不同钢结构疲劳强度分析

不同钢结构疲劳强度分析
不同钢结构疲劳强度分析

不同钢结构疲劳强度分析

发表时间:2017-08-31T10:20:36.993Z 来源:《电力设备》2017年第12期作者:孙晓丽赵娜马连凤李晓莉刘谆

[导读] 摘要:随着生产和加工工艺的不断提高,高强度钢材钢结构已经开始在各种电器柜中得到应用,并取得了良好的效益。由于在材料力学性能

(中车永济电机有限公司)

摘要:随着生产和加工工艺的不断提高,高强度钢材钢结构已经开始在各种电器柜中得到应用,并取得了良好的效益。由于在材料力学性能、加工工艺、初始缺陷影响等方面的差别,高强度结构钢材构件的整体稳定性能与普通强度钢材有明显不同。

关键词:疲劳强度;屈服极限;疲劳寿命

1 、概述

钢材的生产工艺与构件的加工工艺是推动钢结构发展的重要因素,钢材力学性能的提高,能够提升钢结构构件的受力性能、安全性能以及钢结构整体的使用功能;同时,实际应用的不断创新也会促进钢结构的发展,这就对钢材的力学性能提出了新的要求,特别是要求结构材料应具有更高的强度。在这一背景之下,采用新的生产冶金工艺开发出了新型高强度结构钢材,先进的加工工艺特别是焊接技术以及与高强度钢材相匹配的焊接材料也陆续出现,高强度结构钢材具备了应用于实际电器柜的基本条件。本文的研究对象主要针对强度等级在420MPa 及以上的新型高强度结构钢材中厚板材(即板厚<40mm)构件。

2、疲劳的定义及特征

疲劳破坏是指材料或结构在循环交变应力或者循环交变应变的作用下,由于某点或某些点所在的部位发生局部永久性结构变化,在经历一定的循环次数后形成裂纹并最后发生断裂的现象,即在交变载荷重复作用下材料或者结构的结构破坏现象。经过人们长期的经验积累和对疲劳破坏事故的认真考察,疲劳破坏的显著特征己初步为人们所掌握,这些特征使疲劳破坏与传统的静力破坏、腐蚀破坏以及其他破坏形式相区别,给人们对事故的分析带来方便。具体的特征包括:长期性、非屈服性、难以预测性、局部性、影响因素多样性、端口形貌特殊性。

疲劳破坏的过程大致就可以描述为以下的“恶性循环阶段”:

应力集中一一争疲劳裂纹出现一一争裂纹尖端新的应力集中一一卜裂纹扩展一一卜构件发生

断裂。

3、影响结构疲劳强度的因素

构件在某一循环载荷下工作时,构件应力值的大小为一般用S来表示。当构件的应力水平S低于某一个应力限度值的时候,如果构件可以在该应力水平作用下承受无限次循环而不发生疲劳破坏,则该应力限度值为材料或者构件的“疲劳极限”。疲劳失效之前机械零部件所经历的应力或者应变循环次数称为“疲劳寿命”,一般用N表示,前面所提到的“韦勒曲线”或者“疲劳曲线”是表示应力幅Sa或者最大应力Sma、与疲劳寿命N之间关系的一种表达方式。一般我们从标准或者书上所查到的一些材料的疲劳极限和S一N曲线,只能代表标准光滑试样的疲劳性能,称之为“中值S一曲线”。但实际零部件的尺寸、形状和表面情况等是多样的,与标准试件存在一定程度上的差别,所以实际构件的疲劳强度、疲劳寿命与标准试样之间也存在一定的差距。

影响结构疲劳强度的因素主要有:形状,尺寸,表面状况,平均应力,腐蚀介质和温度等等,本节主要介绍与本论文相关的因素即形状、尺寸、表面加工方法对材料疲劳强度的影响。

4、理论计算

在钢结构梁的设计中要让力有很好的传导闭合性,就要充分的发挥每个梁的支撑作用。对4mm和6mm钢板的截面模量计算如下:

对安装梁截面模量计算如下:

4mm钢板 6mm钢板 4mm内部加6mm钢板

通过计算4mm钢板对于x-x抗弯截面模量Wx=4.0612cm3

6mm钢板对于x-x的抗弯截面模量Wx=5.8505cm3

4mm内部增加两块6mm钢板后对于x-x的抗弯截面模量Wx=4.0612+1.681*2=7.4232cm3

根据最大弯曲正应力的计算公式:σmax=M/WX

可见,最大弯曲正应力与弯矩成M正比,与抗弯截面模量Wx成反比,当M不变时,Wx越大,所受的最大弯曲正应力越小,根据以上3种情况可以看出,第3种的抗弯截面模量Wx为7.4232cm3,较第1种增加了将近1倍。

5、实验分析

运用计算机分析软件ANSYS分别对4mm钢板折弯,6mm钢板折弯,4mm钢板折弯内侧加焊6mm钢板, 5mmQ235A槽钢进行了最大

焊接对钢结构疲劳的影响及预防措施

焊接对钢结构疲劳的影响及预防措施 自从20世纪初涂药焊条发明至今100年来,焊接已经成为应用最广泛的工艺方法,很难找出另一种发展如此之快,并在应用规模和多样化方面能与焊接相比的工艺,以至于当代许多最重要的技术问题必须采用焊接才能解决,例如造船、铁路、汽车、航空、航天、桥梁、锅炉、大型厂房和高层建筑等都离不开焊接技术的支持。目前在工程生产上,焊接是最主要的连接方法,焊接结构的重量已占钢铁总产量的50%以上,工业发达国家的这一比例已经接近70%。然而焊接结构经常发生断裂事故,其中80%为疲劳失效。在我国,焊接结构因疲劳问题而失效的工程事例也不断出现。例如,90年代末,高速客车转向架中焊接接头的疲劳断裂,以及水轮机叶片根部的疲劳断裂等,都给国家和企业造成了巨大的经济损失。 所谓疲劳是指在循环应力和应变作用下,在一处和几处产生局部永久性积累损伤,经一定的循环次数后产生的裂纹或突然发生断裂的过程。疲劳断裂是金属结构断裂的主要形式之一。大量的统计资料表明,工程结构失效约80%以上是由疲劳引起的。钢结构的疲劳破损是裂纹在重复或交变荷载作用下的不断开展以及最后达到临界尺寸而出现的断裂。疲劳破坏的主要影响因素是应力幅、循环次数和应力集中。一般地说,疲劳破坏经历三个阶段:裂纹的形成,裂纹的缓慢扩展和最后迅速断裂。对于钢结构.实际上只有后两个阶段,因为结构总会有内在的微小缺陷,这些缺陷本身就起着裂纹的作用疲劳破坏的起始点多数在构件的表面。对非焊接构件,表面上的刻痕、轧钢皮

