中考数学直角三角形的边角关系(大题培优 易错 难题)附答案

中考数学直角三角形的边角关系(大题培优易错难题)附答案

一、直角三角形的边角关系

1.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).

【答案】32.4米.

【解析】

试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.

试题解析:如图,过点B作BE⊥CD于点E,

根据题意,∠DBE=45°,∠CBE=30°.

∵AB⊥AC,CD⊥AC,

∴四边形ABEC为矩形,

∴CE=AB=12m,

在Rt△CBE中,cot∠CBE=BE CE

∴BE=CE?cot30°=12×3=123,

在Rt△BDE中,由∠DBE=45°,

得DE=BE=123.

∴CD=CE+DE=12(3+1)≈32.4.

答:楼房CD的高度约为32.4m.

考点:解直角三角形的应用——仰角俯角问题.

2.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,

∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:

(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;

(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;

(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.

【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣

【解析】

【分析】

(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,

NC=NM=BM进而得出结论;

(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,

②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;

(3) 在Rt△ABM和Rt△ANM中,,

可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.

【详解】

(1)证明:∵△ABC是等腰直角三角形,

∴∠BAC=∠C=45°,

∵AM是∠BAC的平分线,MN⊥AC,

∴BM=MN,

在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,

∵∠ENF=135°,,

∴∠BME=∠NMF,

∴△BME≌△NMF,

∴BE=NF,

∵MN⊥AC,∠C=45°,

∴∠CMN=∠C=45°,

∴NC=NM=BM,

∵CN=CF+NF,

∴BE+CF=BM;

(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,

∵MN⊥AC,∠C=45°,

∴∠CMN=∠C=45°,

∴NC=NM=BM,

∵NC=NF﹣CF,

∴BE﹣CF=BM;

针对图3,同(1)的方法得,△BME≌△NMF,

∴BE=NF,

∵MN⊥AC,∠C=45°,

∴∠CMN=∠C=45°,

∴NC=NM=BM,

∵NC=CF﹣NF,

∴CF﹣BE=BM;

(3)在Rt△ABM和Rt△ANM中,,

∴Rt△ABM≌Rt△ANM(HL),

∴AB=AN=+1,

在Rt△ABC中,AC=AB=+1,

∴AC=AB=2+,

∴CN=AC﹣AN=2+﹣(+1)=1,

在Rt△CMN中,CM=CN=,

∴BM=BC﹣CM=+1﹣=1,

在Rt△BME中,tan∠BEM===,

∴BE=,

∴①由(1)知,如图1,BE+CF=BM,

∴CF=BM﹣BE=1﹣

②由(2)知,如图2,由tan∠BEM=,

∴此种情况不成立;

③由(2)知,如图3,CF﹣BE=BM,

∴CF=BM+BE=1+,

故答案为1,1+或1﹣.

【点睛】

本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.

3.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.

(1)如图1,当圆心O在AB边上时,求证:AC=2OH;

(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:

∠ACD=∠APB;

(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣

∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.

【答案】(1)证明见解析;(2)证明见解析;(3)24.

【解析】

试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.

在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI

的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长

度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.

试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,

∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,

∵tan∠ABC=,∴,∴,

∴,∵∠BNQ=∠QHD=90°,

∴∠ABC=∠QDH,∵OE=OD,

∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,

∴BG=BQ=,GN=NQ=,

∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:AI=25,

设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,

∵OB2=BH2+OH2,∴,解得:,当QH=

时,∴QD=,

∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=

∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,

∵tan∠OED=,∴,

∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.

考点:1圆;2相似三角形;3三角函数;4直角三角形.

4.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.

(1)AE的长为 cm;

(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;

(3)求点D′到BC的距离.

【答案】(1);(2)12cm;(3)cm.

【解析】

试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:

∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.

∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).

∵点E为CD边上的中点,∴AE=DC=cm.

(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.

(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.

试题解析:解:(1).

(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,

∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.

∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.

∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.

∴点E,D′关于直线AC对称.

如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.

∵△ADE是等边三角形,AD=AE=,

∴,即DP+EP最小值为12cm.

(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,

∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,

∵AE=EC,∴AD′=CD′=.

在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS ).∴∠D′BG=∠D′BC=45°.∴D′G=GB . 设D′G 长为xcm ,则CG 长为cm ,

在Rt △GD′C 中,由勾股定理得,

解得:

(不合题意舍去). ∴点D′到BC 边的距离为

cm .

考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.

5.我市在创建全国文明城市的过程中,某社区在甲楼的A 处与E 处之间悬挂了一副宣传条幅,在乙楼顶部C 点测得条幅顶端A 点的仰角为45°,条幅底端E 点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE 的长度.(结果保留根号)

【答案】AE 的长为(123)+ 【解析】 【分析】

在Rt ACF V 中求AF 的长, 在Rt CEF V 中求EF 的长,即可求解. 【详解】

过点C 作CF AB ⊥于点F 由题知:四边形CDBF 为矩形

12CF DB ∴==

在Rt ACF V 中,45ACF ∠=?

tan 1AF

ACF CF

∴∠=

= 12AF ∴= 在Rt CEF V 中,30ECF ∠=? tan EF

ECF CF

∴∠= 3

123

EF ∴

=

43EF ∴=

1243AE AF EF ∴=+=+ ∴求得AE 的长为()

1243+

【点睛】

本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.

