化学动力学的研究与应用

化学动力学的研究与应用
化学动力学的研究与应用

化学动力学的研究及其应用

1110712

胡景皓

摘要: 化学动力学研究的对象包括化学反应进行的条件(温度、压强、浓度、介质)对化学过程速率的影响,反应的历程(反应机理),物质的结构与化学反应能力之间的关系。

关键词:放射性测定,蜕变速率,半衰期,放射性同位素

1.化学动力学的研究领域

化学动力学作为物理化学学科的一个分支已有很久的历史,并概括为研究化学反应的机理与速率的科学。化学动力学的发展经历了从现象的观察到理论的分析,从宏观的测量到微观的探索,因而它又分为宏观化学动力学和微观反应动力学,后者又称分子反应动力学。1928年M. Polanyi研究Na_2+Cl_2反应的机理,相继建立了多维势能面来研究反应的进程,被誉为微观反应动力学诞生的里程碑。七十年代以来,分子束和激光技术的发展并在动力学研究中广泛应用,促使反应动力学的研究得到长足进步。1986年诺贝尔化等奖授予这个领域的三位著名化学家D. R. Herschbach,Y. T. Lee和J. C. Polanyi,标志着化学反应动力学的重要性,以及目前已经取得的进展和达到的水平。

2.化学动力学的研究方法

2.1.唯象动力学研究方法

也称经典化学动力学研究方法,它是从化学动力学的原始实验数据──浓度c与时间t的关系──出发,经过分析获得某些反应动力学参数──反应速率常

数k、活化能E a、指前因子A。用这些参数可以表征反应体系的速率特征,常用的关系式有:

式中r为反应速率;A、B、C、D为各物质的浓度;α、β、γ、δ称为相对于物质A、B、C、D的级数;R为气体常数;T为热力学温度。

化学动力学参数是探讨反应机理的有效数据。20世纪前半叶,大量的研究工作都是对这些参数的测定、理论分析以及利用参数来研究反应机理。但是,反应机理的确认主要依赖于检出和分析反应中间物的能力。20世纪后期,自由基链式反应动力学研究的普遍开展,给化学动力学带来两个发展趋向:一是对元反应动力学的广泛研究;二是迫切要求建立检测活性中间物的方法,这个要求和电子学、激光技术的发展促进了快速反应动力学的发展。对暂态活性中间物检测的时间分辨率已从50年代的毫秒级变为皮秒级。

2.1.1分子反应动力学研究方法

从微观的分子水平来看,一个元化学反应是具有一定量子态的反应物分子间的互相碰撞,进行原子重排,产生一定量子态的产物分子以至互相分离的单次反应碰撞行为。用过渡态理论解释,它是在反应体系的超势能面上一个代表体系的质点越过反应势垒的一次行为。原则上,如果能从量子化学理论计算出反应体系的正确的势能面,并应用力学定律计算具有代表性的点在其上的运动轨迹,就能计算反应速率和化学动力学的参数。

分子势能面

但是,除了少数很简单的化学反应以外,量子化学的计算至今还不能得到反应体系的可靠的完整的势能面。因此,现行的反应速率理论(如双分子反应碰撞理论、过渡态理论)仍不得不借用经典统计力学的处理方法。这样的处理必须作出某种形式的平衡假设,因而使这些速率理论不适用于非常快的反应。尽管对平衡假设的适用性研究已经很多,但完全用非平衡态理论处理反应速率问题尚不成熟。

在60年代,对化学反应进行分子水平的实验研究还难以做到。经典的化学动力学实验方法不能制备单一量子态的反应物,也不能检测由单次反应碰撞所产生的初生态产物。分子束(即分子散射),特别是交叉分子束方法对研究化学元反应动力学的应用,使在实验上研究单次反应碰撞成为可能。分子束实验已经获得了许多经典化学动力学无法取得的关于化学元反应的微观信息,分子反应动力学是现代化学动力学的一个前沿阵地。

它应用现代物理化学的先进分析方法,在原子、分子的层次上研究不同状态下和不同分子体系中单分子的基元化学反应的动态结构,反应过程和反应机理。它从分子的微观层次出发研究基元反应过程的速率和机理,着重于从分子的内部运动和分子因碰撞而引起的相互作用来观察化学基元过程的动态学行为。中科院大连化学物理研究所分子反应动力学国家重点实验室在这方面研究有突出的贡献。

3.化学动力学的应用

化学动力学是一个应用非常广泛的科学领域,如何较准确地测定考古挖掘物的年代,是考古学家们需要解决的重要课题。自20世纪中叶以来,科学家用先进技术解决了这一问题,即用放射性碳测定年代的技术。

碳的同位素主要是稳定同位素12C ,13C 及具有放射性的14C 。

地球上的大气永恒地承受着穿透能力极强的宇宙线照射。这些射线来自于外层空间,它是由电子、中子和原子核组成的。大气与宇宙线间的重要反心之一是中子被大气中的氮-14捕获产生了放射性的碳-14和氢:

H C n N 1114

61014

7+?→?+

放射性的碳原子最终生成了14CO 2,它与普通的二氧化碳12CO 2(12C 在自然界

的丰度占碳总量的98.89%)在空气中混合。同位素碳-14蜕变放射出粒子(电子),其蜕变速率由每秒放射出的电子数来测定。蜕变为一级反应,其速率方程式为:kN v =

K 为一级反应速率系数;N 为所存在的14C 核的数目。蜕变的半衰期为5.73

×103年 k=a 31073.5693

.0?=1.21×10-4a -1

当植物进行光合作用吸收了CO 2的时候,14C 同位素进入了生物圈。动物吃了

植物,在新陈代谢中,又以CO 2的形式呼出碳-14.因而导致碳-14以多种形式参

与了碳在自然界中的循环。因反射蜕变减少了的14C 又不断地被大气中新产生的14C 补充着。在蜕变补充的过程中,建立了动平衡。因此14C 与12C 的比例在生命

体内保持恒定。当植物或动物死亡之后,其中的碳-14不再得到补充。由于14C

蜕变过程没有终止,死亡了的生命中14C 所占的比例将减少。在煤、石油及其他

地下含碳的材料中碳原子也发生着同样的变化。如多年之后的干尸(木乃伊)中核与活着人们的体内14C 与12C 的比例随着年代的增长成正比地减少。

1955年,W .P .Libby (美国化学家)提出,这一事实能用于估算某特定样品在没有补充14C 的情况下,碳-14同位素已经蜕变的时间。 根据)()(ln

o A c A c = k t ,可以写出N No ln =kt

时所存在的14C 核数;时所存在的14C 核数。

因为蜕变速率正比存在的14C 核数,上述方程可写作: t=N No k

ln 1 t=

old new v v a v v a ln 1021.11ln 1021.114'4--?=? 若已知新(new )、旧(old )样品的蜕变速率v ,就能计算出t ,即旧样品的年龄。这种有独创性的技术是以极简单的概念为基础的。W .F .Libby 奠定了这一技术的基础,为此他荣获了1960年的Nobel 化学奖。