的凹凸、轧钢缺陷和分层以及焰割边不平整,冲孔壁上的裂纹,都是裂源可能出现的地方。对焊接构件,最经常的裂源出现在焊缝趾处,那里常有焊渣侵入。有些焊接构件疲劳破坏起源于焊缝内部缺陷,如气孔、欠焊、夹渣等。 一、影响焊接疲劳强度的主要因素 1.应力集中对疲劳强度的影响 影响焊接结构几何不连续性的因素,都将影响应力集中和疲劳强度。 (1)焊接结构的几何形状结构上几何不连续的部位都会产生不同程度的应力集中。结构的截而变化幅度越大,产生的应力集中越大,结构的疲芳强度越低。 (2)焊接接头形式在接头部位由于传力线受到干扰,因而发生应力集中现象。对接接头的力线干扰较小,因而应力集中系数较小,其疲劳强度也将高于其他接头形式。十字接头或T形接头在焊接结构中得到了广泛的应用。这种承力接头中由于在焊缝向基本金属过渡处具有明显的截而变化,其应力集中系数要比对接接头的应力集中系数高,因此十字或丁形接头的疲劳强度要低于对接接头。提高丁形或十字接头疲劳强度的根本措施是开坡口焊接,并加工焊缝使之圆滑过渡,通过这种改进措施.疲劳强度可有较大幅度的提高。 (3)焊缝局部几何形状的影响焊缝局部几何形状的变化,对焊接结构的疲劳强度将产生十分明显的影响。在一定范围内,余高越大,应力集中系数越大,缺口效应越大,疲劳强度降低。很多人错误的认

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

钢结构事故中的疲劳破坏及腐蚀破坏

钢结构事故中的疲劳破坏及腐蚀破坏 摘要:本文分析了铜结构疲劳破坏及腐蚀破坏的原因,近而提出了提高和改善铜结构构件疲劳及腐蚀的措施, 关键词:钢结构;疲劳;腐蚀;破坏 引言 钢结构相较于混凝土结构具有质量轻、塑性韧性好、易于采用工业化生产等优点,近年来在工民建,铁路,桥梁等结构中被大量采用。然而钢结构在受到交变荷载的作用下极易产生脆性破坏,特别在承受行车动荷载的桥梁结构中此问题更为明显,在一定程度上阻碍了钢结构的发展。鉴于此,本文在分析疲劳破坏及腐蚀破坏原因的基础上重点介绍工程设计预防疲劳破坏及腐蚀破坏的措施,以此来避免此问题的产生。 一,钢结构疲劳破坏 钢结构的疲劳破坏是裂纹在重复或交变荷载作用下的不断开裂以及最后达到临界尺寸而出现的断裂。此类破坏属脆性破坏。由于在破坏发生前几乎观察不到构件的塑性发展过程。没有破坏的征兆,然而一旦破坏后果严重,所以工程设计的任何一个领域无一例外的都要避免。疲劳破坏经历三个阶段:裂纹的形成,裂纹的缓慢扩展和最后迅速断裂。对于钢结构,实际上只有后两个阶段,因为在钢材生产和结构制造等过程中,不可避免地在结构的某些部位存在着局部微小缺陷,如钢材化学成分的偏析、非金属杂质;非焊接构件表面上的刻痕、轧钢皮的凹凸、轧钢缺陷和分层以及制造时的冲孔、剪边、火焰切割带来的毛边和裂纹在静荷载下,具有初始裂纹的构件当应力水平达到临界应力时才会出现失稳扩展,导致破坏。而承受交变荷载的构件经历裂纹的缓慢扩展过程最终达到破坏时,破坏应力还远小于静荷载作用时的临界应力。 钢结构疲劳分析时,习惯上当循环次数N<105时称为低周疲劳:N>105时称为高周疲劳。如果钢结构构件的实际循环应力特征和实际循环次数超过设计时所采取的参数,就可能发生疲劳破坏。此外影响钢结构疲劳破坏的原因还有:结构构件中有较大应力集中区域:所用钢材的抗疲劳性能差:钢结构构件加工制作时有缺陷其中裂纹缺陷对钢材疲劳强度的影响比较大:钢材的冷热加工、焊接工艺所产生的残余应力和残余变形对钢材疲劳强度也会产生较大影响。 二,抗疲劳的措施 出疲劳性能的影响因素来看,应力幅及循环次数是客观存在的事实,因此,提高和改善疲劳性能的途径只有从减小应力集中人手。具体措施如下: 1选材 对用于动载作用的钢结构或构件,应严格控制钢材的缺陷,并选择优质钢材。 2设计措施 (I)力求减少截面突变,避免焊缝集中,使钢结构构造做法合理化。 (2)要避免多条焊缝相互交汇而导致高额残余拉应力的情形。尤其是三条在空间相互垂直的焊缝交于一点,造成三轴拉应力的不利状况。对于加劲肋应与受拉翼缘不焊接,且保持一段距离。对于连接横向支撑处的横向加劲肋,可以把横向加劲肋和受拉翼缘顶紧不焊,且将加劲肋切角,保持腹板与加劲肋50~lOOr砌不焊。 三,钢结构腐蚀破坏 普通钢材的抗腐蚀能力比较差,这一直是工程上关注的重要问题。腐蚀使钢结构杆件净截面面积减损,降低结构承载力和可靠度,腐蚀形成的“锈坑”使钢结构脆性破坏的可能性增大,尤其是抗冷脆性能下降。一般来说钢结构下列部位容易发生锈蚀:经常干湿交替又未包混凝

影响金属材料疲劳强度大小的因素.

