷,还有洛必达法则的应用,主要是因为当未知数有几个时候,使用洛必达法则,可以消掉某些未知数,求其他的未知数。 5、极限数列涉及到的证明题,只知道是要构造新的函数。 1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。 2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋

高等数学基础极限与连续

第二章 极限与连续 一、教学要求 1.了解极限概念,了解无穷小量的定义与基本性质,掌握求极限的方法. 2.了解函数连续性的概念,掌握函数连续性的性质及运算. 重点:极限的计算,函数连续性的性质及运算。 难点:极限、连续的概念。 二、课程内容导读 1. 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例1 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =21613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即

x x x 10)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即 222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+? 2. 知道一些与极限有关的概念 (1) 知道数列极限、函数极限、左右极限的概念,知道函数在某点极限存在的充分必要条件是该点左右极限都存在且相等; (2) 了解无穷小量的概念,了解无穷小量与无穷大量的关系,知道无穷小量的性质; (3) 了解函数在某点连续的概念,知道左连续和右连续的概念,了解“初等函数在定义区间内连续”的结论;会判断函数在某点的连续性,会求函数的间断点; 例2 填空、选择题 (1) 下列变量中,是无穷小量的为( ) A. )0(1ln +→x x B. )1(ln →x x C. )0(e 1 →-x x D. )2(422→--x x x 解 选项A 中:因为 +→0x 时, +∞→x 1,故 +∞→x 1ln ,x 1ln 不是无穷小量; 选项B 中:因为1→x 时,0ln →x ,故x ln 是无穷小量; 选项C 中:因为 +→0x 时,-∞→-x 1,故0e 1 →-x ;但是-→0x 时,x 1- +∞→,故+∞→-x 1 e ,因此x 1 e -当0→x 时不是无穷小量。 选项D 中:因为21422+=--x x x ,故当2→x 时,41422→--x x ,4 22--x x 不是无穷小量。 因此正确的选项是B 。 (2) 下列极限计算正确的是( )。 A.=→x x x 1sin lim 001sin lim lim 00=→→x x x x

2021考研数学二考试大纲原文解析及变化解读

2021考研数学二考试大纲 原文解析及变化解读

高等数学大纲原文解析 一、函数、极限、连续 考试内容 函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:, 函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质

考试要求 1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.

考研数学:极限计算方法——利用单侧极限

考研数学:极限计算方法——利用单侧极限 今天给大家带来极限计算方法中的利用单侧极限来求极限。为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢? 第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan )0121 x e x x f x x x x ?-+-在0=x 处的极限。 分析:在做这道题时我们发现0=x 处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即 1lim 22 1arctan lim 121)arctan 1ln(lim 000==?=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→x x x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0=→x f x 。 有一些特殊的分段函数,如 ,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。 第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,???? ? ??+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x ,在脱绝对值时会出现负号,同

时出现了e ∞,故分单侧计算极限, 11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x e x e x e x x x x e e e ++++→→→→????+++ ? ?+=+== ? ? ? ?+++????,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→????+++ ? ?+=-=-= ? ? ? ?+++????,所以1sin 12lim 410=???? ? ??+++→x x e e x x x 。上述几种情况原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,提高自己的解题能力。

2018考研数学基础复习两大重要定理:大数定律与中心极限定理

2018考研数学基础复习两大重要定理:大数定律与中心极限定理 大数定律与中心极限定理这一部分内容是考研数学考试很少考查和出现的,但是既然是考试大纲所要求的考点,考生应该也复习到位。要是题目中出现的话,也好应对。比如2014年数一考题中就出现了大数定律的考查,很多考生都懵了。为了避免类似的情况再次发生,所以2018考研的同学们一定要复习好大纲要求的每一个考点。 大数定律是概率论中随机变量序列向常数收敛的各种定律的总称,反映随机试验次数的增多,往往出现几乎必然的规律性。中心极限定理是概率论中一类讨论随机变量部分和序列分布向正态分布收敛的极限定理的总称,它们是数理统计中做统计推断的理论基础。 常考考点 常考题型 考试要求 切比雪夫不等式 用切比雪夫不等式估计随机事件的概率 了解切比雪夫不等式. 切比雪夫大数定律 伯努利大数定律 辛钦大数定律 利用三个大数定律成立的条件和结论解题 了解切比夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律). 棣莫弗-拉普拉斯中心极限定理 列维-林德伯格中心极限定理 1.列维-林德伯格中心极限定理夫人条件和结论的应用

2.列维-林德伯格中心极限定理的应用 3.棣莫弗-拉普拉斯中心极限定理的应用 了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理). 大数定律与中心极限数列部分设计的主要知识点有: 1. 利用切比雪夫不等式来进行估计随机事件的概率; 2. 切比雪夫大数定律、伯努利大数定律、辛钦大数定律成立的条件和结论; 3. 棣莫弗-拉普拉斯定理和列维-林德伯格定理成立的条件、结论和应用. 这部分内容与数字特征联系较多,要求考生具备以下能力: 1. 记住定理的条件和结论,能够利用中心极限定理解决实际问题; 2. 会计算随机变量序列函数的数学特征; 3. 利用相关中心极限定理计算某些事件问题中随机事件的概率。 这一部分不是考研数学考试的重点,所以2017考研的同学们复习这一部分时,不需要耗费太多的时间和精力,只要掌握了各定理的结论和结论即可,遇到相应问题会进行分析即可。

