分离分析论文..

分离分析论文..
分离分析论文..

膜分离技术与分子蒸馏技术

摘要:分离分析技术在生产和生活中有着广泛的用途,选择合适的分离分析方法关乎着实验与生产的成败,根据物质的性质不同所采用的的分离技术也有所差别,本文主要对膜分离技术和分子蒸馏技术的原理特点及在医药方面的应用做了简单的介绍。

关键词:膜分离技术分子蒸馏技术原理特点应用

前言

膜分离技术是一项新兴的高效分离技术,已经被国际公认为20世纪末到21世纪中期最有发展前途的一项重大高新生产技术,成为世界各国研究的热点,目前已被广泛应用医药、食品、化工、环保等各个领域;分子蒸馏技术是一种特殊的液液分离技术,它产生于20世纪20年代,是伴随着人们对真空状态下气体运动理论的深入研究以及真空蒸馏技术的不断发展而逐渐兴起的一种新的分离技术。目前,分子蒸馏技术已成为分离技术中的一个重要分支。

1 膜分离技术

1.1膜分离技术的原理及特点

膜分离是利用具有一定选择透过特性的过虑介质,以外界能量或化学位差为推动力,对多组分混合物进行物理的分离、纯化和富集的过程。膜分离法有许多的种类,虽然各种膜分离过程具有不同的原理和特征,即使用的膜不同,推动力、截流组分不同,适用的对象和要求也不同,但其共同点为过程简单、经济、节能、高效,无两次污染。大多数膜分离过程中物质不发生相变,分离系数较大,操作温度可为常温,可直接放大,可专一配膜等。相对与传统工艺,膜分离具有以下优点:艺简化,一次性投资少,方便维护、操作简便,运行费用低,节省资源;运行无相变,不破坏产品结构,分离效率高,提高产品的收率和质量;不需用溶剂或溶剂用量大大减少,因而废水处理也变得更加容易[1]。

1.2 膜分离技术的种类

目前,国内外在制药和医疗上常用的膜分离技术主要有微滤、超滤、纳滤、

反渗透以及气体分离等。各种膜过程具有不同的分离机理,可适用于不同的对象和要求。

(1)微滤:微滤膜是使用最早的膜技术,其分离机理为筛分,在分离过程中膜的物理结构起决定作用。分离过程中采用的推动力为压力差,膜孔径大小为0.01~10μm。在制药和医疗中,微滤多用于除菌过滤、药液的澄清、去除颗粒物和病毒、医疗用水的净化以及作为超滤和反渗透过程的预处理等。

(2)超滤:超滤利用膜两侧的压力差不同,可将不同分子量的溶质进行选择性的分离。它的分离机理仍为筛分,膜孔径大小为10~100 nm。在制药和医疗中,超滤不但可以去除细菌、病毒和颗粒物,还能除去热源、菌丝和蛋白,常用于分子物质的分级分离和脱盐浓缩、小分子物质的纯化以及医药生化制剂的去热源等。(3)纳滤:纳滤是一种介于超滤和反渗透之间的膜分离过程,它填补了超滤和反渗透之间的空白。在分离过程中以压力差为推动力,分离机理为吸附-扩散,膜孔径大小为1~10 nm。在制药和医疗中,纳滤多用于抗生素、维生素、氨基酸等发酵液的澄清过滤、分离与纯化,半合成抗生素的脱盐浓缩;中成药、保健品口服液的澄清除菌过滤等。

(4)反渗透:反渗透也是一种以压力差为推动力的膜过滤过程,其分离机理为吸附-扩散,膜孔径小于1 nm。在制药和医疗中,反渗透主要用于药品的浓缩、脱盐;制剂用水、注射用水、透析水以及无菌水的制备等。

(5)气体分离:气体分离膜根据分离物在膜中的溶解度不同而将其分离,膜类型为非对称膜和复合膜。它仍是以压力差为动力的膜分离过程,其分离机理为溶解-扩散。在制药和医疗中,气体分离膜主要用于富氧装置,人工肺等。

1.3 膜分离技术在医药领域的应用

1.3.1膜分离法精制中药药液

中药药液的精制原生产工艺采水提醇沉法,不仅流程长,产品黏度大,提取液中还含有大量亚微粒、微粒和絮状物等杂质。故成品静置后易产生沉淀,影响其外观及品质。如果采用相应的截留分子量的膜进行处理后,再进行罐装,则可以保证产品外观透明鲜亮、口感改善、保质期延长。近年来对绿茶茶多酚抗癌的研究报告日益增多,更引起了人们对茶饮料开发和茶多酚提取的重视。潘丽军等[2]研究了超滤膜对绿茶提取液的分离效果。结果表明:截留分子量小于20000的超滤