影响金属材料疲劳强度大小的因素 由于疲劳断裂通常是从机件最薄弱的部位或外部缺陷所造成的应力集中处发生, 因此疲劳断裂对许多因素很敏感,例如,循环应力特性、环境介质、温度、机件表面状态、内部组织缺陷等,这些因素导致疲劳裂纹的产生或速裂纹扩展而降低疲劳寿命。 为了提高机件的疲劳抗力, 防止疲劳断裂事故的发生, 在进行机械零件设计和加工时, 应选择合理的结构形状, 防止表面损伤, 避免应力集中。由于金属表面是疲劳裂纹易于产生的地方,而实际零件大部分都承受交变弯曲或交变扭转载荷, 表面处应力最大。因此, 表面强化处理就成为提高疲劳极限的有效途径。 由于工程实际的要求, 对疲劳的研究工作已逐渐从正常条件下的疲劳问题扩展到特殊条件下的疲劳问题,如腐蚀疲劳、接触疲劳、高温疲劳、热疲劳、微动磨损疲劳等。对这些疲劳及其测试技术还在广泛进行研究,并已逐步标准化 镀锌钢板的质量检验标准 优质品级镀锌板的质量要求包括规格尺寸、外观、镀锌量、化学成份、板形、机械性能和包装等几个方面。 1.包装 分为切成定尺长度的镀锌板和带卷镀锌板包装两种。一般铁皮包装, 内衬防潮纸, 外以铁腰子捆扎,捆扎牢靠,以防内装镀锌板相互摩擦 2.规格尺寸 有关产品标准 (以下述及都列明镀锌板推荐的标准厚度、长度和宽度及其允 许偏差。另外, 板的宽度和长度、卷的宽度也可按用户要求确定。 3.外观

表面状态:镀锌板由于涂镀工艺中处理方式不同,表面状态也不同,如普通锌花、细锌花、平整锌花、无锌花以及磷化处理的表面等。切成定尺长度的镀锌板及镀锌卷板不得存在影响使用的缺陷(以下详述 ,但卷板允许有焊接部位等若干不正常部分。 4.镀锌量 镀锌量标准值:镀锌量是表示镀锌板锌层厚度的一个普遍采用的有效方法。有两面镀锌量相同(即等厚镀锌和两面镀锌量不同(即差厚镀锌两种。镀锌量的单位为g/m2。 5.机械性能 (1抗拉试验:一般说来,只有结构用、拉伸用和深拉伸用镀锌板有抗拉性能要求。 (2弯曲试验:是衡量薄板工艺性能的主要项目。但各国标准对各种镀锌板的要求并不一致。一般要求镀锌板弯曲 180o 后, 外侧表面不得有锌层脱离, 板基不得有龟裂及断裂。 6.化学成份 对镀锌基板的化学成份的要求, 各国标准规定不同。如日本就不要求, 美国则要求。一般不作成品检验。 7.板形 衡量板形好坏有两个指标, 即平直度和镰刀弯。板的平直度和镰刀弯的最大允许值标准有一定规定。 下面列出有关镀锌板的国外主要标准,以作参考 [4, 5]: JIS G3302 镀锌钢板 JIS G3313 电镀锌钢板及钢带 ASTM A525 热浸镀锌薄钢板的一般要求

疲劳强度的计算

摘要:零件的疲劳强度是一个值得深刻探讨的问题,在众多领域有着至关重要 的地位,零件的疲劳强度决定了其疲劳寿命,也就决定了对零件的选择和对这个器件的设计。本论文在参考多方资料,以及在平日学习中积累总结的经验之后,对零件疲劳强度的计算有了一些结论,得出影响导致零件疲劳的原因有破坏应力与循环次数之间量的变化影响,静应力的影响,应力集中的影响,零件绝对尺寸的影响,表面状态与强化的影响等方面。在分析零件疲劳产生原因之后,得出许多关系变化图与计算方法。运用这些计算方法,对零件疲劳极限进行了计算上的确定。并总结出疲劳强度在一些条件下的相关计算方法,如在简单应力状态,复杂应力状态下的不同。对疲劳强度安全系数的确定也进行了一系列分析,最后,尝试建立了疲劳强度的统计模型。 Abstract:The fatigue strength of parts is a worthy of deep discussion, have a vital role in many fields, the fatigue strength of parts determines its fatigue life, also decided on the part of the selection and the device design.This paper in reference to various data, and after the usual study accumulation experience, calculation of the fatigue strength of parts have some conclusion, that caused damage should change between force and the number of cycles of the causes of fatigue parts, the influence of static stress, effect of stress concentration, affects the absolute size, surface state and strengthening effect etc.. After the analysis of fatigue causes, draw many relationship graph and calculation method. Using the calculation method of fatigue limit, determined the calculation. And summarizes the related calculation under some conditions the method of fatigue strength, as in the simple stress state, the complex stress state under the different. Determination of the fatigue strength safety factor is also carried out a series of analysis, finally, try to establish a statistical model of fatigue strength. 关键词:零件疲劳寿命疲劳强度 Key word:Spare parts Fatigue life Fatigue strength