6.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)

【答案】22.4m 【解析】 【分析】

首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解. 【详解】

解:在Rt △AFG 中,tan ∠AFG 3, ∴FG =

tan 3

AG AFG =∠,

在Rt △ACG 中,tan ∠ACG =

AG

CG

∴CG =

tan AG

ACG ∠=3AG .

又∵CG ﹣FG =24m ,

即3AG ﹣3

AG

=24m , ∴AG =123m , ∴AB =123+1.6≈22.4m .

7.已知:如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,连接BC 交圆于点D ,过点D 作⊙O 的切线交AC 于E . (1)求证:AE =CE

(2)如图,在弧BD 上任取一点F 连接AF ,弦GF 与AB 交于H ,与BC 交于M ,求证:∠FAB +∠FBM =∠EDC .

(3)如图,在(2)的条件下,当GH =FH ,HM =MF 时,tan ∠ABC =

34

,DE =394时,N

为圆上一点,连接FN 交AB 于L ,满足∠NFH +∠CAF =∠AHG ,求LN 的长.

【答案】(1)详见解析;(2)详见解析;(3)4013

13

NL = 【解析】 【分析】

(1)由直径所对的圆周角是直角,得∠ADC =90°,由切线长定理得EA =ED ,再由等角的余角相等,得到∠C =∠EDC ,进而得证结论.

(2)由同角的余角相等,得到∠BAD =∠C ,再通过等量代换,角的加减进而得证结论. (3)先由条件得到AB =26,设HM =FM =a ,GH =HF =2a ,BH =

4

3

a ,再由相交弦定理得到GH ?HF =BH ?AH ,从而求出FH ,BH ,AH ,再由角的关系得到△HFL ∽△HAF ,从而求

出HL,AL,BL,FL,再由相交弦定理得到LN?LF=AL?BL,进而求出LN的长.【详解】

解:

(1)证明:如图1中,连接AD.

∵AB是直径,

∴∠ADB=∠ADC=90°,

∵EA、ED是⊙O的切线,

∴EA=ED,

∴∠EAD=∠EDA,

∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,

∴∠C=∠EDC,

∴ED=EC,

∴AE=EC.

(2)证明:如图2中,连接AD.

∵AC是切线,AB是直径,

∴∠BAC=∠ADB=90°,

∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,

∴∠BAD=∠C,

∵∠EDC=∠C,

∴∠BAD=∠EDC,

∵∠DBF=∠DAF,

∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,

∴∠FAB+∠FBM=∠EDC.

(3)解:如图3中,

由(1)可知,DE=AE=EC,∵DE=39

4

∴AC=39

2

∵tan∠ABC=3

4

AC

AB

39 32 4AB =,

∴AB=26,

∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=4

3

a,∵GH?HF=BH?AH,

∴4a2=4

3a(26﹣

4

3

a),

∴a=6,

∴FH=12,BH=8,AH=18,

∵GH=HF,

∴AB⊥GF,

∴∠AHG=90°,

∵∠NFH+∠CAF=∠AHG,

∴∠NFH+∠CAF=90°,

∵∠NFH+∠HLF=90°,

∴∠HLF=∠CAF,

∵AC∥FG,

∴∠CAF=∠AFH,

∴∠HLF=∠AFH,

∵∠FHL=∠AHF,

∴△HFL∽△HAF,

∴FH2=HL?HA,

∴122=HL?18,

∴HL=8,

∴AL=10,BL=16,FL22

FH HL

+=13

三角形培优训练100题集锦

E D F C B A 三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围. 2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

《全等三角形》数学培优作业

A B C D E 固始三中八年级上期《全等三角形》数学培优作业 (考查内容:边角边) 命题人:吴全胜1、已知:如图,AB=AC,F、E分别是AB、AC的中点。求证:△ABE≌△ACF。 2、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF. 求证:△ABE≌△CDF. 3、已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE 4、如图,△ABC中,AB=AC,AD平分∠BAC,试说明△ABD≌△ACD。 A B D C 5、已知:如图,AD∥BC,CB AD=。求证:CBA ADC? ? ?。 6、已知:如图,AD∥BC,CB AD=,CF AE=。求证:CEB AFD? ? ?。 7、已知:如图,点A、B、C、D在同一条直线上,DB AC=,DF AE=,AD EA⊥,AD FD⊥,垂足分别是A、D。求证:FDC EAB? ? ?

