高二数学矩阵的运算及性质

高二数学矩阵的运算及性质
高二数学矩阵的运算及性质

高二数学下知识点

一.常用逻辑用语 1. 四种命题,(原命题、否命题、逆命题、逆否命题) (1)四种命题的关系, (2)等价关系(互为逆否命题的等价性) (a )原命题与其逆否命题同真、同假。(b )否命题与逆命题同真、同假。 2. 充分条件、必要条件、充要条件 (1)定义:若p 成立,则q 成立,即 q p ?时,p 是q 的充分条件。同时q 是p 的必要条件。 若p 成立,则q 成立,且q 成立,则p 成立 ,即q p ?且p q ?,则p 与q 互为充要条件。 (2)判断方法: (i )定义法, (ii )集合法:设使p 成立的条件组成的集合是A ,使q 成立的条件组成的集合为B ,若B A ? 则p 是q 的充分条件。同时q 是p 的必要条件。 若A=B ,则p 与q 互为充要条件。 (iii )命题法:假设命题:“若p 则q ”。当原命题为真时,p 是q 的充分条件。 当其逆命题也为真时,p 与q 互为充要条件。 注意:充分条件与充分非必要条件的区别: 用集合法判断看,前者:集合A 是集合B 的子集;后者:集合A 是集合B 的真子集。 3. 全称命题、特称命题(含有全称量词的命题叫全称命题,含有存在量词的命题叫特称命题) (1)关系:全称命题的否定是特称命题,特称命题的否定是全称命题。 (2)全称量词与存在量词的否定。 关键词 否定词 关键词 否定词 关键词 否定词 关键词 否定词 都是 不都是 至少一个 一个都没有 至多一个 至少两个 属于 不属于 4. 逻辑连结词“或”,“且”,“非”。 (1)构造复合命题的方式:简单命题+逻辑连结词(或、且、非)+简单命题。 (2)复合命题的真假判断: p q 非p p 或q p 且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假 注意:“命题的否定”与“否命题”是两个不同的概念:前者只否定结论,后者结论与条件共同否定。 二.圆锥曲线 一、椭圆方程.

高中数学(矩阵行列式)综合练习含解析

高中数学(矩阵行列式)综合练习含解析 1.定义运算?? ????++=?????????????df ce bf ae f e d c b a ,如??? ???=?????????????1514543021.已知πβα=+, 2 π βα=-,则=? ? ? ???????? ??ββααααsin cos sin cos cos sin ( ). A. 00?? ???? B. 01?????? C. 10?????? D. 11?????? 2.定义运算 a b ad bc c d =-,则符合条件 120 121z i i i +=--的复数z 对应的点在 ( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 3.矩阵E =??? ? ??1001的特征值为( ) A. 1 B. 2 C. 3 D. 任意实数 4. 若行列式21 24 1 013 9x x =-,则=x . 5.若2021310x y -??????= ??? ?-?????? ,则x y += . 6.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-?? ??? ,则 x y -=_______. 7.矩阵1141?? ???? 的特征值为 . 8.已知变换100M b ?? =? ??? ,点(2,1)A -在变换M 下变换为点(,1)A a ',则a b += 9.配制某种注射用药剂,每瓶需要加入葡萄糖的量在10ml 到110ml 之间,用0.618 法寻找最佳加入量时,若第一试点是差点,第二试点是好点,则第三次试验时葡萄糖的加入量可以是 ; 10.已知 , ,则y= . 11.若2211 x x x y y y =--,则______x y +=