不同钢结构疲劳强度分析

不同钢结构疲劳强度分析 发表时间:2017-08-31T10:20:36.993Z 来源:《电力设备》2017年第12期作者:孙晓丽赵娜马连凤李晓莉刘谆 [导读] 摘要:随着生产和加工工艺的不断提高,高强度钢材钢结构已经开始在各种电器柜中得到应用,并取得了良好的效益。由于在材料力学性能 (中车永济电机有限公司) 摘要:随着生产和加工工艺的不断提高,高强度钢材钢结构已经开始在各种电器柜中得到应用,并取得了良好的效益。由于在材料力学性能、加工工艺、初始缺陷影响等方面的差别,高强度结构钢材构件的整体稳定性能与普通强度钢材有明显不同。 关键词:疲劳强度;屈服极限;疲劳寿命 1 、概述 钢材的生产工艺与构件的加工工艺是推动钢结构发展的重要因素,钢材力学性能的提高,能够提升钢结构构件的受力性能、安全性能以及钢结构整体的使用功能;同时,实际应用的不断创新也会促进钢结构的发展,这就对钢材的力学性能提出了新的要求,特别是要求结构材料应具有更高的强度。在这一背景之下,采用新的生产冶金工艺开发出了新型高强度结构钢材,先进的加工工艺特别是焊接技术以及与高强度钢材相匹配的焊接材料也陆续出现,高强度结构钢材具备了应用于实际电器柜的基本条件。本文的研究对象主要针对强度等级在420MPa 及以上的新型高强度结构钢材中厚板材(即板厚<40mm)构件。 2、疲劳的定义及特征 疲劳破坏是指材料或结构在循环交变应力或者循环交变应变的作用下,由于某点或某些点所在的部位发生局部永久性结构变化,在经历一定的循环次数后形成裂纹并最后发生断裂的现象,即在交变载荷重复作用下材料或者结构的结构破坏现象。经过人们长期的经验积累和对疲劳破坏事故的认真考察,疲劳破坏的显著特征己初步为人们所掌握,这些特征使疲劳破坏与传统的静力破坏、腐蚀破坏以及其他破坏形式相区别,给人们对事故的分析带来方便。具体的特征包括:长期性、非屈服性、难以预测性、局部性、影响因素多样性、端口形貌特殊性。 疲劳破坏的过程大致就可以描述为以下的“恶性循环阶段”: 应力集中一一争疲劳裂纹出现一一争裂纹尖端新的应力集中一一卜裂纹扩展一一卜构件发生 断裂。 3、影响结构疲劳强度的因素 构件在某一循环载荷下工作时,构件应力值的大小为一般用S来表示。当构件的应力水平S低于某一个应力限度值的时候,如果构件可以在该应力水平作用下承受无限次循环而不发生疲劳破坏,则该应力限度值为材料或者构件的“疲劳极限”。疲劳失效之前机械零部件所经历的应力或者应变循环次数称为“疲劳寿命”,一般用N表示,前面所提到的“韦勒曲线”或者“疲劳曲线”是表示应力幅Sa或者最大应力Sma、与疲劳寿命N之间关系的一种表达方式。一般我们从标准或者书上所查到的一些材料的疲劳极限和S一N曲线,只能代表标准光滑试样的疲劳性能,称之为“中值S一曲线”。但实际零部件的尺寸、形状和表面情况等是多样的,与标准试件存在一定程度上的差别,所以实际构件的疲劳强度、疲劳寿命与标准试样之间也存在一定的差距。 影响结构疲劳强度的因素主要有:形状,尺寸,表面状况,平均应力,腐蚀介质和温度等等,本节主要介绍与本论文相关的因素即形状、尺寸、表面加工方法对材料疲劳强度的影响。 4、理论计算 在钢结构梁的设计中要让力有很好的传导闭合性,就要充分的发挥每个梁的支撑作用。对4mm和6mm钢板的截面模量计算如下: 对安装梁截面模量计算如下: 4mm钢板 6mm钢板 4mm内部加6mm钢板 通过计算4mm钢板对于x-x抗弯截面模量Wx=4.0612cm3 6mm钢板对于x-x的抗弯截面模量Wx=5.8505cm3 4mm内部增加两块6mm钢板后对于x-x的抗弯截面模量Wx=4.0612+1.681*2=7.4232cm3 根据最大弯曲正应力的计算公式:σmax=M/WX 可见,最大弯曲正应力与弯矩成M正比,与抗弯截面模量Wx成反比,当M不变时,Wx越大,所受的最大弯曲正应力越小,根据以上3种情况可以看出,第3种的抗弯截面模量Wx为7.4232cm3,较第1种增加了将近1倍。 5、实验分析 运用计算机分析软件ANSYS分别对4mm钢板折弯,6mm钢板折弯,4mm钢板折弯内侧加焊6mm钢板, 5mmQ235A槽钢进行了最大

第三章影响疲劳强度的因素.

第三章形响疲劳强度的因素 M料的5?N曲找和報時W限.WffeKMK准)t消试柑W披埒性能- 而实际母件的尺寸、形状利衣Si倘况是各天各样的.勺标准试桦有鞭大雄别. 砂响机械歩件楝劳强哎的WS存la*,只屮七SW猱参丸下衣. £Tr*rF工作温度、工作坏境 ?.待*评应力状态、循环特征、《?效蛊、裁衙交变频率 ?丹■几河彤秋尺寸效应.統口效应 xn-AvruA.袤面光洁度.袤面防AtSb表面强化 材料本■化学成分,金《ffl织,秆《方向.内部缺陷 3J应力集中的影响 在机W琴件中-曲于结构上的《^求-不叩e兔地%花槽河.轴肩.孔.拐你 W口等不连续部分致枝栈面尿默发生灾变,由F零件戒构件几何彤状的不违续而 -JlfeJltXM力大得毛的WffW力的現象称为’?瞰力集> 应力集中对銭芳《腹的影响兀.并H足各种影响W*中 忌上耍作出的W洽?它大大酵低了寧ft的披劳《度。 应力集中降低銭劳僅找的作用町以用载劳缺□集数耒杭征.

任静败荷低Wh-构件耳》应力《丈的严《卅?町以由-理论刈力集中系 ft- £表示,儿可被宣头为険口根誌的ft%应力与切面上的名义应力之比(或最 大fi 变号名义应变之比)即 <5 乂宾力?叩平坤麻R *宁电W?0mi ■“ C2b*2r) 5 A ?净 W 板 tf 2 ? F/2b d ?应力集中对破劳强度的影*9町以用?境劳》1」系ttKe 仪力t F 光淸试件的披劳强12 F ■缺口试件的疲劳强度 織把5SU 牛半均应力和长/fft <100 hftfjiQfte 为址本的披勞缺口系?? HJlQ 衣 ?股悄况N 缺H 韓救超大于1的. -"底劳蛊度"均指金对称《环卞人试样的疲劳强 (1)理论应力集中系数 w O £ Kj ■ ---- J