8、已知:如图,AC AB=,AE AD=,2 1∠ = ∠。求证:ACE ABD? ? ?。 9、如图,在ABC ?中,D是AB上一点,DF交AC于点E,FE DE=,CE AE=, AB与CF有什么位置关系?说明你判断的理由。 10、已知:如图,DBA CAB∠ = ∠,BD AC=。求证∠C=∠D 11、已知:如图,AC和BD相交于点O,OC OA=,OD OB=。 求证:DC∥AB。 12、已知:如图,AC和BD相交于点O,DC AB=,DB AC=。求证:C B∠ = ∠。 13、已知:如图,D、E分别是△ABC的边AB,AC的中点,点F在DE的延长线上,且EF=DE. 求证:(1)BD=FC (2)AB∥CF 14、已知: 如图 , AB=AC , EB=EC , AE的延长线交BC于D.求证:BD=CD. 15、已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上求证: BE=AD D C A B E

浙教版初中数学中考培优题(含答案)

1、在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积是1.28 ㎡,已知床单的长是2 m ,宽是1.2 m ,求花边的宽度. 解:设花边的宽度是x m. ()()28.122.122=--x x 028.06.12=+-x x ()36.08.02 =-x 2.01=x ,4.12=x (舍去) 答:花边的宽度是0.2 m. 2、某商场将进货价为30元的台灯以 40 元售出,平均每月能售出600个。调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。 ⑴ 为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个? ⑵ 台灯的售价应定为多少时销售利润最大? 解:⑴ 设台灯的售价为x 元,(x ≥40)根据题意得 [(600-10×(x -40))](x -30)=10000 解得:x 1=80 x 2=50 当x =80时 进台灯数为600-10×(x -40)=200 当x =50时 600-10×(x -40)=500 ⑵ 设台灯的售价定为x 元时,销售利润最大,利润为y y =[600-10(x -40)]·(x -30) 答:⑴ 台灯的售价为80元,进台灯数为200个,台灯的售价为50元时,进台灯数为500个。 ⑵ 3、学校有若干个房间分配给九年级(1)班的男生住宿,已知该班男生不足50人。若每间住4人,则余15人无住处;若每间住6人,则恰有一间不空也不满(其余均住满),那么该班男生人数是多少? 解:设有x 间,每间住4人,4x 人,15人无处住 所以有4x +15人 每间住6人,则恰有一间不空也不满 所以x -1间住6(x -1)=6x -6人 还有4x +15-6x +6=-2x +21人 不空也不满 所以0<-2x +21<6 -6<2x -21<0 15<2x <21 7.5<x <10.5 所以x =8, x =9, x =10 不到50人 一共4x +15<50 所以x =8 所以应该是4×8+15=47人

解直角三角形培优练习题(含答案)

l1.已知在Rt△ABC中,∠C=90°,∠A=α,AC=3,那么AB的长为()A.3sinαB.3cosαC.D. 2.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=α,那么AD等于()A.asin2αB.acos2αC.asinαcosαD.asinαtanα 3.如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC边上一点,若tan∠DBA=,则tan∠CBD的值为() A.B.C.1 D. (第3题)(第4题)(第8题) 4.△ABC在直角坐标系中的位置如图所示,∠C=90°,点C的坐标为(,﹣),则点B 的坐标是() A.(,0)B.(,0)C.(,0)D.(2,0) 5.等腰三角形的底角为30°,底边长为2,则腰长为() A.4 B.2C.2 D. 6.在Rt△ABC中,∠C=90°,如果∠A=α,AB=c,那么BC等于() A.c?sinαB.c?cosαC.c?tanαD.c?cotα 7.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,如果a2+b2=c2,那么下列结论正确的是() A.csinA=a B.bcosB=c C.atanA=b D.ctanB=b 8.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=30m,EC=15m,CD=30m,则河的宽度AB长为() A.90m B.60m C.45m D.30m

9.如图,在地面上的点A处测得树顶B的仰角为α度,若AC=6米,则树高BC为()A.6sinα米B.6tanα米C.米D.米 10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是() A.2 B.C.D. (第9题)(第10题)(第11题)11.如图,△ABC中,∠ACB=90°,∠A=30°,CD⊥AB,垂足为D,则BD:AD的值为()A.B.C.D. 12.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD 的余弦值是() A.B.C.D. (第12题)(第13题)(第14题) 13.如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上,若sin∠DFE=,则tan∠EBF的值为() A.B.C.D. 14.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧 上的一点,则tan∠APB的值是()

初中几何经典培优题型(三角形)

全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等; (3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等; (4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换 中的“对折”. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思 维模式是全等变换中的“旋转”. 3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形 全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平 移”或“翻转折叠” 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线 段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6)特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接 起来,利用三角形面积的知识解答. 常见辅助线写法: ⑴过点A作BC的平行线AF交DE于F ⑵过点A作BC的垂线,垂足为D ⑶延长AB至C,使BC=AC ⑷在AB上截取AC,使AC=DE ⑸作∠ABC的平分线,交AC于D ⑹取AB中点C,连接CD交EF于G点