“碳-14测定年代法”的成功与否,取决于能精确地测量蜕变速率。在活着(new )的生物体内14C /12C 为1/1012,14C 的量如此之少,所用仪器的检测器对放射性蜕变要特别灵敏。对年代久远的样品来说,要达到较高的精确度就更加困难。尽管如此,这一技术已成为考古学中判断古生物年龄的重要方法,可以用来判断远离现在(1000-50000)年之久的生物化石、绘画和木乃伊等。

参考文献:

国汉贤.《应用化工动力学》.北京.化学工业出版社.2003

《无机化学》第五版.大连理工大学无机化学教研室编.西南交通大学出版社,2004

文章《化学与文物考古》.梁宏斌.2005

《物理化学》南京大学化学化工学院(第五版) 傅献彩 沈文霞 姚天扬 侯文华编.高等教育出版社.2006

化学推进剂与高分子材料-2012年

化学推进剂与高分子材料-2012 年 目录· 2012 年 1 期
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
中国聚氨酯工业现状和“十二五”发展规划建议 翁汉元,朱长春,吕国会, 植物油多元醇的制备及其在聚氨酯硬泡中的应用进展 张俊良,赵巍,于剑昆, 中国汽车用聚氨酯材料发展方向 贾润萍,黄茂松, 聚氨酯反应注射成型在汽车玻璃包边中的应用 董火成,孙嘉鹏,朱小树,于文杰, HER 扩链剂的合成及其在聚氨酯弹性体中的应用 于剑昆,庄远,杨炜,梁敏, 缩短叠氮胺燃料作为双组元推进剂点火延迟的研究进展 池俊杰, 常伟林, 夏宇, 张晓勤, 线性二硝胺含能增塑剂的合成、性能及应用研究进展 王连心,刘飞,尚丙坤,薛金强, 纳米金属及其复合物在固体推进剂中的应用研究进展 齐晓飞, 张晓宏, 严启龙, 宋振伟, RDX 降感技术研究进展 刘波,刘少武,张远波,王琼林,王锋,李达,刘国涛, 卫星推进剂技术发展趋势概述 张广科,山世华,樊超, 采用叠氮基炔基点击化学方法提高 GAP 推进剂力学性能研究 关鑫,李建民, 复合改性双基推进剂燃烧性能研究 宋桂贤,吴雄岗, 降解偏二甲肼污水高效菌群的构建 范春华,夏本立,王煊军,王力, 蒽醌法生产过氧化氢工作液溶剂中重芳烃含量的分析方法研究 朱爱萍,申丽红, 火焰原子吸收分光光度法测定癸二酸二丁酯中钠含量的不确定度分析 王洋, 肖恒, 翁薇, 聚氨酯绝缘材料体积电阻率测量的不确定度评定 李杰妹,LI Jiemei 信息动态 Antaris 傅里叶近红外分析仪在高分子(多聚物)行业中的应用 赛默飞世尔科技 目录· 2012 年 2 期
? ? ? ? ? ?
用磷腈类催化剂合成的新型聚醚多元醇及其在聚氨酯泡沫制备中的应用新进展 于剑昆, 制备低不饱和度聚醚多元醇用 DMC 催化剂的研究进展 赵巍,ZHAO Wei 信息动态 端羟基聚丁二烯中羟基类型的 NMR 研究进展 郝利峰,孙庆锋,盛红亮, 低温固体推进剂的研究进展 赵庆华,李祎,王莉莉,崔玉春,常亮亮,Z 1,1-二氨基-2,2-二硝基乙烯的合成研究进展 冯晓晶,马会强,张寿忠,苗成才,马英华,

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题 一、选择题: 1、某反应的速率常数k=0.0462分-1,又知初始浓度为0.1mol.dm-3,则该反应的半衰期为: (A) 1/(6.93×10-2×0.12) (B) 15分(C) 30分(D) 1/(4.62×102×0.1)分 答案:(B) 2、某一级反应, 当反应物的浓度降为起始浓度的1%时,需要t1秒, 若将反应物的浓度提高一倍, 加快反应速率, 当反应物浓度降低为起始浓度的1%时, 需时为t2, 则: (A ) t1﹥t2(B) t1=t2 (C) t1﹤t2(D) 不能确定二者关系 答案:(B) 3、某反应物反应掉7/8所需的时间恰好是它反应掉1/2所需时间的3倍, 则该反应的级数是: (A) 零级(B) 一级反应(C) 三级反应(D) 二级反应 答案:(B )

4、反应A→B(Ⅰ);A→D(Ⅱ), 已知反应Ⅰ的活化能E1大于反应Ⅱ的活化能E2, 以下措施中哪一种不能改变获得B和D的比例: (A)提高反应温度(B) 降低反应温度 (C) 延长反应时间(D) 加入适当的催化剂 答案:C 5、由基元步骤构成的复杂反应:2A→2B+C A+C→2D,以C物质的浓度变化表示反应速率的速率方程(已知:-dC A/dt=K A1C A2-K A2C B2C c+K A3C A C C ) 则 (A)dC c/dt=K A1C A2-K A2C B2C c+K A3C A C C (B)dC c/dt=1/2K A1C A2-1/2K A2C B2C c+1/2K A3C A C C (C)dC c/dt=2K A1C A2-2K A2C B2C c+2K A3C A C C (D)dC D/dt=-K A3C A C C 答案:(B) 6、反应Ⅰ, 反应物初始浓度C0’, 半衰期t1/2’, 速率常数K1, 反应Ⅱ, 反应物初始浓度C0”, 半衰期t1/2”, 速率常数K2,