高等钢结构--疲劳与断裂

《高等钢结构原理》断裂与疲劳部分 学生作业 系(所):建筑工程系 学号:1432055 姓名:焦联洪 培养层次:专业硕士 2014年11月6日

1、防止焊接钢结构脆性断裂的基本措施 影响钢材脆断的直接因素有裂纹尺寸、作用应力和材料韧性。提高钢材脆性断裂的基本措施有: ①保证施工质量、加强质量检验和施焊工艺管理,避免施焊过程中产生的咬边、裂纹、夹杂和气泡等。 ②焊缝不宜过分集中,施焊时不宜过强约束,避免产生过大残余应力,同时应注意焊缝过于集中和避免截面突然变化。特别是低温下作用的静力荷载发生的脆断,常与残余应力有关。 ③进行合理细部构件设计,避免应力集中。应力集中处会产生同号应力场,使钢材变脆。尽量避免采用厚钢板,厚钢板比薄钢板较易脆断,对钢材的韧性也有降低。 ④选择合理的钢材,钢材化学成分与钢材抗脆断能力有关,含碳量高的钢材,抗脆断能力有所下降,同时控制钢材中硫和磷的含量,硫使钢材热断,磷使钢材冷断,对于在低温下作用的钢结构,应选择抗低温冲击韧性好的材料。 ⑤加载速率越高,钢材的脆断转变温度提高,对于同一韧性的材料,设计动力荷载时允许最低的使用温度比静力荷载高的多,所以根据钢材不同的工作加载速率应选择不同韧性的钢材。 ⑥设计结构时选择优良的结构形式,有助于减少断裂的不良后果。 2、解释应力幅是评价焊接钢结构疲劳强度的一个指标 对于非焊接结构,通常用应力循环特征(应力比)min max /σσρ=来评价钢结构的疲劳强度。但是对于焊接钢结构疲劳强度起控制作用的是应力幅σ?,而几乎与最大应力max σ、最小应力min σ及应力比这些参量无关。这是因为:焊接及 其随后的冷却,构成不均匀热循环过程,使焊接结构内部产生自相平衡的残余应力,在焊接附近出现局部的残余拉应力高峰,横截面其余部分则形成残余压应力与之平衡。焊接残余拉应力最高峰值往往可达到钢材的屈服强度,名义上的应力循环特征(应力比)min max /σσρ=并不代表疲劳裂缝出现的应力状态。并且焊接连接部位因为截面的改变原状,总会产生不同程度的应力集中现象。残余应力和应力集中两个因素的同时存在,使疲劳裂纹发生于焊接熔合线的表面缺陷处或焊

影响金属材料疲劳强度的八大因素和预防措施

影响金属材料疲劳强度的八大因素和预防措施 材料的疲劳强度对各种外在因素和内在因素都极为敏感,外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分、组织状态、纯净度和残余应力等。 这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 01、应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。 这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt : 在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf: 光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。

疲劳缺口敏感度系数q: 疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算: q的数据范围是0~1,q值越小,表征材料对缺口越不敏感。 试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 02、尺寸因素的影响 由于材料本身组织的不均匀性以及内部缺陷的存在,尺寸增加造成材料破坏概率的增加,从而降低材料的疲劳极限。 尺寸效应的存在,是把试验室小试样测得的疲劳数据运用于大尺寸实际零件中的一个重要问题,由于不可能把实际尺寸的零件上存在的应力集中、应力梯度等完全相似地在小试样上再现出来,从而造成试验室结果与某些具体零件疲劳破坏之间的互相脱节。 03、表面加工状态的影响 机加工的表面总存在着高低不平的加工痕迹,这些痕迹就相

螺栓疲劳强度计算分析

螺栓疲劳强度计算分析 摘要:在应力理论、疲劳强度、螺栓设计计算的理论基础之上,以疲劳强度计算所采取的三种方法为依据,以汽缸盖紧螺栓连接为研究对象,进行本课题的研究。假设汽缸的工作压力为0~1N/mm2=之间变化,气缸直径D2=400mm,螺栓材料为5.6级的35钢,螺栓个数为14,在F〞=1.5F,工作温度低于15℃这一具体实例进行计算分析。利用ProE建立螺栓连接的三维模型及螺杆、螺帽、汽缸上端盖、下端盖的模型。先以理论知识进行计算、分析,然后在分析过程中借助于ANSYS有限元分析软件对此螺栓连接进行受力分析,以此验证设计的合理性、可靠性。经过近几十年的发展,有限元方法的理论更加完善,应用也更广泛,已经成为设计,分析必不可少的有力工具。然后在其分析计算基础上,对于螺栓连接这一类型的连接的疲劳强度设计所采取的一般公式进行分类,进一步在此之上总结。 关键词:螺栓疲劳强度,计算分析,强度理论,ANSYS 有限元分析。

Bolt fatigue strength analysis Abstract: In stress fatigue strength theory,bolt,design calculation theory foundation to fatigue strength calculation for the three methods adopted according to the cylinder lid,fasten bolt connection as the object of research,this topic research. Assuming the cylinder pressure of work is 0 ~ 1N/mm2 changes,cylinder diameters between = = 400mm,bolting materials D2 for ms5.6 35 steel,bolt number for 14,in F "= 1.5 F below 15 ℃,the temperature calculation and analysis of concrete examples. Using ProE establish bolt connection three-dimensional models and screw,nut,cylinder under cover,cover model. Starts with theoretical knowledge calculate,analysis,and then during analysis,ANSYS finite element analysis software by this paper analyzes forces bolt connection,to verify the rationality of the design of and reliability. After nearly decades of development,the theory of finite element method is more perfect,more extensive application,has become an indispensable design,analysis the emollient tool. Then in its analysis and calculation for bolt connection,based on the type of connection to the fatigue strength design of the general formula classification,further on top of this summary. Keywords: bolt fatigue strength,calculation and analysis,strength theory,ANSYS finite elements analysis.