全等三角形证明题培优提高经典例题练习题

全等三角形证明题专练 1、已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 2、已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B 3、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 A E D C B A B C D E F O

4、如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。 5、如图,在△ABC中,点D在AB上,点E在BC上,BD=BE。 (1) 请你再添加一个条件,使得△BEA≌△BDC,并给出证明。 你添加的条件是:________ ___ (2)根据你添加的条件,再写出图中的一对全等三角形: ______________(不再添加其他线段,不再标注或使用 其他字母,不必写出证明过程) 6、已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。求证:BF ⊥AC 。 F E D C A B G H A B C D E F

7、已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。求证:△ABC ≌△A’B’C’。 8、已知:如图,AB=CD ,AD=BC ,O 是AC 中点,OE ⊥AB 于E ,OF ⊥CD 于F 。求证:OE=OF 。 A B C D E F O 9、已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。 O B A C D E A B C D A' B' C' D' 1 2 3 4

中考数学 专题 四边形培优试题

四边形 1、如图,在正方形ABCD中,点E是CD边上的一点,过C作AE的垂线交AE的延长线于点F,连结DE,过点D作DF的垂线交AF于点G。 (1)求证:AG=CF。 (2)连结BG,若BG⊥AE,取BC的中点H,试判断线段BD与线段EH的数量关系和位置关系,并给出证明。 2、(1)如图1,已知正方形ABCD,E是边CD上一点,延长CB到点F,使BF=DE,作∠EAF 的平分线交边BC于点G,求证:BG+DE=E G。 (2)如图2,已知△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=2,CD=1,求△ABC的面积。

3、如图1,摆放矩形AB CD与矩形ECGF,使B,C,G三点在一条直线上,CE在边CD上,连结AF,若M为AF的中点,连结DM、ME,猜想DM与ME的关系,并证明你的结论。 拓展与延伸: (1)若将图1中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM 和ME的关系为。 (2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立。

4、在正方形ABCD中,动点E、F分别从D、C两点同时出发,以相同速度在直线DC、CB上移动。 (1)如图1,当点E在线段CD上,点F在线段BC上时,连结AE和DF交于点P,请写出AE与DF的关系,并说明理由。 (2)如图2,点E、F分别移动到边DC、CB的延长线上时,连结AE和DF,(1)中的结论还成立吗?真接写出结论,无需证明。 (3)如图3,当点E、F分别在CD、BC的延长线上移动时,连结AE与D F,(1)的结论还成立吗?请说明理由。 (4)如图4,当点E、F分别在边DC、CB上移动时,连结AE和DF交于点P,由于点E、F 的移动,使得点P也随之移动,请画出点P的运动路径的草图,若AD=2,试求出线段CP的最小值。

(完整版)三角形边角关系培优训练经典

三角内角与外角典型题 1、①求下图各角度数之和。 ②如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F=__________. 2、如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE、CF相交于点G,∠BDC=140°,∠BGC=110°。求∠A的 度数。 3、如图△ABC中, ∠BAD=∠CBE=∠ACF, ∠ABC=50°,∠ACB=62°,求∠DFE的大小。 4、△ABC中,AD、BE、CF是角平分线,交点是点G,GH⊥BC。求证:∠BGD=∠CGH. E D C B A F E G A B D C F M K N G A B E F

21 P C B A 5.如图,已知CE 为△ABC 的外角∠ACD 的角平分线,CE 交BA 的延长线于点E , 求证:∠BAC > ∠B 6、△ABC 中,∠A: ∠ABC: ∠ACB=3:4:5,CE 是AB 上的高,∠BHC=135° 求证:BD ⊥AC 7、三角形的最大角与最小角之比是4:1,则最小内角的取值范围是多少? 8.若三角形的三个外角的比是2:3:4,则这个三角形的最大内角的度数是 . 9.如图,在△ABC 中,∠ABC = ∠ACB ,∠A = 40°,P 是△ABC 内一点,且∠1 = ∠2.则∠BPC =________。 10.锐角三角形ABC 中,3条高相交于点H ,若∠BAC =70°,则∠BHC =_______ H A B C E D

11、如图,BE平分∠ABD交CD于F,CE平分∠ACD交AB于G,AB、CD交于点O,且∠A=48?,∠D=46?,则∠BEC= 。 12.已知△ABC中,∠ABC和∠ACB的平分线交于点O,则∠BOC一定() A.小于直角 B.等于直角 C.大于直角 D.不能确定 13. △ABC的三条外角平分线所在直线相交构成的三角形是() A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定 14、若?ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是() A.钝角三角形B.直角三角形C.锐角三角形D.都有可能

中考数学培优专题复习相似练习题及答案

中考数学培优专题复习相似练习题及答案 一、相似 1.如图,在Rt△ABC中,,角平分线交BC于O,以OB为半径作⊙O. (1)判定直线AC是否是⊙O的切线,并说明理由; (2)连接AO交⊙O于点E,其延长线交⊙O于点D,,求的值; (3)在(2)的条件下,设的半径为3,求AC的长. 【答案】(1)解:AC是⊙O的切线 理由:, , 作于, 是的角平分线, , AC是⊙O的切线 (2)解:连接, 是⊙O的直径, ,即 . . 又 (同角) , ∽ ,