考研数学:求极限的16种方法.doc

考研数学:求极限的16种方法 考研频道为大家提供考研数学:求极限的16种方法,赶紧学习一下吧!更多考研资讯我们网站的更新! 考研数学:求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。 首先对极限的总结如下。极限的保号性很重要就是说在一定区间内函数的正负与极限一致。 1、极限分为一般极限,还有个数列极限 (区别在于数列极限是发散的,是一般极限的一种)。 2、解决极限的方法如下 1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记。(x趋近无穷的时候还原成无穷小) 2)洛必达法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提。必须是X趋近而不是N趋近。(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x 趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。 洛必达法则分为三种情况

1)0比0无穷比无穷时候直接用 2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3)0的0次方,1的无穷次方,无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0) 3、泰勒公式 (含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x 展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助 4、面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母!看上去复杂处理很简单。 5、无穷小与有界函数的处理办法 面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了! 6、夹逼定理 (主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7、等比等差数列公式应用 (对付数列极限)(q绝对值符号要小于1) 8、各项的拆分相加

考研数学二课本要点指导

高数部分: (配同济六版教材) 第一章函数与极限(考研必考章节,其中求极限是本章最重 要的内容,要掌握求极限的集中方法) 第一节映射与函数(一般章节) 一、集合(不用看)二、映射(不用看)三、函数(了解) 注:P1--5 集合部分只需简单了解 P5--7不用看 P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界 P17--20 不用看 P21 习题1.1 1、2、3大题均不用做 4大题只需做(3)(5)(7)(8) 5--9 均做 10大题只需做(4)(5)(6) 11大题只需做(3)(4)(5) 12大题只需做(2)(4)(6) 13做14不用做 15、16重点做 17--20应用题均不用做 第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看) 一、数列极限的定义(了解)二、收敛极限的性质(了解) P26--28 例1、2、3均不用证 p28--29 定理1、2、3的证明不用自己证但要会理解 P30 定理4不用看 P30--31 习题1-2 1大题只需做(4)(6)(8) 2--6均不用做 第三节(一般章节)(标题不再写了对应同济六版教材标题 一、(了解)二、(了解) P33--34 例1、2、3、4、5只需大概了解即可 P35 例6 要会做例7 不用做 P36--37 定理2、3证明不用看定理3’4”完全不用看 p37习题1--3 1--4 均做5--12 均不用做 第四节(重要) 一、无穷小(重要)二、无穷大(了解) p40 例2不用做p41 定理2不用证 p42习题1--4

1做2--5 不全做6 做7--8 不用做 第五节(注意运算法则的前提条件是各自存在) p43 定理1、2的证明要理解 p44推论1、2、3的证明不用看 p48 定理6的证明不用看 p49 习题1--5 1题只需做(3)(6)(7)(8)(10)(11)(13)(14) 2、3要做4、5重点做6不做 第六节极限存在准则(重要) 两个重要极限(重要两个重要极限要会证明 p50 准则1的证明要理解 p51 重要极限一定要会独立证明(经典重要极限) p53另一个重要极限的证明可以不用看 p55--56柯西极限存在准则不用看 p56习题1--7 1大题只做(1)(4)(6) 2全做3不用做4全做,其中(2)(3)(5)重点做 第七节(重要) p58--59 定理1、2的证明要理解 p59 习题1--7 全做 第八节(基本必考小题) p60--64 要重点看第八节基本必出考题 p64 习题1--8 1、2、3、4、5要做其中4、5要重点做 6--8不用做 第九节(了解) p66--67 定理3、4的证明均不用看 p69 习题1--9 1、2要做 3大题只做(3)——(6) 4大题只做(4)——(6) 5、6均要重点做 第十节(重要,不单独考大题,但考大题会用到) 一、(重要)二、(重要)p72三、一致连续性(不用看)

考研数学高数公式函数与极限

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分),并会讨论它们的相关性质。 第二节:极限 极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二)/了解数列极限和函数极限的概念(数三); ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的

两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式); 3.会解决与极限的计算相关的问题(确定极限中的参数); 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二)/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三)。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分)与极限之间的关系,建立完整的理论体系。 函数与极限的基本公式与定理 1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。 定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。 一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。 4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;