影响弹簧疲劳强度的六个因素

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/572257531.html,)影响弹簧疲劳强度的六个因素 弹簧是一种利用弹性来工作的机械零件。用弹性材料制成的零件在外力作用下发生形变,除去外力后又恢复原状。亦作“弹簧”。一般用弹簧钢制成。弹簧的种类复杂多样,按形状分,主要有螺旋弹簧、涡卷弹簧、板弹簧、异型弹簧等。 1、屈服强度材料的屈服强度和疲劳极限之间有一定的关系,一般来说,材料的屈 服强度越高,疲劳强度也越高,因此,为了提高弹簧的疲劳强度应设法提高弹簧材料的屈服强度,或采用屈服强度和抗拉强度比值高的材料。对同一材料来说,细晶粒组织比粗细晶粒组织具有更高的屈服强度。 2、表面状态最大应力多发生在弹簧材料的表层,所以弹簧的表面质量对疲劳强度 的影响很大。弹簧材料在轧制、拉拔和卷制过程中造成的裂纹、疵点和伤痕等缺陷往往是造成弹簧疲劳断裂的原因。 材料表面粗糙度愈小,应力集中愈小,疲劳强度也愈高。材料表面粗糙度对疲劳极限的影响。随着表面粗糙度的增加,疲劳极限下降。在同一粗糙度的情况下,不同的钢种及不同的卷制方法其疲劳极限降低程度也不同,如冷卷弹簧降低程度就比热卷弹簧小。因为钢制热卷弹簧及其热处理加热时,由于氧化使弹簧材料表面变粗糙和产生脱碳现象,这样就降低了弹簧的疲劳强度。 对材料表面进行磨削、强压、抛丸和滚压等。都可以提高弹簧的疲劳强度。 3、尺寸效应材料的尺寸愈大,由于各种冷加工和热加工工艺所造成的缺陷可能性 愈高,产生表面缺陷的可能性也越大,这些原因都会导致疲劳性能下降。因此在计算弹簧的疲劳强度时要考虑尺寸效应的影响。

4、冶金缺陷冶金缺陷是指材料中的非金属夹杂物、气泡、元素的偏析,等等。存在于表面的夹杂物是应力集中源,会导致夹杂物与基体界面之间过早地产生疲劳裂纹。采用真空冶炼、真空浇注等措施,可以大大提高钢材的质量。 5、腐蚀介质弹簧在腐蚀介质中工作时,由于表面产生点蚀或表面晶界被腐蚀而成为疲劳源,在变应力作用下就会逐步扩展而导致断裂。例如在淡水中工作的弹簧钢,疲劳极限仅为空气中的10%~25%。腐蚀对弹簧疲劳强度的影响,不仅与弹簧受变载荷的作用次数有关,而且与工作寿命有关。所以设计计算受腐蚀影响的弹簧时,应将工作寿命考虑进去。 在腐蚀条件下工作的弹簧,为了保证其疲劳强度,可采用抗腐蚀性能高的材料,如不锈钢、非铁金属,或者表面加保护层,如镀层、氧化、喷塑、涂漆等。实践表明镀镉可以大大提高弹簧的疲劳极限。 6、温度碳钢的疲劳强度,从室温到120℃时下降,从120℃到350℃又上升,温度高于350℃以后又下降,在高温时没有疲劳极限。在高温条件下工作的弹簧,要考虑采用耐热钢。在低于室温的条件下,钢的疲劳极限有所增加。 本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站; 变宝网官网:https://www.360docs.net/doc/572257531.html,/?qx 买卖废品废料,再生料就上变宝网,什么废料都有!

钢结构样卷全部答案(精品文档)

三、填空 1.钢材 2.脆性破坏 3.塑性破坏 4.脆性破坏 5.力学性能 6.抗拉强度 7.屈服点 8.韧性 9.冷弯性能 10.疲劳强度 11.概率极限状态 12.铆钉 13.高强度螺栓连接 14.粗制螺栓 15.角焊缝 16.斜缝 17.部分焊透 18.斜角角焊缝 19.残余变形 20.施工要求 21.受剪螺栓 22.受拉螺栓 23.钢梁 24.组合梁 25.热轧型钢梁 26.临界荷载 27.局部稳定 28.经济条件 29.建筑高度 30.拼接 31.工厂拼接 32.工地拼接 33.刚接 34.滚轴支座 35.桁架 36.高度 37.弯矩 38.轴心力 39.节点板 40.构件详图 41.结构布置图 42.结构布置图 43.构件详图

44.施工导流闸门 45.弧形闸门 46.液压式 47.螺杆式 48.卷扬式 49.水头的大小 50.闸门的尺寸 四、简答题 1. 钢材在复杂应力作用下是否仅产生脆性破坏?为什么? 答:钢材在复杂应力作用下不仅仅发生脆性破坏。因为当材料处于三向同号应力场时,它们的绝对值又相差不大时,根据第四强度理论,即使σ1、σ2、σ3的绝对值很大,甚至远远超过屈服点,材料也不易进入塑性状态。因而,材料处于同号应力场中容易产生脆性破坏。反之,当其中有异号应力,且同号的两个应力相差又较大时,即使最大的一个应力尚未达到屈服点f y时,材料就已进入塑性工作状态,这说明材料处于异号应力状态时,容易发生塑性破坏。 2.残余应力对压杆的稳定性有何影响? 答:由于残余应力的存在,在轴心压力N的作用下,残余应力与截面上的平均应力N/A叠加,将使截面的某些部位提前屈服并发展塑性变形。因此,轴心受压杆达临界状态时,截面由屈服区和弹性区两部分组成,只有弹性区才能承担继续增加的压力。这时截面的抗弯刚度降低,由理论分析知,残余应力对构件稳定的不利影响对弱轴要比对强轴严重的多。 3. 钢桁架与梁相比,桁架具有哪些优点?为什么它适合于大跨度? 答:钢桁架与梁相比是用稀疏的腹杆代替整体的腹板,并且杆件主要承受轴心力,应力沿截面分布均匀,能充分利用材料,从而能节省钢材减少自重,所以钢桁架特别适用于跨度或高度较大的结构。同时钢还可以按使用要求制成不同的