点击化学的进展及应用修订稿

点击化学的进展及应用 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

点击化学的进展及应用 点击化学(Click chemistry),又称“链接化学”、“动态组合化学”,意为通过小的化学单元的连接,以较高的产率快速地进行化学合成,得到目标产物。这一概念最早由Barry Sharpless于2001年提出,在化学合成领域引起极大的关注,点击化学的主要特征有产率高,无副产物或副产物无害,反应原料易得,条件简单,选择性强,需较高热力学驱动力等[1]。经过十余年的发展,点击化学在有机合成方面有着很大的贡献,更是在药物开发和生物医用材料合成等诸多领域中成为最为吸引人的合成理念。本文主要介绍了一些经典的点击化学反应体系,并且结合其在有机合成中的实际应用,着重探讨与其相关的一些科研成果,主要包括组织再生,靶向药物递送,纳米材料表面修饰等几个方面。 点击化学反应主要有4种类型,环加成反应、亲核开环反应、非醇醛的羰基化学以及碳碳多键的加成反应。 环加成反应中,Huisgen环加成(CuAAC)是点击化学反应最为经典的体系,即叠氮化物与末端或内部炔烃之间在一价铜催化下,进行1,3—偶极环加成,得到1,2,3—三唑。叠氮化物与末端炔基容易安装在分子中,且较为稳定,该反应速率快,副产物少,广泛应用于在聚合物偶联、后修饰中,但催化所需的一价铜的毒性限制了其应用。因此,环张力引发的叠氮—炔环加成(SPAAC)被提出,由环烯和叠氮化物进行反应。此反应最大的改善在于无铜点击化学反应,避免了一价铜的毒性,通过叁键的角应变以及存在于环烯中的环应变提高了反应速率。但上面两个反应中用到叠氮化物,在反应的过程中具有一定的危险性。另外,我们极为熟悉的Diels—Alder反应,即共轭双烯与取代烯烃反应生成取代环己烯,也属于点击化学的这一类型[1]。 图1 Huisgen环加成反应 图2 叠氮—炔环加成反应 图3 Diels—Alder反应 巯基—烯反应是碳碳多键加成类型的主要反应,具有立体选择性、高产率等点击化学的特性,可在光或热引发下进行,常用于树枝状聚合物的合成与材料表面修饰,在材料和生物医学科学中有很多应用。但巯基化合物常常气味难闻,有毒,且容易被氧化,自身并不稳定,所以一定程度上限制了该反应的应用[1]。 图4 巯基—烯反应 亲核开环反应主要是三元杂原子由于环张力进行亲核开环,以释放其内在的张力能,如环氧衍生杂环丙烷、环状硫酸酯、环状硫酰胺、吖丙啶离子和环硫离子等。在这些三元杂环化合物中,环氧衍生物和吖丙啶离子是点击化学反应中最常应用的底物,可以通过它们的开环形成各种高选择性的化合物。

点击化学——释义与目标

第l期点击化学——释义与目标 cvcloaddition)代表非催化的过程,用cuAAc代表铜催化的过程。 由于其反应基团的特殊性质,这些反应非常有用。叠氮化物和炔烃的化学势能都很高(热力学不稳定),它们融合成三唑环时放出大于188千焦/摩的热量。而另一方面,这一反应的速率很慢,对于非活化(不是非常缺电子,也没有张力)炔烃,一般需要长时间加热。叠氮化物和炔烃对亲核试剂、亲电试剂和一般的溶剂均表现出惰性,目前,叠氮化物是唯一有此性质的1,3一偶极试剂。更重要的是,叠氮化物和炔烃几乎完全不与生物分子发生反应。它们小,不能形成强氢键,极性相对弱,对连接在其上的其他结构的性质没有显著的影响。而且,它们都可以很容易地引入到有机化合物中。 由于叠氮化物和炔烃的特殊活性——对其它所有试剂的惰性及相互反应的缓慢——它们可被利用于在酶这一“反应容器”中来组装那些能与酶紧密结合的分子,如图4所示。这一技术,被称作“原位点击化学”(“clickchemistry讥si£u”),用叠氮化物和炔烃来标记那些能结合酶上相近位置的分子。如果这些被标记的分子能够同时与目标作用,而使得在某个合适的方向上叠氮化物和炔烃足够的靠近,三唑环就可以生成并把这两部分与酶结合的组件联结起来。因为双臂结合总是比单臂结合要强,于是就可以得到一个能结合得更紧密的分子。这一技术不需要事前了解目标酶的结构,也不需要对酶进行活性测试。因为在这些实验中,如果叠氮化物和炔烃标记的分子没有结合到酶模板的合适位置,溶液中叠氮化物和炔烃的浓度使之不足以发生反应,所以,这个可用质谱轻易探测的三唑环产物一旦生成,就证明一个极佳的酶抑制剂的诞生。 enzyme+m。n。valentreagenls temary∞mp瞅b鬻!嘉烹髦d图4“原位点击化学”(“clickchemigtry加si£“”)技术 Fig.4The“clickchemistryinsi£u”technique 原位点击化学(clickchemistry流sifM)已被用来 发现多种酶的高亲和力的抑制剂,包括重要的神经 递质酶(neurotransmitterenzyme),如乙酰胆碱酯酶 (acetvlcholinesterase)n’8o;新陈代谢酶(metabolic enzyme)¨1,如碳酸酐酶(carbonicaIlhydmse)旧1;和艾 滋病毒(HIV)蛋白酶(HIVpmtease)旧。。在这些和其 它的研究中,可以明显看到三唑环在药物开发中有 着优越的特性。它有着大的偶极距,可以形成强的 氢键,能够参与丌.堆积作用,三唑环可以多种形色 与蛋白发生作用。把两个“看不见的”组件在酶的空 腔中合成三唑环这一发现正影响着原位药物开发工 作中成键的选择性。原位点击化学技术,作为对传 统药物合成与筛选方法的补充,正被世界上很多实 验室和药物公司所采用。 由于铜的细胞毒性和伴随生理调节(attendant bioregulation),铜催化的反应还未能直接应用于活体 细胞中,然而铜催化反应已在有机和材料科学中得 到了格外广泛的应用。这些应用包括合成生物活性 化合物,制备蛋白和聚核苷酸的共轭体(conjugalestode{ecIiOnbyMS proteins andpolynucleotides),合成染料,对已知高分子的改进和合成新型高分子,创造响应材料(responsivematerials),以及在表面上以共价键连结目标结构。其在新药开发上的应用已有综述。‘91这个反应正被深入研究,新的应用正在加速出现。m3 3结论 点击化学是一种简单的合成方式,以实现和创造新功能物质和材料为目的。它在很大程度上已取得成功,并将得到持续的发展。然而,铜催化的三唑环合成只是目前最成功的例子,它远不是精华所在。不难理解,很多化学家认为点击化学仅仅是一个单一的反应。我们希望,随着时间的推移,学术和实践经验能打破这一视野的限制。 点击化学拓展着结构的领域,这些结构可以由专业化学家,也可以由非化学家合成出来。基本原理很简单:化合物片断的连结反应越能抵抗外界影响,就越会有多样的片断得以连结以解决各种问题。 化学家没有像活细胞那样控制反应的能力,也没有