膜,对茶水中的固形物、茶多酚的截留率分别高达89%、87%;截留分子量高于100000的超滤膜可有效截留茶水中的大分子蛋白质和果胶类物质,改善了药液的溶液特性,有利于茶多酚的工业生产。甜菊糖甙是从甜叶菊干叶中提取出来的糖甙物质,在提取过程中,干叶中的蛋白质、多糖类等多种成分会进入提取液,致使在生产中常常出现沉淀和灌装起泡等问题。何昌生等[3]利用超滤技术解决上述问题,明显减少灌装起泡现象。蝙蝠蛾被毛菌丝体是人工发酵虫草菌粉,具有秘精益气、滋肺补肾、止血化痰等功效。但其水提液含有较多的杂质,对口服液制剂的口感和外观具有不良影响。陶瓷膜微滤技术主要利用筛分原理将中药中大量的鞣质、蛋白、淀粉、树脂等无药效的大分子物质分离出去。与醇沉技术分离所得的产品相比,关键成分腺苷损失率为0.6%和30.17%,且微滤后的中药液口感好,有香甜味,明显优于醇沉技术[4]。由此可见,膜法处理中药药液可以取代传统的板框过滤、硅藻土过滤等,有效去除鞣质、淀粉、树脂、蛋白、果胶等。并且得到的产品无论是澄清度、透光度和稳定性都明显提高。长期存储澄清度不变,不再有沉淀和挂壁现象。

1.3.2酶制剂及蛋白质等生化产品的分离、浓缩和纯化

酶是具有催化活性的蛋白质,蛋白质的生产过程一般分为三步,前两步是运用生物技术生产目标产物,最后一步是对含有目标产物的物料进行分离、纯化加工成目标产物。很多蛋白质产品作为医药被人类利用,因此蛋白质必须高度纯化、无菌、无致热源等特点。

酶制剂和蛋白质很容易变性,所以在酶制剂和蛋白质的提纯过程中应避免用强酸强碱,并且要保证较低的温度。通过调节相应的操作参数,利用膜分离技术可以而获得高纯度、高质量的酶制剂和蛋白质等生化产品。如果在无菌的条件下,生产的无菌酶制剂及蛋白质可以直接应用于临床治疗[5]。

1.3.3 抗生素的分离、浓缩和纯化

抗生素一般存在于液体中,从发酵液中提取抗生素的传统方法有四种:吸附法、溶媒萃取法、离子交换法和沉淀法,但这些工艺往往十分繁杂、能耗高、抗生素在提取过程中容易变性失活、废水污染严重且难以处理等。利用膜分离技术来分离和纯化抗生素可以克服以上缺点,被广泛应用。

1.3.4 氨基酸的分离、浓缩和纯化

在医药生产方面,氨基酸有重要的应用,除了大量的氨基酸输液外,一些氨基酸被用于治疗疾病。例如α-甲基-多巴为有用的降压药物,L-谷酰胺及衍生物可用于治疗胃溃疡,某些氨基酸还具有抗肿瘤的作用等。氨基酸的分离与提纯常用的方法是沉淀法和离子交换法。沉淀法虽然操作简单但废液排放污染环境;残留沉淀剂有毒。离子交换法在分离混合氨基酸时是利用各种氨基酸之间的等电点之间的差异,对于等电点相近的混合氨基酸难以分离;且氨基酸离子在树脂中的扩散速度较慢。应用膜分离技术是氨基酸分离和纯化的一种新方法,不但对环境友好,而且分离的效率高,节省能源。

2 分子蒸馏技术

2.1 分子蒸馏技术的原理

分子蒸馏是依据液体分子受热后从液面逸出时的平均自由程不同而实现分离的。根据分子运动理论,液体混合物的分子受热后运动会加剧,当接受到足够能量时,就会成为气体分子而从液面逸出。而随着液面上方气体分子的增加,有一部分气体分子就会返回液体,在外界温度保持恒定的情况下,最终达到分子运动的动态平衡,此外,不同种类的分子,由于其分子有效直径不同,故其平均自由度也不同,从统计学观点看,不同种类的分子逸出液面后不与其他分子碰撞的飞行距离是不同的[6]。

2.2 分子蒸馏技术的过程

(1)物料在加热表面上形成液膜。通过重力或机械力在蒸发面形成快速移动、厚度均匀的薄膜。

(2)分子在液膜表面自由蒸发。分子在高真空和远低于常压沸点的温度下蒸发。

(3)分子从加热面向冷凝面的运动。在蒸馏器内保持足够高的真空条件下,使蒸发分子的平均自由程大于或等于加热面和冷凝面之间的距离,则分子向冷凝面的运动和蒸发过程就可以迅速进行。

(4)分子在冷凝面的捕获。保持加热面和冷凝面之间达到足够的温差,冷凝面的形状合理且光滑,轻组分就会在冷凝面上瞬间冷凝。

(5)馏出物和残留物的收集。馏出物在冷凝器底部收集,残留物在加热器底部收集,没有蒸发的重组分和返回到加热面上的极少轻组分残留物,由于重力

或离心力的作用,滑落到加热器底部或转盘外缘[7]。

2.3分子蒸馏技术的特点

与普通蒸馏相比,分子蒸馏有以下特点:

(1)普通蒸馏是在沸点温度下进行分离,而分子蒸馏只要冷热两面之间达到足够的温度差,就可以在任何温度下进行分离。

(2)普通蒸馏的蒸发和冷凝是可逆过程,液相和气象之间达到了动态平衡;分子蒸馏中从加热面逸出的分子直接飞射到冷凝面上,理论上没有返回到加热面的可能性,所以分子蒸馏时不可逆过程。