(3)解:设 在和中,由三角函数定义有: 得: 解之得: 即的长为 【解析】【分析】(1)利用角平分线的性质:角平分线上的点到角两边的距离相等证得点O到AC的距离为半径长,即可证得AC与圆O相切;(2)先连接BE构造一个可以利用正切值的直角三角形,再证得∠1=∠D,从而证得两个三角形ABE与ABD相似,即可求得两个线段长的比值;(3)也可以应用三角形相似的判定与性质解题,其中AB的长度是利用勾股定理与(2)中AE与AB的比值求得的. 2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:∵四边形ABCD是矩形, ∴ AD∥BC, 在中, ∵别是的中点, ∴EF∥AD, ∴ EF∥BC,

浙教版2020学年《解直角三角形》培优提升特训(Word版无答案)

解直角三角形同步复习与提升 一、选择题 1. 如图,在平面直角坐标系中,点A 的坐标为(4,3),则cos α的值是( ) A. 34 B.43 C.35 D.45 2. 如图,△ABC 内接于半径为5的⊙O 中,圆心O 到弦BC 的距离为3,则∠A 的正切值为( ) A. 35 B.45 C.34 D.43 3. 已知抛物线y=-x 2-2x+3与x 轴交于A ,B 两点,将这条抛物线的顶点记为点C ,连接AC ,则tan ∠CAB 的值为( ) A.12 B.55 C.25 5 D.2 4.如图,在四边形ABCD 中,点E 、F 分别是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC=( ) A.34 B.43 C.35 D.45 5.如图,在等腰直角三角形ABC 中,∠C=90°,AC=6,D 是AC 上一点,若tan ∠DBA=1 5 ,则AD 等于( ) A. 2 B.2 C.1 D.2 2 6.如图,在菱形ABCD 中,DE ⊥AB ,cosA=3 5 ,BE=2,则tan ∠DBE 的值是( ) A.12 B.2 C.52 D.55

7.如图,在△ABC 中,若∠B=30°,sinC=3 5 ,AC=10,则AB=( ) A.12 B.14 C.1 6 D.20

8. 如图,△ACB 中,∠ACB=RT ∠,已知∠B=α,∠ADC=β,AB=a ,则BD 的长可以表示( ) A. a·(cosα-cosβ) B.a tanβ-tanα C.acosa -a ·sinαtanβ D.a ·cos α-asin α·a ·tan β 9. 因为cos60°=12 ,cos240°=- 1 2 ,所以cos240°=cos(180°+60°)=- cos60°;由此猜 想、推理:当α为锐角时有cos (180°+α)= - cosα,由此可知:cos210°=( ) A. -12 B.- 22 C..- 3 2 D. 3 10. 如图,在平面直角坐标系中,AB=35,连结AB 并延长至C ,连结OC ,若满足OC 2=BC ·AC ,tanα=2,则点C 的坐标为( ) A. (-2,4) B.(-3,6) C.(-53,103 ) D.(- 263,283 ) 二、填空题 11. 在△ABC 中,若|sinA-3 2 |+|cosB - 12 |=0,则∠C= ° 12. 若3tan(α+10°)=1,则锐角α= ° 13. 如图,在△ABC 和△DEF 中,∠B=40,∠E=140°,AB=EF=5,BC=DE=8,则两个三角形面积的大小关系为:S △ABC S △DEF .(填“>”,或“=”,“<”) 14. 已知:实常数a ,b ,c ,d 同时满足下列两个等式:①asinθ+bcosθ-c=0;①acosθ-bsinθ+d=0(其中θ为任意角),则a 、b 、c 、d 之间的关系式是: 15. 如图 ,△ABC 中,AD ⊥BC 于D ,CE 平分∠ACB ,∠AEC=45°,若AC=2,tan ∠ACB=34,则AB 的长为 .