点击化学的研究与应用

点击化学的应用 摘要:“Click chemistry”[1],常译成“点击化学”,是2001年诺贝尔化学奖获得者美国化学家Sharpless提出的一种快速合成大量化合物的新方法,是继组合化学之后又一给传统有机合成化学带来重大革新的合成技术。 1.引言 2001年,笔者,Scripps研究所的化学家,给那些最佳的化学反应起了一个名字“点击化学”[2]。这些反应易于操作,并能高产率生成目标产物,很少甚至没有副产物,在许多条件下运作良好(通常在水中特别好),而且不会受相连在一起的其他官能团影响。“点击”这个绰号意味着用这些方法把分子片段拼接起来就像将搭扣两部分”喀哒”扣起来一样简单。无论搭扣自身接着什么,只要搭扣的两部分碰在一起,它们就能相互结合起来。而且搭扣的两部分结构决定了它们只能和对方相互结合起来。 2.点击化学反应 点击反应有着下列的共同特征: (1)许多反应的组件是衍生于烯烃和炔烃,这些都是石油裂化的产物。从能量与机理的角度,碳-碳多重键都可以成为点击化学反应的活性组件。 (2)绝大部分反应涉及碳-杂原子(主要是氮,氧,硫)键的形成。这与近年来重视碳-碳键形成的有机化学方向不同。 (3)点击反应是很强的放热反应,通过高能的反应物或稳定的产物都可以实现。 (4)点击反应一般是融合(fusion)过程(没有副产物)或缩合过程(产生的副产物为水)。 (5)很多点击反应不受水的负面影响,水的存在反而常常起到加速反应的作用。这些特征可在环氧化物与多种不同亲核试剂的开环反应中展现出来。如图1,因

为环氧化物是一个张力很大的三元环,开环反应是一个非常有利的过程。然而开环需要在特定的条件下发生:亲核试剂仅能沿着C-O键的轴向进攻其中一个碳原子,这样的轨道排列不利于与开环反应竞争的消去反应,从而避免了副产物并得到高的产率。此外,环氧化物与水反应的活性不高,而水的形成氢键能力与极性本质都有利于环氧化物与其它亲核试剂进行开环反应。 3.点击化学的反应类型 点击反应主要有4种类型:环加成反应,特别是1,3-偶极环加成反应[3],也包括杂环Diels-Alder反应[4];亲核开环反应,特别是张力杂环的亲电试剂开环;非醇醛的羰基化学;碳碳多键的加成反应。叠氮化合物和乙炔的环加成反应早在20世纪早期就有报道,但反应生成1,4-和1,5-二取代三唑混合物。后来使用Cu(?)催化剂可得到区域选择性的1,4-三唑且产率高达91%,反应时间也由原来的18 h 缩短为8h[6]。Cu(?)盐催化的反应机理[7]见图2。 亲核开环反应 亲核开环反应主要是三元杂原子张力环的亲核开环以释放它们内在的张力能,如环氧衍生杂环丙烷、环状硫酸酯、环状硫酰胺、吖丙啶离子和环硫离子等。在这些三元杂环化合物中,环氧衍生物和吖丙啶离子是点击反应中最常用的底物,可以通过它们的开环形成各种高区域选择性的化合物。此类反应可在醇P水混合

第七章--化学反应动力学

第七章化学反应动力学 一.基本要求 1.掌握化学动力学中的一些基本概念,如速率的定义、反应级数、速率系数、基元反应、质量作用定律和反应机理等。 2.掌握具有简单级数反应的共同特点,特别是一级反应和a = b的二级反应的特点。学会利用实验数据判断反应的级数,能熟练地利用速率方程计算速率系数和半衰期等。 3.了解温度对反应速率的影响,掌握Arrhenius经验式的4种表达形式,学会运用Arrhenius经验式计算反应的活化能。 4.掌握典型的对峙、平行、连续和链反应等复杂反应的特点,学会用合理的近似方法(速控步法、稳态近似和平衡假设),从反应机理推导速率方程。学会从表观速率系数获得表观活化能与基元反应活化能之间的关系。 5.了解碰撞理论和过渡态理论的基本内容,会利用两个理论来计算一些简单反应的速率系数,掌握活化能与阈能之间的关系。了解碰撞理论和过渡态理论的优缺点。 6.了解催化反应中的一些基本概念,了解酶催化反应的特点和催化剂之所以能改变反应速率的本质。 7.了解光化学反应的基本定律、光化学平衡与热化学平衡的区别,了解光敏剂、量子产率和化学发光等光化反应的一些基本概念。 二.把握学习要点的建议 化学动力学的基本原理与热力学不同,它没有以定律的形式出现,而是表现为一种经验规律,反应的速率方程要靠实验来测定。又由于测定的实验条件限制,同一个反应用不同的方法测定,可能会得到不同的速率方程,所以使得反应速率方程有许多不同的形式,使动力学的处理变得比较复杂。反应级数是用幂函数型的动力学方程的指数和来表示的。由于动力学方程既有幂函数型,又有非幂函数型,所以对于幂函数型的动力学方程,反应级数可能有整数(包括正数、负数和零)、分数(包括正分数和负分数)或小数之分。对于非幂函数型的动力学方程,就无法用简单的数字来表现其级数。对于初学者,要求能掌握具有简单级数的反应,主要是一级反应、a = b的二级反应和零级反应的动

点击化学在高分子研究中的进展

Chemical Propellants & Polymeric Materials 2010年第8卷第1期 · 17 · 点击化学在高分子研究中的进展 陈晓勇 (中北大学材料科学与工程学院,山西太原 030051;上海交通大学化学与化工学院,上海 200240) 摘 要:首先概括了点击化学的概念、特征和类型,然后对其在高分子研究中的进展进行了综述。详细地梳理了点击化学与新型聚合方法的联用以及点击化学在合成功能聚合物和控制聚合物拓扑结构方面的应用与研究。 关键词:点击化学;高分子;聚合物;进展 中图分类号: O6-1 文献标识码: A 文章编号: 1672-2191(2010)01-0017-03 收稿日期:2009-08-24 作者简介:陈晓勇(1980-),男,助教,主要从事薄膜加工成型、流变学和树脂改性研究。电子信箱:zweigxychen@https://www.360docs.net/doc/571855446.html, 生命、医药和新材料等学科的高速发展要求化学学科能够快速、高效、多样、大规模地合成化合物以供选择,从而迅速满足生命、医药和新材料等学科的特别要求,如快速提高合成药物的质量和开发速度等。诺贝尔化学奖获得者Sharpless 提出点击化学概念[1],即希望化学反应像操作个人电脑一样(仅需点击鼠标)可控、简单、高效、快捷。该概念一经提出,便广受关注,现在更是国内外化学、生命、医药和材料学界共同关注的热点之一。它是一种基于高效、高选择性的C -X(X 为杂原子)成键反应来实现大量新化合物制备的一种可靠、实用的合成方法,是组合化学的简化与发展[2-4]。 点击化学应用最为成熟的是亚铜离子催化叠氮化物和端基炔生成1,4-二取代的1,2,3-三唑的Huisgen 偶极环加成反应(合成路线草图如下)[5]。 点击化学有如下特征:①原料来源广,反应适用范围广;②操作简单,条件温和,对氧、水不敏感;③产物收率高,选择性高;④易提纯产物,后处理简单;⑤快速、高通量合成;⑥反应需要高热力学驱动力(>83.7kJ/mol)。目前大概有如下4种类型的点击化学:①环加成,特别是在亚铜盐络合物催化下的炔基和有机叠氮或者叠氮和腈基之间的1,3-偶极环加成反应,也包括杂环Diels -Alder 反应;②亲核开环,特别是张力杂环的亲电试剂开环;③非醇醛的羰基化学反应;④碳碳多键的加成反应,特别是如环氧化的氧化反应[6]。 点击化学技术已渗透到诸多领域,如生命、高分子、超分子化学、功能材料、蛋白质组学、生物偶联技术和生物医药等[7]。文中仅对这几年点击化学在高分子学科中的应用、研究和发展方面进行综述。 1 在高分子研究中的进展 高分子科学由于其本身结构、合成过程和后处理工艺的复杂性与难度,点击化学在其中应用特别广泛与深入。 1.1 点击化学与非传统聚合法联用 传统聚合方法之外的聚合在制备新型聚合物材料方面的巨大优势已得到高分子学界的广泛认可,点击化学与这些非传统聚合法联用更是有利于巩固这个优势并拓展这些聚合法的应用范围。点击化学与ATRP(原子转移活性自由基聚合)联用最多,因为A T R P 方法通常使用卤化物作引发