(3)普通蒸馏有鼓泡,沸腾现象;而分子蒸馏是在液膜表面上的自由蒸发,没有鼓泡现象,既分子蒸馏是不沸腾下的蒸发过程。

(4)普通蒸馏分离能力只与组分的蒸汽压之比有关。

(5)分子蒸馏蒸发过程中,物料受热时间短,冷凝迅速,对易挥发、热敏性物质的保存率高,从而避免了因受热时间长而造成某些组分分解或聚合的可能。

(6)操作温度与普通蒸馏相比较低。

(7)无毒、无害、无污染、无残留,可得到纯净安全的产物。

(8)操作工艺简单,设备少[8]。

2.4分子蒸馏技术在医药领域的应用

2.4.1天然维生素E的提取

维生素E又称生育酚, 绿色化学的兴起, 使天然维E的需求量不断增加,工业上普遍采用从油脂真空脱臭的馏出物中提取,但是溶剂萃取法收率和产品纯度较低,超临界萃取一次性投资太大,化学处理法又存在有机物残留的问题。由于天然维E的市场前景广阔,关于这方面的研究一直受到国内外学者的重视。Mori Osamu 等[9]将辛酸甘油酯同低纯度的维生素E混和后采用分子蒸馏进行分离,使维E含量大幅度提高;Nakadate Masao 等[10]通过酶催化酯化反应和酯交换反应从棕榈脂肪酸中提取生育酚和生育三烯酚, 然后采用分子蒸馏去除轻酯组分, 并用阴离子交换树脂纯化, 得到的产物色泽纯度都很好。

2.4.2 中草药有效成分的提取分离

中药现代化面临的瓶颈问题之一在于有效成分的分离提纯,而中药有效成分

中常常含有高沸点、热敏性、易分解的物质,分子蒸馏正适合于对这类物质的分离提纯。

银杏叶中含有5种(银杏内酯A、B、C、J、M ),其结构极其相似,传统分离方法很难将其分离,而采用分子蒸馏技术后,分离难度就大大降低[11]。对银杏叶脂溶性皂化物采用分子蒸馏法分离银杏叶类胡萝卜素、甾醇类化合物和聚戊烯醇类,银杏甾醇得率为0. 03% ~ 0. 08%,纯度高于95%。

川芎为我国传统中药,具有活血行气、祛风止痛、开郁燥湿等功效,主要含藁本内酯、丁基肽内酯、川芎嗪、阿魏酸等。川芎超临界

CO萃取物所含化学成分

2

经分子蒸馏后,主要成分藁本内酯相对含量明显提高,富集效果好。川芎油中的丁基肽内酯、洋川芎内酯经分子蒸馏后全部被保留到轻组分中,说明分子蒸馏技术对挥发性成分分离纯化的作用显著,在中药有效成分分离方面具有广阔的应用前景,并可与超临界

CO萃取技术联用以更好提纯中药有效成分[12]。

2

3 未来展望

膜分离技术已经成为生物技术工程中不可缺少的一部分。发酵培养基的灭菌过滤、缓冲剂的纯化和蛋白质产品的制备都经常应用膜分离技术[13]。膜分离技术已成为确保现代生物制品纯度、安全和效用的基本技术[14]。在提高产品纯度、收率、减低能耗和处理时间、工艺改进等方面已表现出巨大的潜力和应用价值。

分子蒸馏技术属于近几十年发展起来的新型技术,其理论根源和传热机理尚未完全揭示,限制了分子蒸馏技术在应用上的突破。针对这种情况,国内各高校及科研单位应加强分子蒸馏基础理论的研究,揭示其规律性,使其成为一门真正实用的技术。

结束语

通过对膜分离技术和分子蒸馏技术的简单介绍,我们了解了他们的原理特点以及一部分在医药领域的应用,应用这些新的技术为我们的社会生产到来了巨大的效益。目前,我们还在对其进行深入研究以克服一些不足之处,我们可以预见,在未来这些新型分离技术的前景一片光明。

参考文献

[1] 丛竹风,高新贞,何伟.膜分离技术及其在中药现代研究中的应用.齐鲁药

事,2004,23(10):31.

[2] 潘丽军,姜绍通,储茂泉,等.超滤膜分离对绿茶茶水处理效果的影响[J].饮料工业,1999,(06):36-38.

[3] 何昌生,王炳南,朱姗姗.甜菊糖甙超滤的应用研究[J].水处理技术,1994,20(2):89-94.

[4] 黄雪珍.膜分离技术分离提纯蝙蝠蛾被毛孢菌丝体水提液[J].中国药业,2008,17(16):52-53.

[5] 陈慧英,吴晓英,林影.溶菌酶分离纯化方法的研究新进展[J].广东药学学报,2003,19(4):355-358.

[6] 冯武文,杨村,于宏奇.分子蒸馏——一项特殊的液液分离技术[J].上海化

工,1999,(3):38-38.

[7] 吴鹏,张东明,张庆波. 短程蒸馏原理及工业应用[J].化工进展,2000,19(1):49-52.

[8] 李沛虹,呼丽丽.浅谈分子蒸馏技术[J].化学工程,2008,29(5):23-25.

[9] Mori Osamu,Tashima Ikukazu,Bito Masami,et al.Method of concentrating minor

ingredients in oily matters obtained from plant tissue[P].WO43601,2006- 04- 27.