苏教版数学高二选修4-2矩阵与变换学案第09课时 逆矩阵的概念

第09课时 逆矩阵的概念 一、要点讲解 1.二阶逆矩阵的概念: 2.逆矩阵的求法: 二、知识梳理 1.对于二阶矩阵,若有______________________,则称A 是可逆的,B 称为A 的逆矩阵. 2.在六种变换中,__________变换一定不存在逆矩阵. 3.一般地,对于二阶可逆矩阵(0)a b A ad bc d c =-≠?????? ,它的逆矩阵为1A -=________________. 4.若二阶矩阵A 、B 均可逆,则AB 也可逆,且(AB )-1=____________. 5.已知A 、B 、C 为二阶矩阵,且AB = AC ,若矩阵A 存在逆矩阵,则___________. 三、例题讲解 例1. 对于下列给出的变换矩阵A ,是否存在变换矩阵B ,使得连续进行两次变换(先T A 后 T B )的结果与恒等变换的结果相同? (1)以x 为反射轴的反射变换; (2)绕原点逆时针旋转60o作旋转变换; (3)横坐标不变,沿y 轴方向将纵坐标拉伸为原来的2倍作伸压变换; (4)沿y 轴方向,向x 轴作投影变换; (5)纵坐标y 不变,横坐标依纵坐标的比例增加,且满足(x ,y )→(x + 2y ,y ). 例2. 用几何变换的观点判断下列矩阵是否存在逆矩阵,若存在,请求出逆矩阵;若不存在, 请说明理由. (1)0110??????=A ; (2)11210??????????=B ; (3)0110??-????=C ; (4)1010?????? =D ; 例3. 求矩阵3221??? ???=A 的逆矩阵. 四、巩固练习 1. 已知矩阵122301,,231210??????? ?????--??????===B C A ,求满足AXB = C 的矩阵X .

高中数学必修2基本概念

基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。 公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3:过不在同一条直线上的三个点,有且只有一个平面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面 直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 esp.空间向量法(找平面的法向量) 规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为[0°,90°] 最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所 成角中的最小角 三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 esp.直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条

推荐高中数学2-4逆变换与逆矩阵2-4-1逆矩阵的概念教学案苏教版选修4_2

2.4.1 逆矩阵的概念 1.逆矩阵的定义 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵,记为A -1 . 2.逆矩阵的性质 (1)若二阶矩阵A 、B 均可逆,则AB 也可逆,且(AB )-1 =B -1A -1 . (2)已知A 、B 、C 为二阶矩阵且AB =AC ,若A 存在逆矩阵,则B =C . 3.逆矩阵的求法 (1)公式法:对于二阶矩阵A =???? ??ab cd ,若ad -bc ≠0,则A 必可逆,且A -1 = ????????d ad -bc -b ad -bc -c ad -bc a ad -bc . (2)待定系数法. (3)逆变换法. [对应学生用书P30] [例1] 求矩阵A =?? ?? 3 22 1的逆矩阵. [思路点拨] 设出逆矩阵,利用待定系数法求解或直接利用公式法求解. [精解详析] 法一:待定系数法:设A -1 =??????xy zw , 则??????3 22 1??????xy zw =???? ??1 00 1. 即????3x +2z 3y +2w 2x +z 2y +w =??? ?1 00 1, 故? ?? ?? 3x +2z =1,2x +z =0,? ?? ?? 3y +2w =0, 2y +w =1, 解得x =-1,z =2,y =2,w =-3,

从而A 的逆矩阵为A -1 =?? ??-122-3. 法二:公式法:ad -bc =3×1-2×2=-1≠0, ∴A -1 =???? ??-122-3. 用待定系数法求逆矩阵时,先设出矩阵A 的逆矩阵A -1 ,再由AA -1 =E 得相等矩阵,最后利用相等矩阵的概念求出A -1 . 1.(江苏高考)已知矩阵A =?? ????-1002,B =???? ??1206,求矩阵A -1 B . 解:设矩阵A 的逆矩阵为??????ab cd ,则?? ????-1 0 0 2??????ab cd =?????? 1 00 1,即??????-a -b 2c 2d =???? ??1 00 1 故a =-1,b =0,c =0,d =12 ,从而A 的逆矩阵为A -1=???????? -1 0 0 12, 所以A -1 B =? ?? ?? ??? -1 0 0 12?????? 1 20 6=???? ??-1 -2 0 3. 2.已知矩阵M =???? 21 -3-1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标. 解:由M =????21 -3 -1,得2×(-1)-(-3)×1=1≠0, 故M -1 =????-1-1 32. 从而由????21 -3-1????x y =???? 13 5得 ????x y =????-1-1 32????13 5=????-1×13+3×5-1×13+2×5=??? ? 2-3, 故? ?? ?? x =2,y =-3,即A (2,-3)为所求.