点击化学的进展及应用

点击化学的进展及应用 点击化学(Click chemistry),又称“链接化学”、“动态组合化学”,意为通过小的化学单元的连接,以较高的产率快速地进行化学合成,得到目标产物。这一概念最早由Barry Sharpless于2001年提出,在化学合成领域引起极大的关注,点击化学的主要特征有产率高,无副产物或副产物无害,反应原料易得,条件简单,选择性强,需较高热力学驱动力等[1]。经过十余年的发展,点击化学在有机合成方面有着很大的贡献,更是在药物开发和生物医用材料合成等诸多领域中成为最为吸引人的合成理念。本文主要介绍了一些经典的点击化学反应体系,并且结合其在有机合成中的实际应用,着重探讨与其相关的一些科研成果,主要包括组织再生,靶向药物递送,纳米材料表面修饰等几个方面。 点击化学反应主要有4种类型,环加成反应、亲核开环反应、非醇醛的羰基化学以及碳碳多键的加成反应。 环加成反应中,Huisgen环加成(CuAAC)是点击化学反应最为经典的体系,即叠氮化物与末端或内部炔烃之间在一价铜催化下,进行1,3—偶极环加成,得到1,2,3—三唑。叠氮化物与末端炔基容易安装在分子中,且较为稳定,该反应速率快,副产物少,广泛应用于在聚合物偶联、后修饰中,但催化所需的一价铜的毒性限制了其应用。因此,环张力引发的叠氮—炔环加成(SPAAC)被提出,由环烯和叠氮化物进行反应。此反应最大的改善在于无铜点击化学反应,避免了一价铜的毒性,通过叁键的角应变以及存在于环烯中的环应变提高了反应速率。但上面两个反应中用到叠氮化物,在反应的过程中具有一定的危险性。另外,我们极为熟悉的Diels—Alder反应,即共轭双烯与取代烯烃反应生成取代环己烯,也属于点击化学的这一类型[1]。 图1 Huisgen环加成反应 图2叠氮—炔环加成反应

化学动力学的研究与应用

化学动力学的研究及其应用 1110712 胡景皓 摘要: 化学动力学研究的对象包括化学反应进行的条件(温度、压强、浓度、介质)对化学过程速率的影响,反应的历程(反应机理),物质的结构与化学反应能力之间的关系。 关键词:放射性测定,蜕变速率,半衰期,放射性同位素 1.化学动力学的研究领域 化学动力学作为物理化学学科的一个分支已有很久的历史,并概括为研究化学反应的机理与速率的科学。化学动力学的发展经历了从现象的观察到理论的分析,从宏观的测量到微观的探索,因而它又分为宏观化学动力学和微观反应动力学,后者又称分子反应动力学。1928年M. Polanyi研究Na_2+Cl_2反应的机理,相继建立了多维势能面来研究反应的进程,被誉为微观反应动力学诞生的里程碑。七十年代以来,分子束和激光技术的发展并在动力学研究中广泛应用,促使反应动力学的研究得到长足进步。1986年诺贝尔化等奖授予这个领域的三位著名化学家D. R. Herschbach,Y. T. Lee和J. C. Polanyi,标志着化学反应动力学的重要性,以及目前已经取得的进展和达到的水平。 2.化学动力学的研究方法 2.1.唯象动力学研究方法 也称经典化学动力学研究方法,它是从化学动力学的原始实验数据──浓度c与时间t的关系──出发,经过分析获得某些反应动力学参数──反应速率常

数k、活化能E a、指前因子A。用这些参数可以表征反应体系的速率特征,常用的关系式有: 式中r为反应速率;A、B、C、D为各物质的浓度;α、β、γ、δ称为相对于物质A、B、C、D的级数;R为气体常数;T为热力学温度。 化学动力学参数是探讨反应机理的有效数据。20世纪前半叶,大量的研究工作都是对这些参数的测定、理论分析以及利用参数来研究反应机理。但是,反应机理的确认主要依赖于检出和分析反应中间物的能力。20世纪后期,自由基链式反应动力学研究的普遍开展,给化学动力学带来两个发展趋向:一是对元反应动力学的广泛研究;二是迫切要求建立检测活性中间物的方法,这个要求和电子学、激光技术的发展促进了快速反应动力学的发展。对暂态活性中间物检测的时间分辨率已从50年代的毫秒级变为皮秒级。 2.1.1分子反应动力学研究方法 从微观的分子水平来看,一个元化学反应是具有一定量子态的反应物分子间的互相碰撞,进行原子重排,产生一定量子态的产物分子以至互相分离的单次反应碰撞行为。用过渡态理论解释,它是在反应体系的超势能面上一个代表体系的质点越过反应势垒的一次行为。原则上,如果能从量子化学理论计算出反应体系的正确的势能面,并应用力学定律计算具有代表性的点在其上的运动轨迹,就能计算反应速率和化学动力学的参数。

点击化学简介

万方数据

万方数据

万方数据

点击化学简介 作者:罗璇, 林丹, 孙玉婷, LUO Xuan, LIN Dan, SUN Yuting 作者单位:罗璇,LUO Xuan(湖北武汉市七里中学,430050), 林丹,孙玉婷,LIN Dan,SUN Yuting(华中师范大学化学教育研究所,湖北武汉,430079) 刊名: 化学教育 英文刊名:CHINESE JOURNAL OF CHEMICAL EDUCATION 年,卷(期):2009,30(10) 参考文献(13条) 1.Kolb H C.Finn M G.Sharpless K B查看详情 2001 2.Bohacek R S.McMartin C.Guida W C查看详情 1996 3.Merrifield R B查看详情 1963 4.董卫莉.赵卫光查看详情 2006(03) 5.Rostovtsev V.Green L G.Fokin V V查看详情 2002 6.Pringle W.Sharpless K B查看详情 1999 7.Kolb H C查看详情 2001 8.李娟查看详情 2007(11) 9.Sharpless K B查看详情 2006 10.Collman J P.Devaraj N K.Chidsey C E D查看详情 2006 11.Punna S.Kaltgrad E.Finn M G查看详情 2005 12.Kacprza K M.Maier N M.Lindner W查看详情 2006 13.张涛.郑朝晖查看详情 2008(08) 本文链接:https://www.360docs.net/doc/571855446.html,/Periodical_hxjy200910003.aspx