中考数学总复习 培优专题精选经典题

专项训练一 一元二次方程 一、选择题 1.(2016·新疆中考)一元二次方程x 2-6x -5=0配方后可变形为( ) A .(x -3)2=14 B .(x -3)2=4 C .(x +3)2=14 .(x +3)2=4 2.(2016·攀枝花中考)若x =-2是关于x 的一元二次方程x 2+3 2ax -a 2=0的一个根,则a 的值为( ) A .-1或4 B .-1或-4 C .1或-4 D .1或4 3.(2016·凉山州中考)已知x 1、x 2是一元二次方程3x 2=6-2x 的两根,则x 1-x 1x 2+x 2的值是( ) A .-43 B.83 C .-83 D.43 4.(2016·随州中考)随州市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次, 2016年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20 C .20(1+x )2=28.8 D .20+20(1+x )+20(1+x )2=28.8 5.(2016·潍坊中考)关于x 的一元二次方程x 2-2x +sin α=0有两个相等的实数根,则锐角α等于( ) A .15° B .30° C .45° D .60° 6.已知三角形两边的长是3和4,第三边长是方程x 2-12x +35=0的根,则该三角形的周长是( ) A .14 B .12 C .12或14 D .以上都不对 7.(2016·深圳中考)给出一种运算:对于函数y =x n ,规定y ′=nx n - 1.例如:若函数y =x 4,则有y ′=4x 3.已知函数y =x 3,则方程y ′=12的解是( ) A .x 1=4,x 2=-4 B .x 1=2,x 2=-2 C .x 1=x 2=0 D .x 1=23,x 2=-2 3 8.★关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m -2n ≤1,其中正确结论的个数是( ) A .0个 B .1个 C .2个 D .3个 二、填空题 9.(2016·菏泽中考)已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =________. 10.方程(2x +1)(x -1)=8(9-x )-1的根为____________. 11.(2016·聊城中考)如果关于x 的一元二次方程kx 2-3x -1=0有两个不相等的实数根,那么k 的取值范围是______________. 12.(2016·黄石中考)关于x 的一元二次方程x 2+2x -2m +1=0的两实数根之积为负,则实数m 的取值范围是________. 13.关于x 的反比例函数y = a +4 x 的图象如图所示,A 、P 为该图象上的点,且关于原点成中心对称.△P AB 中,PB ∥y 轴,AB ∥x 轴,PB 与AB 相交于点B .若△P AB 的面积大于12,则关于x 的方程(a -1)x 2-x +1 4 =0的根的情况是______________. 14.一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这

数学锐角三角函数的专项培优练习题(含答案)及详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上. (1)求观察哨所A 与走私船所在的位置C 的距离; (2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号) (参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈) 【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截. 【解析】 【分析】 (1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可; (2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可. 【详解】 (1)在ABC △中,180180375390ACB B BAC ?????∠=-∠-∠=--=. 在Rt ABC 中,sin AC B AB = ,所以3sin 3725155 AC AB ? =?=?=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里. (2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM 中,4 sin 15125 CM AC CAM =?∠=? =,3 cos 1595 AM AC CAM =?∠=?=. 在Rt ADM △中,tan MD DAM AM ∠=, 所以tan 7636MD AM ?=?=. 所以222293691724AD AM MD CD MD MC = +=+==-=,.

培优专题二:与三角形有关的角

D C B A 专题2 与三角形有关的角 一、三角形内角和定理: 二、三角形外角的性质: 如图,∠是△的外角, 则:①∠ =∠ +∠ ; 或∠ =∠ —∠ ; 或∠ =∠ —∠ 。 ② > 基本图形介绍: 1、对顶三角形: ①如图,、相交于O ,求证:∠∠∠∠D ②如图,、相交于O ,、分别平分∠、∠, 求证:∠12 (∠∠C ) A

A B C P E A B C P A C D P A B C D 2、“飞镖”形: ①如图,求证:∠∠∠∠C ②如图,、分别平分∠、∠,求证:∠12 (∠∠D ) 3、三角形内外角平分线问题: ①如图,△中,P 是△的角平分线的交点,求证:∠90°+12∠A ②如图,△中,P 是∠的角平分线和△的外角∠的角平分线的交点。 求证:∠12 ∠A

A B C E F P ③如图,△中,P 是外角∠与∠的角平分线的交点。 求证:∠90°-12 ∠A 光的反射问题可转化为角平分线问题: ①由光的反射原理:∠1=∠2 又因为∠1=∠3,所以∠2=∠3,所以平分∠。 ②作法线,则平分∠ 4、一角平分线问题: ①在△中,平分∠,∠C>∠B 求证:(1)∠ =90°-12 (∠C —∠B) (2)∠12 (∠∠B) D C A E

D E D C B A P E D C B A P E D C B A ②在△中,平分∠,⊥,求证:∠ =12 (∠C —∠B) 拓展:①在△中,平分∠,P 是延长线上一点,过P 作⊥, 求证:∠ =12 (∠C —∠B) 拓展:②在△中,平分∠,P 是延长线上一点,过P 作⊥, 求证:∠ =12 (∠C —∠B) 5、直角三角形斜边上的高的问题: ①如图,△中,∠90°,⊥于D ,求证:∠1=∠

2020年中考数学培优 专题讲义 第17讲 二次函数与面积

第17讲 二次函数与面积 解这类问题一般用到以下与面积相关的知识:图形割补、等积转换、等比转化. 【例题讲解】 例题1 如图1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ABC S △=1 2 ah ,即三角形面积等于水平宽与铅垂高乘积的一半. 解答问题: 如图2,顶点为C (1,4)的抛物线y =ax 2+bx +c 交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)点P 是抛物线(在第一象限内)上的一个动点,连接P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S △; ②是否存在抛物线上一点P ,使PAB S △=CAB S △?若存在,求出P 点的坐标;若不存在,请说明理由. C B 1把A (3,0)代入解析式求得a =-1, 所以1y =-(x -1)2+4=-x 2+2x +3, 设直线AB 的解析式为:2y =kx +b 由1y =-x 2+2x +3求得B 点的坐标为(0,3) 把A (3,0),B (0,3)代入2y =kx +b 中 解得:k =-1,b =3 所以2y =-x +3; (2)①因为C 点坐标为(1,4) 所以当x =1时,1y =4,2y =2 所以CD =4-2=2 CAB S △= 1 2 ×3×2=3(平方单位);