苏教版高中数学高二选修4-2 矩阵乘法的概念

选修4-2矩阵与变换 2.3.1 矩阵乘法的概念 编写人: 编号:008 学习目标 1、 熟练掌握二阶矩阵与二阶矩阵的乘法。 2、 理解两个二阶矩阵相乘的结果仍然是一个二阶矩阵,从几何变换的角度来看,它表 示的是原来两个矩阵对应的连续两次变换。 学习过程: 一、预习: (一)阅读教材,解决下列问题: 问题:如果我们对一个平面向量连续实施两次几何变换,结果会是怎样?举例说明。 归纳1:矩阵乘法法则: 归纳2:矩阵乘法的几何意义: (二)初等变换:在数学中,一一对应的平面几何变换都可看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变变换通常叫做初等变换,对应的矩阵叫做初等变换矩阵。 练习 、.?? ??????????10110110=( ) A 、???? ??1110 B 、??????1011 C 、? ? ? ???0111 D 、??????0110 、已知矩阵X 、M 、N,若M =?? ? ???--1111, N =??????--3322,则下列X 中不满足:XM=N ,的一个 是( ) A 、X =???? ??--2120 B 、X =??????--1211 C 、X =??????--3031 D 、X =? ? ? ???-3053

二、课堂训练: 例1.(1)已知A= 11 22 11 22 ?? ? ? ? ? ?? ,B= 11 22 11 22 ?? - ? ? ? - ? ?? ,计算AB (2)已知A= 10 02 ?? ? ?? ,B= 14 23 ?? ? - ?? ,计算AB,BA (3)已知A= 10 00 ?? ? ?? ,B= 10 01 ?? ? ?? ,C= 10 02 ?? ? ?? 计算AB,AC 例2、已知梯形ABCD,其中A(0,0),B(3,0),C(2,2),D(1,2),先将梯形作关于x轴的反射变换,再将所得图形绕原点逆时针旋转0 90 (1)求连续两次变换所对应的变换矩阵M (2)求点A,B,C,D在 M T作用下所得到的结果 (3)在平面直角坐标系内画出两次变换对应的几何图形,并验证(2)中的结论。

上海高二数学矩阵及其运算

矩阵及其运算 矩阵的概念 1、形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ? - ? ?-?? 这样的矩形数表叫做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量;垂直方向排列 的数组成的向量12n b b b ?? ? ? ???? ??? 称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵,m n ?阶矩阵可记做m n A ?,如矩阵13 ?? ??? 为21?阶矩阵,可记做21A ?;矩阵 512128363836232128?? ? ? ??? 为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行第 j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。 4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如000000?? ??? 为一个 23?阶零矩阵。 5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有 n 行(列),可称此方阵为n 阶方阵,如矩阵512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-?? 均为三阶方阵。在一个n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线

的元素均为1,其余元素均为零的方阵,叫做单位矩阵。如矩阵1001?? ??? 为2阶单位矩阵,矩阵100010001?? ? ? ??? 为3阶单位矩阵。 6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。 7、对于方程组231 324244x y mz x y z x y nz ++=?? -+=??+-=? 中未知数z y x ,,的系数按原来的次序排列所得的矩阵 2332441m n ?? ?- ? ?-??,我们叫做方程组的系数矩阵;而矩阵2313242414m n ?? ?- ? ?-?? 叫做方程组的增广矩阵。 应用举例: 例1、已知矩阵222,22x x y b a A B x a b y x y ---???? == ? ?++????且A B =,求a 、b 的值及矩阵A 。 例2、写出下列线性方程组的增广矩阵: (1)23146x y x y +=??-=?;(2)2320 3250230 x y z x y z x y z +-+=?? -++-=??-++=? 例3、已知线性方程组的增广矩阵,写出其对应的方程组: (1)235124-?? ?-??(2)210203213023-?? ? - ? ? -?? 例4、已知矩阵sin cos 0sin cos 1αα ββ+?? ?+??为单位矩阵,且,,2παβπ?? ∈???? ,求()sin αβ-的值。 矩阵的基本变换:

高中数学 矩阵及逆矩阵 试题及解析

高中数学矩阵及逆矩阵试题 一.选择题(共13小题) 1.关于x、y的二元一次方程组的系数行列式D为()A.B.C.D. 2.定义=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到的函数解析式为() A.y=2sin(x﹣)B.y=2sin(x+) C.y=2cos x D.y=2sin x 3.给出一个算法=x1y2﹣x2y1,如果,那么实数a的值等于()A.0B.1C.2D.3 4.设行列式=n,则行列式等于()A.m+n B.﹣(m+n)C.n﹣m D.m﹣n 5.设=,n∈N*,则n的最小值为() A.3B.6C.9D.12 6.函数的最小正周期是() A.2πB.πC.D. 7.有矩阵A3×2,B2×3,C3×3,下列运算可行的是() A.AC B.BAC C.ABC D.AB﹣AC 8.定义运算=ad﹣bc,则函数图象的一条对称轴方程是()A.B.C.D. 9.已知矩阵A=,C=,若AC=BC,则矩阵B=()

A. B. C. D.,其中a,c为任意实数 10.已知矩阵A的逆矩阵A﹣1=,则矩阵A的特征值为() A.﹣1B.4C.﹣1,4D.﹣1,3 11.矩阵的逆矩阵是() A.B.C.D.12.矩阵A=的逆矩阵为() A.B. C.D. 13.设A为n阶可逆矩阵,A*是A的伴随矩阵,则|A*|=()A.|A|B.C.|A|*D.|A|n﹣1二.填空题(共22小题) 14.若=0,则x=. 15.若θ∈R,则方程=0的解为. 16.增广矩阵()的二元一次方程组的解(x,y)=. 17.已知矩阵A=,矩阵B=,计算:AB=. 18.N=,则N2=. 19.若行列式=1,则x=. 20.二阶行列式的运算结果为.

沪教版(上海)高二上学期数学第 九 章 矩阵和行列式初步

第 九 章 矩阵和行列式初步 格致中学 王国伟 第一课时 9.1 矩阵的概念(1) [教学目标] 1、了解矩阵的产生背景,并会用矩阵形式表示一些实际问题; 2、了解矩阵、行向量、列向量、方矩阵、零矩阵、单位矩阵等概念; 3、理解同阶矩阵、相等的矩阵等概念; 4、理解线性方程组与系数矩阵及其增广矩阵之间的转化。 [教学重点] 1、与矩阵有关的概念; 2、线性方程组的系数矩阵及增广矩阵的概念。 [教学难点] 学习矩阵的目的。 [教学过程] 一、情境设置、引入: 引例1:已知向量()1,3OP =,如果把的坐标排成一列,可简记为13?? ??? ; 引例2:2008 我们可将上表奖牌数简记为:512128363836232128?? ? ? ??? ; 引例3:将方程组231 324244x y mz x y z x y nz ++=?? -+=??+-=? 中未知数z y x ,,的系数按原来的次序排列,可简记为 2332441m n ?? ?- ? ? -?? ;若将常数项增加进去,则可简记为:2313242414m n ?? ? - ? ?-??。 二、概念讲解:

1、上述形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ? - ? ? -? ?这样的矩形数表 叫做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量;垂直方向排列的数 组成的向量12 n b b b ?? ? ? ???? ??? 称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵, m n ?阶矩阵可记做m n A ?,如矩阵13?? ???为21?阶矩阵,可记做21A ?;矩阵512128363836232128?? ? ? ? ?? 为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行第 j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。 4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如000000?? ??? 为一个23 ?阶零矩阵。 5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有n 行(列), 可称此方阵为n 阶方阵,如矩阵512128363836232128?? ? ? ???、2332441m n ?? ? - ? ?-?? 均为三阶方阵。在一个 n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线的元素均为1,其余 元素均为零的方阵,叫做单位矩阵。如矩阵1001?? ???为2阶单位矩阵,矩阵100010001?? ? ? ? ?? 为 3阶单位矩阵。 6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。

高二数学知识点总结

高二数学知识点总结 一、集合、简易逻辑(14课时,8个) 1.集合; 2.子集; 3.补集; 4.交集; 5.并集; 6.逻辑连结词; 7.四种命题; 8.充要条件。 二、函数(30课时,12个) 1.映射; 2.函数; 3.函数的单调性; 4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充; 7.有理指数幂的运算; 8.指数函数; 9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。 三、数列(12课时,5个) 1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式; 4.等比数列及其通顶公式; 5.等比数列前n项和公式。 四、三角函数(46课时,17个) 1.角的概念的推广; 2.弧度制; 3.任意角的三角函数; 4.单位圆中的三角函数线; 5.同角三角函数的基本关系式; 6.正弦、余弦的诱导公式; 7.两角和与差的正弦、余弦、正切; 8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。 五、平面向量(12课时,8个) 1.向量; 2.向量的加法与减法; 3.实数与向量的积; 4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积; 7.平面两点间的距离; 8.平移。 六、不等式(22课时,5个) 1.不等式; 2.不等式的基本性质; 3.不等式的证明; 4.不等式的解法; 5.含绝对值的不等式。 七、直线和圆的方程(22课时,12个) 1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式; 4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离; 7.用二元一次

高中数学概念公式大全

高中数学概念公式大全 一、 三角函数 1、以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则 sin α= r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=y r 。 2、同角三角函数的关系中,平方关系是:1cos sin 22=+αα, αα22sec 1=+tg ,αα22csc 1=+ctg ; 倒数关系是:1=?ααctg tg ,1csc sin =?αα,1sec cos =?αα; 相除关系是:αααcos sin = tg ,α α αsin cos =ctg 。 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: =-)23sin(απαcos -,)2 15(απ -ctg =αtg , =-)3(απtg αtg -。 4、函数B x A y ++=)s i n (?ω ),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ω π 2= T ,频率是π ω 2= f ,相位是?ω+x ,初相是?;其图象的对称轴是直线 )(2 Z k k x ∈+ =+π π?ω,凡是该图象与直线B y =的交点都 是该图象的对称中心。 5、三角函数的单调区间:

x y s i n =的递增区间是?????? +-2222ππππk k ,)(Z k ∈,递减区间是????? ? ++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22, )(Z k ∈,tgx y =的递增区间是?? ? ? ?+ - 22 πππ πk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。 6、=±)sin(βαβαβαsin cos cos sin ± =±)c o s (βαβαβαs i n s i n c o s c o s = ±)(βαtg β αβ αtg tg tg tg ?± 1 7、二倍角公式是:sin2α=ααcos sin 2? cos2α=αα2 2 sin cos -=1cos 22 -α=α2 sin 21- tg2α= α α 212tg tg -。 8、三倍角公式是:sin3α=αα3 sin 4sin 3- cos3α=ααcos 3cos 43 - 9、半角公式是:sin 2α=2cos 1α-± cos 2α=2 cos 1α +± tg 2α=α αcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +。