[10] Nakadate Masao,Kishima Shizumas a Isolation of tocopherol and tocotrienol

from palm fatty acid distillate[P].JP305155,2004- 11- 4

[11] 李晓黎,王建平.分子蒸馏技术在中草药有效成分提取分离中的应用[J].中

草药,2007,26(11): 1328- 1329.

[12] 谢春英,袁雨婕,余少冲,等.分子蒸馏技术分离川芎油的研究[J].国际医药

卫生导报,2007,13(19):73-76.

Membrane separation technology and molecular distillation

technology

Abstract:Separation and analysis techniques in the production and life has a wide range of uses, select the appropriate method for the separation and analysis relating to the success of the experiment and production, according to the nature of the material used in the different separation techniques are also different, the paper membrane separation technology and molecular principle Features distillation technology and its application in medicine to do a simple introduction.

Keywords:Membrane separation technology Molecular distillation technology Principle Features Applications

评语:

该论文在查阅相关文献资料的基础上对膜分离技术和分子蒸馏技术的原理、过程及特点做了详细的说明,并着重对膜分离技术和分子蒸馏技术在医药领域的具体应用进行了重点介绍。查阅工作全面细致,且具有一定的代表性。格式规范,内容完整,结构合理,主要观点突出,逻辑关系清楚。

新型绿色化工分离技术及其应用

新型绿色化工分离技术及其应用 摘要:伴随着能源危机、环境污染,现在对资源利用与清洁生产提出较高要求,此也推动了新型绿色分离技术的快速发展。文章则主要介绍了膜分离技术、分子蒸馏技术及超临界萃取技术的原理及应用。 关键字:新型绿色分离技术膜分离技术分子蒸馏技术超临界萃取技术 前言 化工分离技术是化学工程的一个重要分支,石油炼制、塑料化纤、同位素分离,以及生物制品的精制、纳米材料的制备、烟道气的脱硫和化肥农药的生产等等都离不开化工分离技术。化工生产中的原料和产物绝大多数都是混合物, 需要利用体系中各组分物性的差别或借助于分离剂使混合物得到分离提纯,它往往是获得合格产品、充分利用资源和控制环境污染的关键步骤。伴随着煤炭与石油危机引起的能源危机,对资源利用与清洁生产也提出了要求,这就对分离技术的要求越来越高。正是人们希望采用更高效的节能、优产的方法以及所采用的过程与环境友好,推动了新型分离技术的快速发展。文章对膜分离技术、分子蒸馏技术和超临界萃取的应用进行阐述。 1膜分离技术 近20年来膜技术发展及其迅速,已从单独的海水与苦咸水脱盐,纯水及超纯水的制备,工业用水的回用,逐步拓展到环保、化工、医药、食品等领域中,发展前景备受关注。膜分离技术具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势[1],是现代分离技术中一种效率较高的分离手段[1,2,3]。目前常见的膜分离过程课分为以下几种:微滤(Microfiltration,MF),超滤(Ultrafiltration,UF),纳滤(Nanofilatration,NF),反渗透(Reverseosmosis,RO),电渗析(Electrodialysis,ED)等。 1.1微滤 1.1.1微滤原理 微滤又称精过滤,其基本原理属于筛网状过滤,在静压差的作用下,利用膜的“筛分”作用,小于膜孔的粒子通过滤膜,大于膜孔的粒子则被截留到膜面上,

分离分析论文剖析

膜分离技术与分子蒸馏技术 摘要:分离分析技术在生产和生活中有着广泛的用途,选择合适的分离分析方法关乎着实验与生产的成败,根据物质的性质不同所采用的的分离技术也有所差别,本文主要对膜分离技术和分子蒸馏技术的原理特点及在医药方面的应用做了简单的介绍。 关键词:膜分离技术分子蒸馏技术原理特点应用 前言 膜分离技术是一项新兴的高效分离技术,已经被国际公认为20世纪末到21世纪中期最有发展前途的一项重大高新生产技术,成为世界各国研究的热点,目前已被广泛应用医药、食品、化工、环保等各个领域;分子蒸馏技术是一种特殊的液液分离技术,它产生于20世纪20年代,是伴随着人们对真空状态下气体运动理论的深入研究以及真空蒸馏技术的不断发展而逐渐兴起的一种新的分离技术。目前,分子蒸馏技术已成为分离技术中的一个重要分支。 1 膜分离技术 1.1膜分离技术的原理及特点 膜分离是利用具有一定选择透过特性的过虑介质,以外界能量或化学位差为推动力,对多组分混合物进行物理的分离、纯化和富集的过程。膜分离法有许多的种类,虽然各种膜分离过程具有不同的原理和特征,即使用的膜不同,推动力、截流组分不同,适用的对象和要求也不同,但其共同点为过程简单、经济、节能、高效,无两次污染。大多数膜分离过程中物质不发生相变,分离系数较大,操作温度可为常温,可直接放大,可专一配膜等。相对与传统工艺,膜分离具有以下优点:艺简化,一次性投资少,方便维护、操作简便,运行费用低,节省资源;运行无相变,不破坏产品结构,分离效率高,提高产品的收率和质量;不需用溶剂或溶剂用量大大减少,因而废水处理也变得更加容易[1]。 1.2 膜分离技术的种类 目前,国内外在制药和医疗上常用的膜分离技术主要有微滤、超滤、纳滤、