信息论在生物学和化学领域的应用

信息论在生物学和化学领域的应用 信息科学与技术学院** 指导教师** 摘要:信息论近年来迅速发展,已广泛渗入物理、化学、生物、医学、自动控制、计算机、人工智能、仿生学、经济和管理等不同领域。本文阐述信息论在现代生物学、化学等学科中的应用。 关键词:信息论;生物信息论;化学信息论;基因编码 一、概述 1948年,Claude E.Shannon在BSTJ发表题为“The Mathematical Theory of Communica-tion”的著名论文,创立了后人所称的“信息论”,揭开了人类认识史上的新纪元:由材料和能量的 时代开始走向自觉地认识和利用信息的时代。现在,人们越来越清楚地看到,Shannon信息论 的确是科学史上一座巍峨的里程碑,它把科学领进了信息世界的大门。但是,Shannon信息论 并没有穷尽信息问题的研究。正如Shannon本人所说:“企求一次就揭开自然的全部奥秘,这 种期望是不切实际的”。事实上,一个具有旺盛生命力的理论必然会不断地渗透到新的领域,不断地改变自己的面貌[1]。现如今,信息熵概念广泛渗入物理、化学、生物、医学、自动控制、计算机、人工智能、仿生学、经济和管理等不同领域。信息过程不仅是通讯研究的对象,而且被当作控制社会的手段来研究[2]。就正是由Shannon信息论经过不断的开拓、发展和升华的结果,它是信息理论发展的全新阶段。 二、信息论与生物学 (一)信息与遗传[2] 1944年细菌转化现象的发现,第一次证实了细胞核内DNA核酸是遗传的物质基础。1953 年沃森和克里克提出 DNA螺旋结构模型,认为是由两条多核苷酸链靠碱基间确定配对关系而 联系在一起,形成犹如螺旋状的长梯子,第一梯级相当一对碱基。梯级很多,若以500梯级的 大分子计,其结构可能取型的数目为10330信息量。历史上有过物种,最高估计是40亿种,其 信息量不过才是10g24*109=31.9比特,可见DNA结构可储存遗传信息量大得足以使每一物种 内各个个体间都可以有差别。

化学动力学基础二

第十二章化学动力学基础(二) 1. 将1.0 g氧气和0.1 g氢气于300 K时在1 dm3的容器内混合,试计算每秒钟内单位体积内分子的碰撞数为若干? 设O2和H2为硬球分子,其直径分别为0.339和0.247 nm. 2. 某双原子分子分解反应的阈能为8 3.68 kJ/mol,试分别计算300 K及500 K时,具有足够能量可能分解的分子占分子总数的分数为多少? 3. 某气相双分子反应, 2A(g) ---> B(g)+C(g),能发生反应的临界能为100 kJ/mol.已知A的相对分子量为60,分子直径为0.35 nm,试计算在300 K时,该分解作用的速率常数k 值. 4. 松节油萜(液体)的消旋作用上一级反应,在457.6 K和510.1 K时的速率 常数分别为2.2×和3.07× min-1,试求反应的实验活化能E a,在平均温度时的活化焓和活化熵. 5. 在298 K时某化学反应,如加了催化剂后使其活化熵和活化焓比不加催化剂是时分别下降了10 J/(mol·K)和10 kJ/mol,试求不加催化剂与加了催化剂的两个速率常数的比值. 6. 在298 K时有两个级数相同的基元反应A和B,其活化焓相同,但速率常数k A=10k B,求两个反应的活化熵相差多少? 7. 某顺式偶氮烷烃在乙醇溶液中不稳定,通过计量其分解放出的N2气来计算其分解的速率常数k值,一系列不同温度下测定的k值如下所示: T/ k 248 252 256 260 264 k×/s-1 1.22 2.31 4.39 8.50 14.3

试计算该反应在298K时的实验活化能,活化焓,活化熵和活化吉布斯自由能. 8. 对下述几个反应,若增加溶液中的离子强度,则其反应速率常数是增大,减小还是不变? (1) NH4+ +CNO- --->CO(NH2)2 (2) 酯的皂化作用. (3) S2O82- + I- --->P 9. 在298 K时,反应N2O4(g) 2NO2(g)的速率常数k1=4.80× s-1,已知NO2和N2O4的生成吉布斯自由能分别为51.3和97.8 kJ/mol,试求 (1)298 K时, N2O4的起始压力为101.325 kPa时, NO2(g)的平衡分压? (2)该反应的弛豫时间? 10. 用温度跳跃技术测量水的离解反应: H2O H+ + OH-,在298 K时 的弛豫时间τ=37× s,试求该反应正向和逆向反应的速率常数k1和k-2. 11. 在光的影响下,蒽聚合为二蒽.由于二蒽的热分解作用而达到光化平衡.光化反应的温度系数(即温度每增加10K反应速率所增加的倍数)是1.1,热分解的温度系数是2.8,当达到光化平衡时,温度每升高10K.二蒽产量是原来的多少倍? 12. 用波长为313nm的单色光照射气态丙酮,发生下列分解反应: (CH3)2CO +hv---> C2H6 + CO ,若反应池的容量是0.059 dm3,丙酮吸收入射光的分数为0.915,在反应过程中,得到下列数据: 反应温度:840 K照射时间t=7 h

化学反应速率化学动力学简史与诺贝尔化学奖1850威廉

首页→第七章化学反应速率 一、化学动力学简史与诺贝尔化学奖 1850威廉米(Ludwig Ferdinand Wilhelmy, 1812-1864, 德国物理学家) 研究在酸性条件下蔗糖分解(水解为D-(+)-果糖和D-(-)-果糖)的反应速率,发现反应速率正比于蔗糖和酸的浓度。 1864 古德博格(Cato Maximillian Guldberg, 1836-1902, 挪威数学家,理论化学家) 和瓦格(Peter Waage, 1833-1900,挪威化学家) 给出“质量作用定律”的公式。按照这个公式,反应“推动力”正比于反应物浓度的乘积:K=[R]r [S]s/([A]a [B]b) 其中,a, b, r, s分别为化学反应A+B = R+S的整比系数。因此,前向反应速率正比于[A]a[B]b,而后向反应速率整比于[R]r [S]s。 1865 Harcourt 和Esson (英) 分析了H2O2和HI、KMnO4和(COOH)2的反应。他们写出了相应的微分方程,通过积分得到浓度-时间关系。他们也提出了反应速率与温度的关系式k = A T C