苏教版数学高二选修4-2矩阵与变换学案第01课时 矩阵的概念

第01课时 矩阵的概念 一、要点讲解 1.矩阵的概念: 2.矩阵的相等: 二、知识梳理 1.在数学中,将形如13?????? ,80908688??????,23324m ????-??这样的__________________称做矩阵._____________________________________叫做矩阵的行,______________________ ________________叫做矩阵的列.通常称具有i 行j 列的矩阵为i ×j 矩阵. 2.__________________称为零矩阵;______________________称为行矩阵;____________ _______________称为列矩阵. 3.平面上向量α = (x ,y )的坐标和平面上的点P (x ,y )看作行矩阵可记为________,看作列矩阵可记为_________. 4.当两个矩阵A ,B ,只有当A ,B 的_______________________,并且____________________也分别相等时,才有A = B . 三、例题讲解 例1. 用矩阵表示△ABC ,其中A (-1,0),B (0,2),C (2,0). 例2. 设31,422x y A B z ????==????--???? ,若A = B ,求x ,y ,z . 例3. 已知n 阶矩阵11221 21247712j n j n i i i j in n n n j nn a a a a A a a a a a a a a ????????=???????????? ,其中每行、每列都是等差数列,ij a 表示位于第i 行第j 列的数. (1)写出45a 的值; (2) 写出ij a 的计算公式. 四、巩固练习 1. 画出矩阵143111-????-?? 所表示的三角形,并求该三角形的面积.

上海高二数学矩阵及其运算有详细答案精品

上海高二数学矩阵及其 运算有详细答案精品 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

上海版高二上数学 矩阵及其运算 一.初识矩阵 (一)引入: 引例1:已知向量()1,3OP =,如果把OP 的坐标排成一列,可简记为13?? ???; 引例2:2008年北京奥运会奖牌榜前三位成绩如下表: 记为:512128363836232128?? ? ? ??? ; 我们可将上表奖牌数简 231324244x y mz x y z x y nz ++=?? -+=??+-=? 中未引例3:将方程组 知数z y x ,,的系数按原来的次序排列,可简记为2332441m n ?? ? - ? ?-??;若将常数项增加进去, 则可简记为:2313242414m n ?? ? - ? ?-?? 。 (二)矩阵的概念 1、上述形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ? - ? ? -?? 这样的矩形数表叫做矩 阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量;垂直方向排列的数 组成的向量12n b b b ?? ? ? ???? ??? 称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵,

m n ?阶矩阵可记做m n A ?,如矩阵13?? ???为21?阶矩阵,可记做21A ?;矩阵512128363836232128?? ? ? ? ?? 为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行第j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。 4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如000000?? ???为一个23 ?阶零矩阵。 5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有n 行 (列),可称此方阵为n 阶方阵,如矩阵512128363836232128?? ? ? ???、2332441m n ?? ? - ? ?-?? 均为三阶方阵。 在一个n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线的元素均为 1,其余元素均为零的方阵,叫做单位矩阵。如矩阵1001?? ??? 为2阶单位矩阵,矩阵 100010001?? ? ? ??? 为3阶单位矩阵。 6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。

高二上学期数学复习知识点归纳

高二上学期数学复习知识点归纳 一、不等式的性质 1.两个实数a与b之间的大小关系 2.不等式的性质 (4)(乘法单调性) 3.绝对值不等式的性质 (2)如果a>0,那么 (3)|a?b|=|a|?|b|. (5)|a|-|b|≤|a±b|≤|a|+|b|. (6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|. 二、不等式的证明 1.不等式证明的依据 (2)不等式的性质(略) (3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R) ②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号) 2.不等式的证明方法 (1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法. 用比较法证明不等式的步骤是:作差——变形——判断符号. (2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.