钢结构的脆性断裂和疲劳

第8章 钢结构的脆性断裂和疲劳 8.1 钢结构脆性断裂及其防止 8.1.1 脆性断裂破坏 脆性破坏: 结构的最终破坏是由于其构件的脆性断裂导致的。 特点:无塑性发展或很小,断裂时伸长量极其微小,没有破坏的预兆。 脆性破坏分类 ①过载断裂:由于过载,强度不足而导致的断裂。 特点:破坏速度快,主要是钢丝束、钢绞线和钢丝绳等。 ②非过载断裂:塑性很好的钢构件在缺陷、低温等因素影响下突然呈脆性断裂 ③应力腐蚀断裂:在腐蚀性环境中承受静力或准静力荷载作用的结构,在远低于屈服极限的应力状态下发生的断裂,强度越高则对应力腐蚀断裂越敏感。 ④疲劳断裂与腐蚀疲劳断裂:在交变荷载作用下,裂纹的失稳扩展导致的断裂,高周:循环周数在105以上者,低周:只有几百或几十次, 环境介质导致或加速疲劳裂纹的萌生和扩展称为腐蚀疲劳。 ⑤ 氢脆断裂: 氢使材料韧性降低而导致的断裂 钢结构的非过载脆性破坏P302 8.1.2脆性断裂的防止 构件不出现非过载脆性断裂的条件IC I K K ≤=σπα(含义见书) 为了防止脆性断裂,需要从三个方面着手: 1.钢材选择(保证足够韧性IC K ) 材料韧性指标:冲击韧性。 碳素钢:夏比V 形缺口冲击功不低于27J ; 低合金高强度结构钢:夏比V 形缺口冲击功不低于34J ; 公路钢桥和吊车梁在翼缘板厚度不超过4Omm ,按所处最低温度加40℃级别要求; 公路钢桥和吊车梁在翼缘板厚度超过 4Omm, 降低最低温度; 低温地区避免用厚度大的钢板,必须用厚板时,应提高对冲击韧性的要求或进行全厚度韧性试验。 2.初始裂纹:减小初始裂纹,避免形成裂缝间隙,保证焊缝质量,限制和避免焊接缺陷,焊缝表面不得有裂纹; 3.应力:缓和应力集中,减小应力值,避免受到约束而产生高额残余应力 4.结构形式与构造细节:超静定结构优于静定结构:由于地基不均匀沉陷会导致严重不利的内力重分布。静定结构采用多路径传递荷载优于单路径传递荷载。单个构件:多路径组织要优于单路径组织 焊接受弯构件的受拉翼缘,当弯矩很大,需要选取较厚的翼缘时,从抗断裂的

钢结构焊缝疲劳强度分析技术的最新进展_周张义

第30卷,第4期 中国铁道科学Vo l 30No 4 2009年7月 CH INA RAILWAY SCIEN CE July,2009 文章编号:1001-4632(2009)04-0069-07 钢结构焊缝疲劳强度分析技术的最新进展 周张义,李 芾,安 琪,黄运华,卜继玲 (西南交通大学机车车辆工程系,四川成都 610031) 摘 要:在平板焊接钢结构焊缝疲劳强度分析中,近年来国外主要发展起了等效结构应力法和表面外推热点应力法2种新方法。等效结构应力法考虑焊趾部位的结构应力集中效应,应用改进线性化法或节点力法分析结构应力,确保计算结果对有限单元类型、网格形状及尺寸的不敏感,从而有效区分不同焊接接头类型的焊趾结构应力集中情形;以结构应力为控制参数计算应力强度因子,在主要考虑焊趾缺口、结构板厚、载荷模式等因素影响基础上,基于断裂力学分析确定与焊缝疲劳寿命直接相关的应力参数,导出等效结构应力转化方程;基于上述应力计算和转化方法对焊缝疲劳试验结果数据进行处理,建立焊缝疲劳强度设计单一主S N 曲线,实现对钢结构焊缝的疲劳强度评定和寿命预测。通过比较分析可知,表面外推热点应力法适用于钢结构焊缝设计阶段的方案比较及方案优化;等效结构应力法较适合对钢结构焊缝最终设计方案进行更为精确的焊缝疲劳强度评定和寿命预测以及不能用表面外推热点应力法进行钢结构焊缝疲劳强度分析时。 关键词:等效结构应力;网格不敏感;有限元法;焊趾;疲劳分析;表面外推 中图分类号:T G457 11 文献标识码:A 收稿日期:2008-10-27;修订日期:2009-02-26 基金项目:国家自然科学基金资助项目(50821063) 作者简介:周张义(1982 ),男,山西霍州人,博士研究生。 对于平板焊接钢结构的疲劳设计,按照传统的焊接细节分类法需要严格确定特定接头几何形状和载荷模式下的名义应力及相应疲劳抗力数据[1-4],故很大程度上影响了焊接细节分类法在工程中的应用。为了完善或替代焊接细节分类法,针对广泛存在的结构焊趾疲劳,新发展的2种适合于有限元技术的表面外推热点应力法和等效结构应力法,通过将焊趾结构应力集中考虑在应力分析之中,一方面可适应有限元强大的应力分析技术,另一方面避免了对疲劳设计S N 曲线的选择。表面外推热点应力法在国内相关行业的应用研究已得到普遍关注 [5-7] 。而等效结构应力法虽然在2007版ASME 锅炉及压力容器标准[8] 、以及API/ASME 合于使用性评定标准[9]中均推荐将其应用于焊缝疲劳分析,但至今国内尚未有技术文献详细介绍。有鉴于此,本文在阐述、分析等效结构应力法的基础上将它与表面外推热点应力法进行对比,研究分析2种方法各自存在的优势和局限性,以及在实际工程的结构疲劳设计中的合理应用方式。 1 等效结构应力法剖析 等效结构应力法是1种新型焊接结构疲劳寿命预测技术 [10-13] ,可广泛应用于不同工业领域的各类 形式焊接承载部件的焊趾疲劳分析,如压力容器、 管道、海上平台、船舶、地面车辆等结构的管件及平板焊接接头[14-18]。该方法主要基于以下2项关键技术: 考虑焊趾部位的结构应力集中效应,应用改进线性化法或节点力法分析其结构应力(即热点应力),确保计算结果对有限单元类型、网格形状及尺寸均不敏感,从而有效区分不同接头类型的焊趾结构应力集中情形; 以结构应力为控制参数计算应力强度因子,在主要考虑焊趾缺口、结构板厚、载荷模式等因素影响的基础上,基于断裂力学分析确定与疲劳寿命直接相关的应力参数,导出等效结构应力转化方程。进而将其应用于处理疲劳试验结果数据,构建出单一通用的疲劳设计主S N 曲线,从而基于等效结构应力并结合该主S N 曲线进行焊接结构的疲劳强度评定及寿命预测。