1884 范特霍夫(Jacobus Henricus van’t Hoff, 1852-1911, 荷兰物理化学家。提出碳原子价键的空间结构学说;提出稀溶液理论。)的《化学动力学研究》(“Studies of Chemical Dynamics”,“études de dynamique chimique”)出版。在这本书中,van’t Hoff 推广和继续发展了Wilhelmy, Harcourt 和Esson 的工作。特别是,他引入了微分解析方法。他也分析了平衡常数以及正向、反向反应速度与温度的依赖关系。(平衡常数与温度的关系现在称为van’t Hoff 方程)。van’t Hoff由于对化学动力学和溶液渗透压 的首创性研究而荣获了1901年的首届诺贝尔化学 奖 1887 奥斯特瓦尔德(Wilhelm Ostwald, 1853-1932, 生于拉脱维亚的德国化学家,唯能论者。发现电解质解离的稀化定律。长期反对原子论,但终于公开认输。)在他的著作《Lehrbuch der allgemeinen Chemie》的引入“反应级数”和“半衰期”的概念。 1909年,Ostwald因研究催化和化学平衡、反应速率的基本原理而荣获诺贝尔化学奖,并被人们誉为“物理化学之父”。 1889 阿伦尼乌斯(Svante August Arrhenius, 1859-1927, 瑞典化学家,物理学家。建立电解质电离的理论。) 进一步分析了反应速率对温度的依赖关系,k=A exp(-B/T),并提出一个“能垒”解释;这个方程后来被称为Arrhenius 方程。1903年,Arrhenius因提出电离学说获得了第3届诺贝尔化学奖。 在20世纪,化学动力学理论有了显著的发展(从“第一原理”确定速率常数和反应级数)。但是,目前还不能预测实际化学过程的动力学参数。

化学动力学基础.

第11章 化学动力学基础 重点: 基元反应的质量作用定律及其应用,速率方程的积分形式,速率方程的确定,温度对反应速率的影响,阿累尼乌斯方程的各种形式及其应用,指前因子k0、活化能Ea 的定义,典型复合反应及复合反应速率的近似处理法,链反应,气体反应的碰撞理论,势能面与过渡状态理论。 难点: 由反应机理推导速率方程的近似方法(选取控制步骤法、稳态近似法和平衡态近似法)的原理及其应用。 重要公式 2. a ln ()k E k R T T =-211211 E k A RT =-+a ln 3.非基元反应的表观活化能: a a,1a,2a,3E E E E =++ 4. 1-1级对行反应:A,0A,11A A,ln ()e e c c k k t c c --=+- B 1A 1,e c ,e c k K c k -== 5. 1-1级平行反应:A,012A c ln ()k k t c =+ 1B 2C k c k c = 6.平衡态近似法:C 1A B 1c c k K c c k -== 7.稳态近似法:B d 0d c t =

化学动力学是物理化学的一个重要组成部分,其主要任务是 (1)研究反应速率及其影响因素 (2)揭示反应的历程,并研究物质结构和反应能力的关系。 动力学和热力学不同:平衡态热力学只讨论系统的平衡态,其性质不随时间而变化,因而不考虑时间这个因素;另外,热力学是用状态函数研究化学反应从始态到终态的可能性,即变化过程的方向和限度,并不涉及化学变化所经历的中间途径和中间步骤。所以,热力学对化学反应的速率和具体反应历程不能给予回答,只能说明反应进行的可能性。 例:298K,101325Pa时,氢氧发生反应: H2(g)+ 1/2O2(g)H2O(l) Δr G mθ = -287.19 kJ/mol < 0,表明反应可自发进行,但在上述条件下,并没有观察到氢氧的变化。 这主要是因为在上述条件下,反应速率太慢,难以达到热力学平衡。 所以,这个反应在上述条件下,从热力学角度看,是可以进行的;但从动力学角度看,则没有实际意义。 但若改变反应条件,升温到1073K或加入合适的催化剂,反应可瞬间完成。 由此可看出,若一个反应仅从热力学角度判断是自发的,并不说明反应可以实际操作;若从动力学角度看,反应速率太慢,则没有实际意义。 因此,必须从动力学角度进行研究,改变不利状况,使反应能实现。而且,从控制反应过程而言,动力学研究非常重要。且动力学研究远比热力学复杂。它不仅涉及反应速率和反应机理本身,反应条件如:催化剂、温度、压力等对反应速率和反应机理的影响也是很复杂的。 一般可以认为: 热力学——反应的可能性;动力学——反应的可行性。 本章只讨论动力学基础,它包括以下三方面的内容: 动力学基础:反应速率——与反应物浓度、温度的关系 反应机理 反应速率理论

化学动力学的发展与百年诺贝尔化学奖

第20卷 第1期今日化学2005年2月化学史 化学动力学的发展与百年诺贝尔化学奖 姚兰英 彭蜀晋 (四川师范大学化学学院 成都610066) 摘要 探讨了化学动力学三大发展阶段(宏观反应动力学阶段、元反应动力学阶段和微观反 应动力学阶段)中诺贝尔化学奖的13次颁发对其发展的影响。 化学动力学是物理化学发展的四大支柱中的前沿研究领域之一[1],近百年来发展很迅速。回顾百年来诺贝尔化学奖的颁奖历程,其中有13次颁发给了22位直接对化学动力学发展做出巨大贡献的科学工作者,可见化学动力学在现代化学发展中的重要地位。这13次诺贝尔化学奖的颁发反映出百年来化学动力学历经的三大发展阶段:宏观反应动力学阶段、元反应动力学阶段和微观反应动力学阶段[2]。这三大阶段也体现了化学动力学研究领域和研究方法及技术手段的变化发展历程。 1 宏观反应动力学阶段 化学动力学作为一门独立的学科,它的发展历史始于质量作用定律的建立[3]。宏观反应动力学阶段是研究发展的初始阶段,大体上是从19世纪后半叶到20世纪初,主要特点是改变宏观条件,如温度、压力、浓度等来研究对总反应速率的影响,其间有3次诺贝尔化学奖颁给了与此相关的化学家。这一阶段的主要标志是质量作用定律的确立和阿伦尼乌斯公式的提出。 1850年,W ilhel m y通过研究蔗糖的水解反应得出了一级反应的速率方程。1867年,Guld2 berg和W aage在总结了大量实验的基础上提出了质量作用定律。19世纪80年代,van’t Hoff 及A rrhenius在对质量作用定律所进行的研究中,进一步提出了有效碰撞、活化分子及活化能的概念。但后来证明,质量作用定律只是描述基元反应动力学行为的定理,在总包反应层次上并不正确。van’t Hoff对化学反应中反应物浓度与反应速率之间的关系进行了明确的阐述,并提出了化学反应具有可逆性的概念。他还从热力学角度提出了化学反应中大量分子与温度之间的近似规律。van’t Hoff由于对化学动力学和溶液渗透压的首创性研究[4]而荣获了1901年的首届诺贝尔化学奖。 1889年,A rrhenius提出了关于化学反应速率的A rrhenius公式,即著名的化学反应速率指数定律:k=A e-E a/R T。这个公式所揭示的物理意义使化学动力学理论迈过了一道具有决定意义的门槛[5]。1903年,A rrhenius因提出电离学说[6]获得了第3届诺贝尔化学奖。 在宏观反应动力学阶段为化学动力学的发展做出了巨大贡献的还有O st w ald。他初步确立了研究反应速率全过程的实验方法和理论基础,把A rrhenius的电离理论应用到酸碱对反应速率的研究上,提出了酸中的氢离子和碱中的氢氧根离子对反应起催化作用的新机理,使实验方法与理论建构更为紧密。1909年,O st w ald因研究催化和化学平衡、反应速率的基本原理[7]