(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的 充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法. 证明不等式除以上三种基本方法外,还有反证法、数学归纳法等. 三、解不等式 1.解不等式问题的分类 (1)解一元一次不等式. (2)解一元二次不等式. (3)可以化为一元一次或一元二次不等式的不等式. ①解一元高次不等式; ②解分式不等式; ③解无理不等式; ④解指数不等式; ⑤解对数不等式; ⑥解带绝对值的不等式; ⑦解不等式组. 2.解不等式时应特别注意下列几点: (1)正确应用不等式的基本性质. (2)正确应用幂函数、指数函数和对数函数的增、减性. (3)注意代数式中未知数的取值范围. 3.不等式的同解性 (5)|f(x)|0)

高二数学基本概念——第9章 矩阵和行列式初步

第9章 矩阵和行列式初步 一、 矩阵 9.1 矩阵的概念 矩阵及其相关的概念 1、矩形数表叫做矩阵 矩阵中的每个数叫做矩阵的元素 由个数排成的行列的数表 n m ?m n ()n j m i a ij ,,2,1;,,2,1 ==mn m m n n a a a a a a a a a 21 2222111211称为矩阵. n m ?记作?? ?? ? ? ? ??=mn m m n n a a a a a a a a a A 2122221 11211n m ij a ?=)( 2、矩阵叫做方程组的系数矩阵。? ?? ? ??-1321它是2行2列的矩阵,记为 2 2?A ,矩阵 可简记为A n m A ?注意: 矩阵的符号,是“()”,不能是“| |”. 列元素。 行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。 。 等,或者必要时可记为n m ij n m n m a B A ???)(,

说明: 通过对线性方程组的增广矩阵的变换可以得到线性方程组的解,这里所用的矩阵变换有 下列三种: (1)互换矩阵的两行 (2)把某一行同乘以(除以)一个非零常数 (3)某行乘以一个数加到另一行 通过上述三种矩阵变换,使线性方程组系数矩阵变成单位矩阵时,其增广矩阵的最后一个列向量给出了方程组的解。

9.2 矩阵的运算 矩阵 列的矩形表,称为一个行排列成一个个数由n m n m n j m i a n m ij ?==?) ,,2,1;,2,1( 11 12121 2221 2 .....................n n m m mn a a a a a a a a a ?? ? ? ? ? ??? 记为列元素。 行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。 ,()m n m n ij A B a ??必要时可记为等,或者A=。 0m n O O ?所有元素均为的矩阵,称为零矩阵,记作或定义1一、复习 定义2若两个矩阵A ,B 有相同的行数与相同的列数,并且对 应的位置上的元素相等,则称矩阵A 与矩阵B 相等。记为:A=B n m ij n m ij b B a A ??==)(,)(即如果,(1,2,...,;1,2,...,) ij ij a b i m j n ===且则A=B 。 ...)3,2,1,...;3,2,1(===j i b a ij ij 二、矩阵的运算 (一)矩阵的加(减)法和数与矩阵的乘法 3(),()ij ij m n A a B b m n A B ==定义两个行列矩阵对应位置元素相加(或相减)得到的行列矩阵,称为矩阵与矩阵的和(差)。A-B A B +记为或()。 A B ±即 ()()ij m n ij m n a b ??=±()ij ij m n a b ?=± 定义4以实数乘矩阵A 中的每一个元素所得到的矩阵,称为实数与矩阵A 的乘积矩阵.记做A A α即 ()ij m n a α?=()ij m n a α?=的负矩阵的元素变号,称为的乘积使与A A A 1-A -记作n m ij a A ?-=-)(即 α)(ij a =αα1A 1A A 2A B A B αααααα=+=+注意:()矩阵与实数相乘满足如下交换率和分配律:()()()

高二数学知识点总结大全(必修二)

高二数学知识点总结大全(必修二) 第1章空间几何体1 1 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图 11 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则: 长对齐、高对齐、宽相等 33直观图:斜二测画法 44斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一)空间几何体的表面积 1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积 3 圆锥的表面积2r rl Sπ π+ = 4 圆台的表面积2 2R Rl r rl Sπ π π π+ + + = 5 球的表面积2 4R Sπ = (二)空间几何体的体积 1柱体的体积h S V? = 底 2锥体的体积h S V? = 底 3 1 3台体的体积h S S S S V? + + =) 3 1 下 下 上 上 ( 4球体的体积3 3 4 R Vπ = 第二章直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成 一个平行四边形,锐角画成450,且横边画成 邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示, 如平面α、平面β等,也可以用表示平面的平 行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面 2 2 2r rl Sπ π+ = D C B A α