考研数学数列极限内容概括及考点总结

考研数学数列极限内容概括及考点总结 来源:文都教育 数列极限的概念和判断极限存在的夹逼准则和单调有界准则也是考研数学的重要考点,下面文都考研数学教研室老师为大家总结了数列极限部分的知识和考点题型,希望对同学们有帮助。 一、数列极限 1. 数列极限的定义 设{}n a 为一数列,若存在常数A ,对任意的0>ε,总存在0>N ,当N n >时,有ε<-||A a n ,称A 为数列{}n a 的极限,或称数列 {}n a 收敛于A ,记为A a n n =∞ →lim 。 2. 收敛数列的性质 (1)收敛数列极限存在且唯一. (2)收敛数列必为有界数列. (3)收敛数列的保号性. 3. 极限存在准则 (1)夹逼准则 如果数列{}{}{},,n n n a b c 满足下列条件: 从某项起,即0n N ?∈,当0n n >时有,n n n c b a ≤≤,且A c a n n n n ==∞ →∞ →lim lim , 则A b n n =∞ →lim 。 (2)单调有界准则 单调增加(或单调减少)且有上界(或有下界)的数列{}n x 必有极限。 【注】此准则只给出了极限的存在性,并未给出极限是多少。此时一般是在判定了“极限存在”以后通过数列的递推表示,在等式两边取极限得到。 4. 重要结论

(1)若lim lim n n n n a a a a →∞ →∞ =?=. (2)lim 0lim 0 n n n n a a →∞ →∞ =?=. (3)221lim lim ,lim n n n n n n a a a a a a -→∞ →∞ →∞ =?==. 【考点一】数列极限的概念与性质 例1设 ().lim 0,n n n n n x a y y x a →∞ ≤≤-=且为常数,则数列 {}n x 和{}n y ( ) 。 (A )都收敛于a (B )都收敛,但不一定收敛于a (C )可能收敛,也可能发散 (D )都发散 例2设 (){}{} .lim 0,,n n n n n n n n x a y y x x y →∞ ≤≤-=且和 {}n a 均为数列,则lim n n a →∞ ( )。 (A )存在且等于0 (B )存在但不一定等于0 (C )一定不存在 (D )不一定存在 【考点二】(1)单调有界数列必有极限. (2)单调递增且有上界的数列必有极限,单调递增且无上界的数列的极限为+∞. (3)单调递减且有下界的数列必有极限,单调递减且无下界的数列的极限为-∞. 例1 设()()1103,31,2, n n n x x x x n +<<=-=,证明:数列{}n x 极限存在,并求此极限 例2 设 ()2 0110,20,1,2, n n n x x x x n +-<<=+=,证明:数列{}n x 极限存在,并求此极限 【考点三】夹逼准则 【思路提示】在使用夹逼准则时,需要对通项进行“缩小”和“放大”,要注意:“缩小”应该是尽可能的大,而“放大”应该是尽可能的小,在这种情况下,如果仍然“夹不住”那么就说明夹逼准则不适用,改方法。 【考点四】数列连加和的极限 例1. 求极限 111 lim 1111212n n →∞ ? ?+++ ?++++ +??

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

高等数学题库第01章(函数,极限,连续).

第一章函数、极限、连续 习题一 一.选择题 1.下列各组中的函数f(x)与g(x)表示同一个函数的是() A.f(x)=x,g(x)=x2 B.f(x)=2lgx,g(x)=lgx2 x,g(x)=x2 C.f(x)=x D.f(x)=x,g(x)=-x 2.函数y=4-x+sinx的定义域是( ) A.[0,1] B.[0,1)(1,4] C.[0,+∞) D.[0,4] 3.下列函数中,定义域为(-∞,+∞)的有( ) A.y=x-132 3 B.y=x2 C. y=x3 D.y=x-2 4.函数y=x2-1单调增且有界的区间是( ) A. [-1,1] B. [0,+∞) C. [1,+∞) D. [1,2] 5.设y=f(x)=1+logx+3 2,则y=f-(x)=( ) A.2x+3 B. 2x-1-3 C. 2x+1-3 D. 2x-1+3 6.设f(x)=ax7+bx3+cx-1,其中a,b,c是常数,若f(-2)=2,则f(2)=( A.-4 B.-2 C.-3 D.6 二.填空题 1.f(x)=3-x x+2的定义域是 2.设f(x)的定义域是[0,3],则f(lnx)的定义域是。 3.设f(2x)=x+1,且f(a)=4,则a= 。 4.设f(x+11 x)=x2+x2,则f(x) 5.y=arcsin1-x 2的反函数是。 6.函数y=cos2πx-sin2πx的周期T。 ) ?π?sinx,x<17.设f(x)=?则f(-)=。 4??0,x≥1 2??1,x≤12-x,x≤1??8.设f(x)=?,g(x)=?,当x>1时,g[f(x)]= 。 x>1x>1???0?29.设f(x)=ax3-bsinx,若f(-3)=3,则f(3)=。 10.设f(x)=2x,g(x)=x2,则f[g(x)]=。 三.求下列极限 x3-1x2-91.lim2 2.lim x→1x-1x→3x-3 3.limx→52x-1-3+2x2-1 4. lim x→0xx-5 x2-3x+2x+2-35.lim 6. lim3x→1x→1x-xx+1-2 7.limx→1x+4-2-x-+x 8. lim2x→0sin3xx-1

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

相关文档
最新文档