②假设存在符合条件的点P ,设P 点的横坐标为x ,△P AB 的铅垂高为h ,则h =1y -2y =(-x 2+2x +3)-(-x +3)=-x 2+3x 由PAB S △=CAB S △ 得: 1 2 ×3×(-x 2+3x )=3 化简得:x 2-3x +2=0, 解得:1x =1,2x =2, 将1x =1代入1y =-x 2+2x +3中, 解得P 点坐标为(1,4). 将2x =2代入1y =-x 2+2x +3中, 解得P 点坐标为(2,3). ∵点P 是抛物线(在第一象限内)上的一个动点, 综上所述,P 点的坐标为(1,4),(2,3). 模型讲解 竖切 面积公式均为1 = 2 S dh C B h C B h C B 横切 面积公式均为1 = 2 S dh D 【总结】 这种“铅垂高×水平宽的一半”的求解方法可过三角形的任意一点,并且“横竖”均可.而在选择时,如何选用,取决于点D 的坐标哪种更易求得. 例题2 已知一次函数y =(k +3)x +(k -1)的图像与x 轴、y 轴分别相交于点A 、B ,P (-1,-4).

著名机构初中数学培优讲义解直角三角形.第04讲.学生版

内容 基本要求 略高要求 较高要求 勾股定理及逆定理 已知直角三角形两边长,求第三条边 会用勾股定理解决简单问题;会用勾股定理的逆定理判定三角形是否为直角三角形 会运用勾股定理解决有关的实际问 题。 解直角三角形 知道解直角三角形的含义 会解直角三角形;能根据问题的需要添加辅助线构造直角三角形;会解由两个特殊直角三角形构成的组合图形的问题 能综合运用直角三角形的性质解决有关问题 锐角三角函数 了解锐角三角函数(正弦、余弦、正切、余切),知道特殊角的三 角函数值 由某个角的一个三角函数值,会求这个角其余两个三角函数值;会求含有特殊角的三角函数值的计算 能用三角函数解决与直角三角形有关的简单问题 模块一、勾股定理 1.勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三 角形中两直角边的平方和等于斜边的平方。 注:勾——最短的边、股——较长的直角边、 弦——斜边。 知识点睛 中考要求 解直角三角形

C A B c b a 如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。即 222,,ABC AC BC AB ABC ?+=?在中如果那么是直角三角形。 4.勾股数: 满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。 模块二、解直角三角形 一、解直角三角形的概念

根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系 如图,直角三角形的边角关系可以从以下几个方面加以归纳: c b a C B A (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=? (3)边角之间的关系:sin cos ,cos sin ,tan a b a A B A B A c c b ===== 三、 解直角三角形的四种基本类型 (1)已知斜边和一直角边(如斜边c ,直角边a ),由sin a A c = 求出A ∠,则90B A ∠=?-∠, b =; (2)已知斜边和一锐角(如斜边 c ,锐角A ),求出90B A ∠=?-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=?-∠,tan b a B =,sin a c A =; (4)已知两直角边(如a 和b ) ,求出c =tan a A b =,得90B A ∠=?-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A =等. 四、解直角三角形的方法 解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切; 当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点 在Rt ABC ?中,90A B ∠+∠=?,故sin cos(90)cos A A B =?-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题. 六、如何解直角三角形的非基本类型的题型 对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解; (1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;

11.2与三角形有关的角能力培优训练含答案

11.2与三角形有关的角 专题一利用三角形的内角和求角度 1.如图,在厶ABC中,/ ABC的平分线与/ 线相 交于D点,/ A=50°则/ D=( A. 15 ° B. 20 ° C. 25° 2.如 图,已知:在直角△ ABC中,/ C=90 °, BD平 分/ ABC且交AC于D.若AP平分/ BAC 且交BD于P,求/ BFA的度数. 3.已知:如图1 ,线段AB、CD相交于点0,连接AD、CB,如图2,在图1的条件下,/ DAB 和/ BCD的 平分线AF和CF相交于点P,并且与CD、AB分别相交于M、N .试解答下列问题: (1)__________________________________________________________________ 在图1中,请直接写出/ A、/ B、/ C、/ D之间的数量关系: _______________________________ ; (2)在图2中,若/ D=40° / B=30°,试求/ F的度数;(写出解答过程) (3)如果图2中/ D和/B为任意角,其他条件不变,试写出/ F与/ D、/ B之间的数量关系.(直接写出结论即可)