分离技术论文

分离技术论文 目录 一.超临界萃取技术的简介 二.超临界萃取技术的原理 三.超临界萃取技术的特点 四.超临界萃取技术的技术应用 五.超临界萃取技术的装置 六.综述 一.超临界萃取技术的简介 超临界为超临界流体,是介于气液之间的一种既非气态又非液态的物态,这种物质只能在其温度和压力超过临界点时才能存在。超临界流体的密度较大,与液体相仿,而它的粘度又较接近于气体。因此超临界流体是一种十分理想的萃取剂。 超临界流体的溶剂强度取决于萃取的温度和压力。利用这种特性,只需改变萃取剂流体的压力和温度,就可以把样品中的不同组分按在流体中溶解度的大小,先后萃取出来,在低压下弱极性的物质先萃取,随着压力的增加,极性较大和大分子量的物质与基本性质,所以在程序升压下进行超临界萃取不同萃取组分,同时还可以起到分离的作用。 温度的变化体现在影响萃取剂的密度与溶质的蒸汽压两个因素,在低温区(仍在临界温度以上),温度升高降低流体密度,而溶质蒸汽压增加不多,因此,萃取剂的溶解能力时的升温可以使溶质从流体萃取剂中析出,温度进一步升高到高温区时,虽然萃取剂的密度进一步降低,但溶质蒸汽压增加,挥发度提高,萃取率不但不会减少反而有增大的趋势。 除压力与温度外,在超临界流体中加入少量其他溶剂也可改变它对溶质的溶解能力。其作用机理至今尚未完全清楚。通常加入量不超过10%,且以极性溶剂甲醇、异丙醇等居多。加入少量的极性溶剂,可以使超临界萃取技术的适用范围进一步扩大到极性较大化合物。二.超临界萃取技术的原理 所谓超临界流体,是指物体处于其临界温度和临界压力以上时的状态。这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而急剧增大。这些特性使得超临界流体成为一种好的萃取剂。而超临界流体萃取,就是利用超临界流体的这一强溶解能力特性,从动、植物中提取各种有效成份,再通过减压将其释放出来的过程。 超临界流体萃取法是一种物理分离和纯化方法,它是以CO2为萃取剂,在超临界状态下,加压后使其溶解度增大。将物质溶解出来,然后通过减压又将其释放出来。该过程中CO2循环使用。在压力为8--40MPa时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极化物。该技术除可替代传统溶剂分离法外,还可以解决生物大分子、热敏性和化学不稳定性物质的分离,因而在食品、医药、香料、化工等领域受到广泛重视。超临界流体的萃取流程 三.超临界萃取技术的特点 (1)、超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来; (2)、使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天

现代分离技术论文

分离技术的发展现状和展望 摘要: 简要阐述了分离技术的产生和发展概况,各主要常规和新型分离技术的发展现状、研究前沿及未来的发展方向,并讨论了分离技术将继续推动现代化工和相关工业的发展,并在高新技术领域的发展中大显身手。 关键词:分离技术;发展现状;展望 Development Status and prospect on separation technology Abstract:The history of produce and development on separation engineering is briefly introduced. The status and study advance of most traditional and new separation techniques and its developing direction in future is briefed. In the past, separation technology brought into important play in chemical engineering.It is discussed that it will also impel modern chemical engineering and relative industries in future. Moreover it will strut its stuff in high technology. Key words: separation technology; development; prospect 本文从分离技术的产生和发展概况入手,综述了精馏、吸附、干燥等常规分离技术和超临界流体分离、膜分离、耦合分离等新型分离技术的研究,并分析了各种技术在现代化工中的重要作用。

泡沫分离技术的应用(论文)

泡沫分离技术的应用及研究进展 摘要:泡沫分离技术是近些年得到重视的分离技术之一,介绍了泡沫分离技术的应用,介绍了此技术可分离细胞,可分离富集蛋白质体系,泡沫分离_Fenton氧化工艺处理表面活性剂废水,泡沫分离_Fenton 氧化处理炼油废水,两级泡沫分离废水中大豆蛋白的工艺,聚氨酯泡沫塑料分离富集石墨炉原子吸收光谱法测定痕量金,硅片线锯砂浆中硅粉与碳化硅粉的泡沫浮选分离回收,超滤与泡沫分离内耦合应用于表面活性物质浓缩分离的实验研究,重点研究了此技术分离皂苷的有效成分。 关键词:泡沫分离;富集蛋白质;泡沫浮选法;两级泡沫分离;聚氨酯泡沫塑料分离;超滤与泡沫分离 0 前言 泡沫分离技术可用于分离各种物质——小到离子而至粗大的矿石颗粒。泡沫浮选法精选矿石已有60年以上的历史。虽然1937年Langmuir 等已发现离子也有可能应用浮选来提取,可是直到1959年才由Sebba提出泡沫浮选也可能应用于分析技术中。但实际应用于分析分离还只是近十年左右才实现的。到目前为止已对Ag、As、Au、Be、Bi、Cd、Ce、Co、