影响弹簧疲劳强度的几个因素

影响弹簧疲劳强度的几个因素 阅读:2748人次更新时间:2011-5-23 9:09:19 1.屈服强度材料的屈服强度和疲劳极限之间有一定的关系,一般来说,材料的屈服强度越高,疲劳强度也越高,因此,为了提高弹簧的疲劳强度应设法提高弹簧材料的屈服强度,或采用屈服强度和抗拉强度比值高的材料。对同一材料来说,细晶粒组织比粗细晶粒组织具有更高的屈服强度。 2.表面状态最大应力多发生在弹簧材料的表层,所以弹簧的表面质量对疲劳强度的影响很大。弹簧材料在轧制、拉拔和卷制过程中造成的裂纹、疵点和伤痕等缺陷往往是造成弹簧疲劳断裂的原因。 材料表面粗糙度愈小,应力集中愈小,疲劳强度也愈高。材料表面粗糙度对疲劳极限的影响。随着表面粗糙度的增加,疲劳极限下降。在同一粗糙度的情况下,不同的钢种及不同的卷制方法其疲劳极限降低程度也不同,如冷卷弹簧降低程度就比热卷弹簧小。因为钢制热卷弹簧及其热处理加热时,由于氧化使弹簧材料表面变粗糙和产生脱碳现象,这样就降低了弹簧的疲劳强度。 对材料表面进行磨削、强压、抛丸和滚压等。都可以提高弹簧的疲劳强度。 3.尺寸效应材料的尺寸愈大,由于各种冷加工和热加工工艺所造成的缺陷可能性愈高,产生表面缺陷的可能性也越大,这些原因都会导致疲劳性能下降。因此在计算弹簧的疲劳强度时要考虑尺寸效应的影响。 4.冶金缺陷冶金缺陷是指材料中的非金属夹杂物、气泡、元素的偏析,等等。存在于表面的夹杂物是应力集中源,会导致夹杂物与基体界面之间过早地产生疲劳裂纹。采用真空冶炼、真空浇注等措施,可以大大提高钢材的质量。 5.腐蚀介质弹簧在腐蚀介质中工作时,由于表面产生点蚀或表面晶界被腐蚀而成为疲劳源,在变应力作用下就会逐步扩展而导致断裂。例如在淡水中工作的弹簧钢,疲劳极限仅为空气中的10%~25%。腐蚀对弹簧疲劳强度的影响,不仅与弹簧受变载荷的作用次数有关,而且与工作寿命有关。所以设计计算受腐蚀影响的弹簧时,应将工作寿命考虑进去。 在腐蚀条件下工作的弹簧,为了保证其疲劳强度,可采用抗腐蚀性能高的材料,如不锈钢、非铁金属,或者表面加保护层,如镀层、氧化、喷塑、涂漆等。实践表明镀镉可以大大提高弹簧的疲劳极限。 6.温度碳钢的疲劳强度,从室温到120℃时下降,从120℃到350℃又上升,温度高于350℃以后又下降,在高温时没有疲劳极限。在高温条件下工作的弹簧,要考虑采用耐热钢。在低于室温的条件下,钢的疲劳极限有所增加。 有关以上这些影响疲劳强度因素的具体数值,参看有关资料。 弹簧的强化工艺技术 阅读:2491人次更新时间:2011-5-23 9:07:26 (1)弹簧的热处理强化工艺技术 1)保护气氛热处理。在我国,线材小于 15mm的弹簧、油淬火回火钢丝及韧化处理钢的热处理都采用了保护气氛热处理。保护气氛热处理能够消除表面脱碳和氧化,提高材料的表面质量。

飞机结构疲劳与断裂分析发展综述

飞机结构疲劳与断裂分析发展综述 领空权对于任何一个国家都是非常重要的,飞机的先进,是领空权的保证.飞机更是国家的国防的重要力量,提高飞机的性能更是每个军事大国追求的目标.飞机的结构抗疲劳强度与断裂强度是飞机性能的重要体现.通过这学期的学习,和老师耐心的讲解,我对我国飞机结构疲劳强度与断裂发展现状与发展趋势有了更进一步的了解. 疲劳强度是指飞机结果在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。实际上,飞机结构并不可能作无限多次交变载荷试验。 断裂是指飞机结构被断错或发生裂开.讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。 飞机结构在实际使用中,要不断承受交变载荷的作用。但是,早期设计给及只是从静强度上考虑,只要通过计算和试验证明飞机结构能够承受得住设计载荷(实际使用中所出现的最大载荷乘以安全系数),就认为飞机结构具有足够的强度。由于飞机结构承受交变载荷的作用,某些构建常常出现疲劳性能也较好。因此,飞机结构的疲劳问题并不突出,疲劳强度问题没有引起足够的重视。直到50年代前期,世界各国的飞机强度规范中对疲劳强度都还没有具体要求,不要求进行全尺寸结构疲劳试验。但是,随着航空事业的不断发展,飞机

的性能不断提高,适用寿命延长,新结构、新材料不断出现,飞机结构在使用中疲劳破坏与安全可靠之间的矛盾逐渐显露出来了。 断裂是指飞机结构被断错或发生裂开.讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。 许多飞机结果,如轴、齿轮、轴承、叶片、弹簧等,在工作过 程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后会产生裂纹或突然发生完全断裂。 疲劳破坏是机械零件失效的主要原因之一。据统计,在飞机结构失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。 疲劳失效是金属材料常见的失效形式,特别是轴类,连杆,轴承类 等零件,长期在应力下工作的工件材料都要求较高的疲劳强度,这样 的可以提高零件的使用寿命。疲劳强度同时还与硬度、强度、韧性有较大关系,所以他是金属材料的重要力学性能指标。 疲劳强度是材料能够承受无数次应力循环时的最大应力。疲劳强度关系到零件的寿命以及零件工作时能够承受的最大应力,这对零件的安全设计有重大意义。

相关文档
最新文档