化学反应动力学

化学反应动力学 既是异想天开,又实事求是,这是科学工作者特有的风格,让我们在 无穷的宇宙长河中探索无穷的真理吧。 郭沫若 经典化学热力学从静态的角度(相对静止)去研究化学反应,解决了化学反应进行中能量转换、过程方向、限度、以及各种平衡性质的计算问题。由于经典热力学只研究过程的起始状态与终结状态,不研究过程的各瞬间状态,故对于一个化学反应,其实际产量是多少?需要多少时间?反应中经历了怎样的过程等问题,经典热力学无法解决,这些问题均有待于化学反应动力学来解决。 “静止是相对的,而运动则是绝对的”,化学动力学是从动态的角度(绝对运动) 去研究化学反应即化学运动全过程的学科,它的任务较热力学更为复杂和艰巨。化学动力学的主要任务是研究反应速率和探求反应机理,具体可包括三方面内容:1.研究化学反应过程的各种因素(如分子结构、温度、压力、浓度、介质、催化剂等)对化学反应速率的影响;2.揭示化学反应宏观与微观的机理(反应物按何种途径、经何步骤才转化为最终产物);3.定量地研究总包反应与各种基元反应。 如果一个化学反应在热力学上判断是可能发生的,要使这种可能性变为现实,则该 反应必须要以一定的速率进行,可以说“速度就是效率,速度就是效益”。化学反应的体系内的许多性质及外部条件都会影响平衡和反应速率,平衡问题和速率问题是相互关连的,由于目前仍未有处理它们相关的定量方法,故还需要分别去研究平衡问题和化学反应速率问题。化学动力学作为一门独立的学科,近百年来发展相对较为迅速,但目前动力学理论与热力学相比,尚有较大差距。本章着重介绍了化学动力学的唯象规律、有关反应机理及反应速率理论的基本内容。 1、反应速率 反应物分子经碰撞后才可能发生反应,在一定温度下,化学反应的速率正比于反应分子的碰撞次数,而在单位体积中,单位时间内的碰撞次数又与反应物的浓度成正比,可见反应速率与反应物浓度直接相关,反应速率就是参加反应的某一物质的浓度随时间的变化率。 对于等容体系中进行的反应:aA+bB →dD+eE ,可以分别用体系中各物质的浓度变化 写出速率表示式,如反应物消耗速率 (负号表示反应期间反应物浓度是减少,以保证速率为正值),产物生成速率: dt dC r dt dC r B B A A -=-=,

点击化学研究进展及其在药学领域的应用

点击化学研究进展及其在药学领域的应用 摘要:点击化学是利用一系列可靠的、高效的、选择性的而又具模块化的化学反应生成含杂原子的化合物,从而实现碳杂原子的连接(C-X-C) ,是用最佳的化学反应合成的分子来实现期望得到的功能,从而避免复杂的化学反应。此后,一价铜催化端炔和有机叠氮的环加成反应引起了人们极大的重视,并迅速在医药化学、生物和生物医学、组合化学和材料科学等领域得到广泛的应用。 关键字:点击化学叠氮 1,3-环加成反应三氮唑药物合成 叠氮化合物和乙炔的环加成反应早在20世纪早期就有报道,Huisgen[1]将1,3-偶极环加成反应用于氮杂三唑的合成。1,3-偶极环加成反应是一类非常有趣和与众不同的环化反应,属于周环反应的一种。在氮杂唑的合成中,炔基作为亲偶极体,而重氮或叠氮化合物的激发态具有1,3-偶极结构,作为l,3-偶极体参加反应。最初,反应需在甲苯回流的高温条件下进行。炔基上两个碳原子的电子云密度相差不大,而生成两种环化产物所需的活化能也十分接近,因此会有1,4-和l,5-两种位置异构体。考虑到实验安全性以及两个异构体分离的问题,这个反应并没有得到有机化学家足够的重视。传统的Huisgen反应因为如下的缺点:1)底物往往需要吸电子的基团活化,在炔基的两端有强的吸电子基团的化合物显示了最好的活性,在炔基的一端或叠氮上连有强吸电子的化合物也能发生Huisgen反应,没有活化基团的底物不能发生1,3-偶极反应;2)热Huisgen环加成反应速度慢、温度高,通常都需要在甲苯乙醇中回流,或再DMF、DMSO中加热数十小时,甚至数天,才能完成反应。此外,由于许多有机叠氮是不稳定的,在高温反应时通常面临着分解甚至爆炸的潜在危险;3)热Huisgen反应区域选择性差,产物为1,4-和1,5-二取代的混合物,对末端区来说,区域选择性的问题尤其突出,通常得到比值接近1:1的混合物。结果,发现更温和、更好选择性的条件来完成Huisgen环加成,一直是迫切的需要。 合成化学家一直试图改进反应的产率和区域选择性,进行了各种有益的尝试。Sharpless研究小组[2]长期从事碳与杂原子之间化学键的形成研究,并对氮杂三唑的合成反应进行了改进。Sharpless等发现,CuS04和抗坏血酸钠ⅣC)在室温下原位(in situ)产生的一价铜能够高效地催化末端炔和有机叠氮发生Huisgen环加成反应,可以在十分温和的条件下只生成l,4.二取代的氮杂三唑。此反应可以在水相中进行,不需要通过柱层析的方法就可以得到纯品,且可得到区域选择性的1,4-三唑,且产率高达91%,反应时间也由原来的18 h缩短为 8 h。Sharpless等在改进后的Huisgen 1,3-偶极环加成基础上提出了“Click Chemistry”的概念,以表明这是十分理想的有机化学反应。于是,它是一种新型、简单、快速并且是新世纪最引人注目之一的合成方法。其核心是利用一系列可靠的、高效的、选择性的而又具模块化的化学反应生成含杂原子的化合物,从而实现碳杂原子的连接(C-X-C) ,是用最佳的化学反应合成的分子来实现期望得到的功能,从而避免复杂的化学反应。此后,一价铜催化端炔和有机叠氮的

相关文档
最新文档