Cr、Cu、F、Fe、Hg、In、Mn、Mo、Ni、Pb、Pd、Pm、Ra、Re、Sb、Th、U、V、W等元素以及一些有机物的泡沫分离作了广泛的研究。 1 泡沫分离技术的简介 泡沫分离技术是通过向溶液中鼓泡并形成泡沫层,将泡沫层与液相主体分离,由于表面活性物质聚集在泡沫层内,就可以达到浓缩表面活性物质或净化液相主体的目的被浓缩的物质可以是表面活性物质,也可以是能与表面活性物质相结合的任何物质吸附作用使气泡表面的溶质浓缩,清除在液体表面上形成的泡沫,即可除去被浓缩的物质。泡沫分离是吸附性气泡分离技术中的一种,由于气泡能够以极少量的液体提供极大的表面积,因此如果某种溶质能够选择性地吸附在气液界面,该溶质在泡沫中的浓度将大于其在主体液相中的浓度。这种技术最初用于矿物浮选、污水处理等领域。近年来,基于其在生物医药和食品工业领域的巨大应用潜力,泡沫分离技术在生物分离特别是分离稀溶液中蛋白质的过程中受到了越来越多的关注,因此泡沫分离技术是近些年得到重视的分离技术之一。泡沫分离是根据吸附的原理,向含表面活性物质的液体中鼓泡,使液体内的表面活性物质聚集在气液界面(气泡的表面)上,在液体主体上方形成泡沫层,将泡沫层和液相主体分开,就可以达到浓缩表面活性物质(在泡沫层)和净化液相主体的目的。被浓缩的物质可以是表面活性物质,也可以是能与表面活性物质相络合的物质,但它们必须具备和某一类型的表面活性物质能够络合或鳌合的能力。人们

分析化学中的分离技术课程论文。

离子液体及其在萃取中的应用 姓名: 许文洁专业: 物理化学学号: 030130248 摘要:环境问题日益成为人们关注的焦点。离子液体作为一种绿色溶剂可以较好的解决原有的挥发性有机溶剂造成的环境污染问题。本文阐述了离子液体在萃取分离中的应用进展。重点介绍了离子液体在萃取分离有机物、金属离子和生物分子及燃料脱硫方面的应用研究。 关键词:离子液体;绿色溶剂;金属离子;萃取;分离 Abstract:Environmental problem is increasingly become the focus of attention. As a green solvent, ionic liquid is a good solution to the original environment pollution problem caused by the volatile organic solvents. This paper expounds the application of ionic liquids in extraction and separation. Focus on the ionic liquids applied research in extraction and separation of organic matter, metal ions and biological molecules and fuel desulfurization aspects. Key Words:ionic liquid;green solvent;metal ions;extraction;separation 1.离子液体 离子液体是指呈液态的离子化合物,最简单常见的离子液体是处于熔融状态的氯化钠。由于一般的离子化合物都是固体,所以在以往的印象中离子液体必然是与高温相联系的。但高温状态下物质的活性大、易分解,很少可以作为反应、分离溶剂使用。室温离子液体是指在室温附近很大的温度范围内均为液体的离子化合物,它很好的解决了高温条件下的不稳定问题,因此室温离子液体具有很大的潜力作为溶剂使用。现在在研究当中称离子液体一般即指室温离子液体。离子液体体系中没有分子而均为离子,因此液体具有很高的导电性,常被用于作为电池的电解液[1,2]。由于离子液体是离子态的物质,挥发性很低,不易燃,对热稳定,这就保证了它对环境没有以往挥发性有机溶剂(VOC)所无法避免的污染。正是如此,它被称为是一种绿色溶剂,可以被用来替代原有的有机溶剂作为反应和分离介质来开发清洁工艺[2,3]。由于环境的压力在逐渐加大,室温离子液体的研究开发逐渐得到更多的重视。 2.离子液体的合成方法 离子液体的合成步骤一般包括阴离子和阳离子的合成以及阴阳离子的反应结合。以烷基咪唑类离子液体为例,合成时首先在咪唑的1,3 位上引入烷基基团变成氯化1-甲基-3-乙基咪唑,然后与目标阴离子进行阴离子交换反应形成所需产物。以往一般使用银作为与目标阴离子配对的阳离子,然后银盐和氯化1-甲基-3-乙基咪唑在水相或者在甲醇水体系中进行离子交换。这种方法的缺点在于它需要使用价格较高的银。现在的离子交换反应一般在非水相中进行,也就是采用将氯化1-乙基-3-甲基咪唑溶解在丙酮或乙腈中,然后将铵化阴离子再溶解到其中形成需要的离子液体化合物,这一步的关键是在于NH4Cl 在有机相中不溶,从而可以推动整个反应趋向平衡[5]。 3.离子液体的性质研究 室温离子液体研究的一个关键问题是如何降低体系的熔点,这直接关系到离子液体的使用温度范围。离子液体的熔点是通过选用不同的阴阳离子来调节的,为了削弱离子键,一般都使阳离子在结构上不对称,分子尺寸相对较大。对于烷基咪唑类和烷基吡啶类的离子液体,烷基侧链的分子数越多,则分子尺寸越大,熔点就越低,然而当分子数增加到一定时,不同的烷基链间的分子间作用力加强,有可能会抵消离子键的削弱,反而会导致熔点升高。J.D.Holbrey 等[4]对1,3-二烷基咪唑类离子液体中烷基的碳原子个数多少对熔点的影响作了研究。以[BF4]- 为阴离子的1-烷基-甲基咪唑,碳原子数目在5~9时熔点最低达到- 90。C,如果再增加碳原子的数目熔点反