6.如图: (1 )求证:/ BDC = / A+/ B+/C ; (2)如果点D 与点A 分别在线段 BC 的两侧,猜想/ BDC 、/ A 、/ ABD 、/ ACD 这4个 专题二利用三角形外角的性质解决问题 4. 如图,/ ABD ,/ ACD 的角平分线交于点 P ,若/ A=50 ° / D=10°,则/ P 的度数为( ) A . 15 ° B . 20 ° C . 25 ° D . 30 ° 5. 如图,△ ABC 中,CD 是/ ACB 的角平分线,CE 是AB 边上 的高,若/ A=40° , / B=72° . (1) 求/ DCE 的度数; (2) 试写出/ DCE 与/ A 、/ B 的之间的关系式. (不必证明 ) 角之间有怎样的关系,并证明你的结论.

全等三角形培优竞赛训练题

全等三角形培优竞赛训练题 1、已知正方形ABCD中,E为对角线BD上一点,过E点作EF丄BD交BC于F,连接DF , G为DF中点,连接EG, CG. (1 )直接写出线段EG与CG的数量关系; (2)将图1中厶BEF绕B点逆时针旋转450,如图2所示,取DF中点G,连接EG, CG. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明. (3)将图1中厶BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1) 中的结论是否仍然成立? 图1图2图3

学习参考

2、数学课上,张老师出示了问题:如图1 ,四边形ABCD是正方形,点E是边BC的中点. AEF 90°,且EF交正方形外角DCG的平行线CF于点F,求证:AE= EF. 经过思考,小明展示了一种正确的解题思路:取AB的中点M ,连接ME,则 AM = EC,易证△ AME =△ ECF ,所以AE EF . 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把点E是边BC的中点”改为点E是边BC上(除B, C外)的任意一点”,其它条件不变,那么结论AE=EF'仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条 件不变,结论AE= EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由 图1图2图3

3、已知Rt A ABC 中,AC BC,Z C 90, D 为AB 边的中点,EDF 90° EDF绕D点旋转,它的两边分别交AC、CB (或它们的延长线)于E、F. 1 当EDF绕D点旋转到DE AC于E时(如图1),易证S A DEF S A CEF S A ABC- 2 当EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是 否成立?若成立,请给予证明;若不成立,S A DEF、S A C EF、S A ABC又有怎样的数量关 系?请写出你的猜想,不需证明 F 图 1图2

中考数学总复习培优专题精选经典题

初三数学中考总复习培优资料一 一、选择题(本大题共有12小题,每小题2分,共24分.) 1.-2的绝对值是 A .-2 B .- 12 C .2 D .12 2.下列运算正确的是 A .x 2+ x 3= x 5 B .x 4·x 2= x 6 C .x 6÷x 2 = x 3 D .( x 2)3 = x 8 3.下面四个几何体中,俯视图为四边形的是 4.已知a -b =1,则代数式2a -2b -3的值是 A .-1 B .1 C .-5 D .5 5.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离 6.对于反比例函数y =1 x ,下列说法正确的是 A .图象经过点(1,-1) B .图象位于第二、四象限 C .图象是中心对称图形 D .当x <0时,y 随x 的增大而增大 7.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是 A .平均数为30 B .众数为29 C .中位数为31 D .极差为5 8.小亮从家步行到公交车站台,等公交车去学校. 折线表示小亮的行程s (km)与所花时间t (min)之间的函数关系. 下列说法错误..的是 A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min 9.一元二次方程x x 22 =的根是( ) A .2=x B .0=x C .2,021==x x D .2,021-==x x 10.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是( ) A .1 B . 21 C .31 D .4 1 A B C D (第8题图)

数学 反比例函数的专项 培优练习题附答案

一、反比例函数真题与模拟题分类汇编(难题易错题) 1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等 于0的常数)的图象在第一象限交于点A(1,n).求: (1)一次函数和反比例函数的解析式; (2)当1≤x≤6时,反比例函数y的取值范围. 【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b, ∴b=1, ∴一次函数解析式为:y=x+1, ∵点A(1,n)在一次函数y=x+b的图象上, ∴n=1+1, ∴n=2, ∴点A的坐标是(1,2). ∵反比例函数的图象过点A(1,2). ∴k=1×2=2, ∴反比例函数关系式是:y= (2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= , ∴当1≤x≤6时,反比例函数y的值:≤y≤2 【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案. 2.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴

上,且B、D两点关于原点对称,AD交y轴于P点 (1)已知点A的坐标是(2,3),求k的值及C点的坐标; (2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离. 【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比 例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称, ∴k=6,C(﹣2,﹣3), 即k的值是6,C点的坐标是(﹣2,﹣3); (2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图, ∵点A(2,3),k=6, ∴AN=2, ∵△APO的面积为2, ∴, 即,得OP=2, ∴点P(0,2), 设过点A(2,3),P(0,2)的直线解析式为y=kx+b, ,得, ∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,

相关文档
最新文档