上海高二数学矩阵及其运算(完整资料)

【最新整理,下载后即可编辑】 矩阵及其运算 矩阵的概念 1、形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ? - ? ?-? ?这样的矩形数表叫做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量;垂直方向排 列的数组成的向量12n b b b ?? ? ? ???? ??? 称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵,m n ?阶矩阵可记做m n A ?,如矩阵13?? ??? 为21?阶矩阵,可记做21A ?; 矩阵512128363836232128?? ? ? ??? 为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行第j ( j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第 3行第2个数为 3221a =。 4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如000000?? ??? 为 一个23?阶零矩阵。 5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方 阵有n 行(列),可称此方阵为n 阶方阵,如矩阵512128363836232128?? ? ? ???、2332441m n ?? ? - ? ?-?? 均为三阶方阵。在一个n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线的元素均为1,其余元素均为零的方阵,叫做单位矩阵。如矩阵1001?? ??? 为2 阶单位矩阵,矩阵100010001?? ? ? ??? 为3阶单位矩阵。 6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果 矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。

高二数学知识点总结大全

第1章 空间几何体1 1 三视图: 画三视图的原则: 长对齐、高对齐、宽相等 直观图:斜二测画法 2空间几何体的表面积与体积 表面积 1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2 r rl S ππ+= 4 圆台的表面积2 2R Rl r rl S ππππ+++= 5 球的表面积2 4R S π= 体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=底31 3台体的体积 h S S S S V ?++=)31 下下上上( 4球体的体积 33 4 R V π= 第二章 直线与平面的位置关系 1直线、平面之间的位置关系 2 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 3 直线与直线之间的位置关系 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 公理4:平行于同一条直线的两条直线互相平行。 2.2.1 直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号表示: 222r rl S ππ+=L A · α C · B · A · α P · α L β 共面直线

高考数学《矩阵与行列式》专题复习

高考数学《矩阵与行列式》专题复习 1.矩阵:n m ?个实数n j m i a ij ,,2,1;,,2,1, ==排成m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn n m n n a a a a a a a a a A 2122212 11211叫做矩阵。记作n m A ?,n m ?叫做矩阵的维数。 矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。 2.线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。 ?? ?=+=+222 1 11c y b x a c y b x a 3.线性方程组矩阵的三种变换: ①互换矩阵的两行; ②把某一行同乘(除)以一个非零的数; ③某一行乘以一个数加到另一行。 变换的目的是将线性方程阻系数矩阵变为单位矩阵,其扩充矩阵的最后一列就是方程组的解。 4.矩阵运算:加法、减法及乘法 (1)矩阵的和(差):记作:A+B (A-B ). 运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C ) (2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数α的乘积矩阵,记作:α A.

运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==; (3)矩阵的乘积:设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵。如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m ×n =A m ×k B k ×n . 运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠. 5.二阶行列式的有关概念及二元一次方程组的解法: 设二元一次方程组(*)?? ?=+=+2 221 11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数 且不全为零,21,c c 是常数项) 用加减消元法解方程组(*): 当01221≠-b a b a 时,方程组(*)有唯一解:??? ? ???--=--=1221122112211221b a b a c a c a y b a b a b c b c x , 引入记号 21a a 2 1b b 表示算式1221b a b a -,即 21a a 2 1b b 1221b a b a -=. 从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。 记= D 21a a 2 1b b ,= x D 21c c 2 1b b ,= y D 21a a 2 1c c ,则: ①当= D 21a a 2 1b b =01221≠-b a b a 时,方程组(*)有唯一解, 可用二阶行列式表示为??? ? ?? ? ==D D y D D x y x . ②当D =0时,0x y D D ==方程组(*)无穷组解; ③当D =0时,0≠x D 或0≠y D ,方程组(*)无解。 系数行列式11 22 a b D a b =也为二元一次方程组解的判别式。

相关文档
最新文档