泡沫分离技术综述论文

泡沫浮选分离技术--曹肖烁 摘要:综述了泡沫浮选技术的定义、分类以及原理,介绍了泡沫浮选分离技术中使用的试剂(捕收剂、起泡剂、活化剂、无机调整剂、有机调整剂)、浮选机械等因素对分离效果的影响,并介绍了泡沫浮选分离技术的应用,指出了泡沫浮选分离技术的发展前景。 一.泡沫浮选的定义与分类 泡沫浮选是以气泡分离介质来浓集表面活性物质的一种新型分离技术,主要特点是利用气泡的气-液界面,分离被水润湿性不同的物料。疏水的物料随气泡漂浮到水面上,形成含某种成分很高的泡沫层;而被水润湿的物料,沉于水中,因而可以把它们分开[1]。人们通常把凡是利用气体在溶液中鼓泡,以达到分离或浓缩目的的这类方法总称为泡沫浮选分离技术,简称泡沫浮选技术。 根据被分离物质的不同,它可以分为两类:一类是本身具有表面活性物质的分离以及各种天然或合成表面活性剂的分离,例如医药生物工程中蛋白质、酶、病毒的分离;另一类是本身为非表面活性剂,但可以通过配合或其它方法使其具有表面活性,这类体系的分离被广泛地用于工业污水中各种金属离子如铜、锌、铁、汞、银等的分离回收。 根据被分离物质的溶解性,泡沫分离也可以分为不溶物的浮选和溶解物的浮选两大类。矿物浮选在不溶物浮选中最重要,也是最成熟的。表面活性剂在固体颗粒的表面形成半胶束单分子吸附层,且呈亲水基向里憎水基向外的状态,从而降低固体表面的润湿性,表现出疏水性吸附至气泡界面的倾向,使浮选得以进行。离子浮选是溶解物浮选的一类。其过程和前述过程十分相似,所不同的是表面活性剂并非吸附在被浮选物的表面。气泡形成时气液界面有表面活性剂吸附层,被浮选的离子通过静电吸引被束缚在气泡的界面上而随气泡上升。分子浮选是溶解物浮选的另一类别,是将少量溶解的分子如点白纸、醇等有机物从水中分离的过程。被分离物被气泡气液界面表面活性剂半胶束单分子层增溶富集而随气泡上升,得以浮选[2]。

分离纯化技术及应用论文

分离纯化工艺的运用及发展综述 作者:王亚森 分离纯化工艺的运用及发展综述 摘要:随着药物研究、开发和生产中常用的分离纯化技术的原理、工艺、特点和应用,为了更好的利用分离纯化技术为社会创造更高的经济价值,本文综合概述了分离纯化技术的基本原理及其应用。 关键词:分离纯化技术,应用,发展,原理,应用。 引言:分离纯化过程就是通过物理、化学或生物等手段,或将这些方法结合,将某混合物系分离纯化成两个或多个组成彼此不同的产物的过程。通俗地讲,就是将某种或某类物质从复杂的混合物中分离出来,通过提纯技术使其以相对纯的形式存在。实际上分离纯化只是一个相对的概念,人们不可能将一种物质百分之百地分离纯化。例如电子行业使用的高纯硅,纯度为99.9999%,尽管已经很纯了,但是仍然含有0.0001%的杂质。被分离纯化的混合物可以是原料、反应产物、中间体、天然产物、生物下游产物或废物料等。如中药、生物活性物质、植物活性成分的分离纯化等,要将这些混合物分离,必须采用一定的手段。在工业中通过适当的技术手段与装备,耗费一定的能量来实现混合物的分离过程,研究实现这一分离纯化过程的科学技术称为分离纯化技术。通常,分离纯化过程贯穿在整个生产工艺过程中,是获得最终产品的重要手段,且分离纯化设备和分离费用在总费用中占有相当大的比重。所以,对于药物的研究和生产,分离纯化方法的选择和优化、新型分离设备的研制开发具有极重要的意义。分离纯化技术在工业、农业、医药、食品等生产中具有重要作用,与人们的日常生活息息相关。例如从矿石中冶炼各种金属,从海水中提取食盐和制造淡水,工业废水的处理,中药有效成分及保健成分的提取,从发酵液中分离提取各种抗生素、食用酒精、味精等,都离不开分离纯化技术。同时,由于采用了有效的分离技术,能够提纯和分离较纯的物质,分离技术也在不断地促进其他学科的发展。如由于各种色谱技术、超离心技术和电泳技术的发展和应用,使生物化学等生命科学得到了迅猛的发展。同时由于人类成功分离、破译了生物的遗传密码,促进了遗传工程的发展。另外,随着现代工业和科学技术的发展,产品的质量要求不断提高,对分离技术的要求也越来越高,从而也促进了分离纯化技术的不断提高。产品质量的提高,主要借助于分离纯化技术的进步和应用范围的扩大,这就促使分离纯化过程的效率和选择性都得到了明显的提高。例如应用现代分离技术可以把人和水稻等生物的遗传物质提取出来,并且能将基因准确地定位。…… 一,分离纯化技术的几种常用技术 液液萃取技术、浸取分离技术、超临界流体萃取分离技术、双水相萃取技术、制备色谱分离技术、大孔吸附树脂分离技术、分子印迹技术、离子交换分离技术、分子蒸馏技术、膜分离技术、喷雾干燥和真空冷冻干燥技术等内容。内容全面、简练,层次清晰,涵盖了化学合成药、生物药、植物药的分离纯化。 随着医学技术的发展对医用纯化水的要求也在逐步的提高。从以前的蒸馏工艺制纯化水到现阶段的反渗透脱盐程序的应用,我们可以看见在医学技术进步的同时,医用纯化水制取工业也在飞速的发展中。水是所有生活细胞不可缺少的成份,细胞的新陈代谢,必须有水方能进行,是细胞吸收、渗透、分泌和排泄等作用的介质。所谓纯水主要是指水中各种导电介质(即水中各种盐类阳、阴离子)和水中所含溶解气体及挥发物质等非导电介质的含量的大小,是相对而言的。医用纯水设备采用膜分离技术作为一种新型的流体分离单元操作技术,从上世纪五十年代末六十年代初发展以来,已经取得了令人瞩目的巨大发展,目前膜分离技术已经很成熟、可靠,并广泛应用于食品饮料、医药、环保及市政等行业中,尤其在医用纯

新型化工分离技术论文

化学分离技术 化学与环境工程学院14应化三班扈文甲学号:140703021311 摘要:描述了新型分离技术——超临界流体萃取和膜分离技术的最新研究进展。介绍了超临界流体萃取技术的工作原理、技术特点、工艺流程及其在某些领域中的应用。介绍膜分离技术的分离机理、特点,国内外膜分离技术的研究进展及其在各个领域的应用现状。另外还介绍了膜蒸馏技术最新研究进展。 关键字:超临界流体萃取;膜分离技术;分离技术 1 超临界流体萃取技术 1.1 技术原理 超临界流体的密度和溶剂化能力接近液体,粘度和扩散系数接近气体,在临界点附近流体的物理化学性质随温度和压力的变化极其敏感,超临界流体萃取技术就是利用上述超临界流体的特殊性质, 将其在萃取塔的高压下与待分离的固体或液体混合物接触, 调节系统的操作温度和压力, 萃取出所需组分; 进入分离塔后, 通过等压升温、等温降压或吸附等方法, 降低超临界流体的密度, 使该组分在超临界流体中的溶解度减小而从中分离出来。 1.2 技术特点[1] ( 1) 萃取分离效率高; ( 2) 可在较低温度下进行, 适用于分离热敏性物料; ( 3) 与传统的分离方法相比, 能耗低; ( 4) 易回收溶剂和溶质; ( 5) 溶剂无毒, 使用于食品加工和医药工业。 1.3 技术工艺流程 超临界流体萃取工艺一般是由超临界流体萃取和分离两部分组成,由于萃取都是在萃取槽中进行的,所以萃取步骤大致都相同,而分离的方法主要包括:(1)依靠压力变化的萃取分离法(等温变压法或绝热法)。在一定温度下,使超临界流体和溶质减压,经膨胀后分离,溶质由分离器下部取出,气体经压缩机返回萃取器循环使用。(2)依靠温度变化的萃取分离法(等压变温法) 经加热、升温使气体和溶质分离,从分离器下部取出萃取物,气体经冷却、压缩后返回萃取器循环使用。(3)用吸附剂进行的萃取分离法(恒温恒压法或吸附法) ,在分离器中经萃取出的溶质被吸附剂吸附,气体经压缩后返回萃取器循环使用[2,3]。 1.4 超临界流体萃取技术的应用 超临界流体萃取工艺可以不在高温下操作,因此特别适合于热稳定性较差的物质的分离,同时产品中无其他物质残留。超临界流体萃取是一项具有特殊优势的分离技术并特别适

华东理工大学分离分析化学论文

亲和层析法的简介 柴先志10100437 (华东理工大学上海 201424) 摘要:亲和层析具有高选择性、高活性回收率和高纯度等特点,已成为纯化蛋白质等生物大分子最有效的技术之一。本文综述了亲和层析的类型、实验研究以及亲和层析技术的进展和应用。 关键字:亲和层析种类实验研究应用进展 The brief introduction of affinity chromatography Chain Xianzhi 10100437 (East China University of Science and Technology,Shanghai 201424) Abstract: Affinity chromatography is one of the most efficient techniques in biological macromolecular separation and purification which has the advantages of high specificity, high recovery efficiency, high purity and single-step operation. The developments and applications of affinity chromatography, the types and the experiment researches are introduced in this review. Key: Affinity chromatography; Types; Experiment researches; Applications; Development 亲和层析是利用分子与其配体间特殊的、可逆性的亲和结合作用而进行分离的—种层析技术。可以选用生物化学、免疫化学或其他结构上吻合等亲和作用而设计的各种层析分离方法。如用寡脱氧胸苷酸一纤维素分离纯化信使核糖核酸;用DNA一纤维素分离依赖DNA的DNA聚合酶;用琼脂糖一抗体制剂分离抗原;用金属螯合柱分离带有成串组氨酸标签的重组蛋白质等。亲和层析技术的最大优点在于利用它从粗提液中经过一次简单的处理便可得到所需的高纯度的活性物

现代分离技术论文

《现代分离技术》课程论文 膜分离技术的研究与应用 摘要:近几年来,随着科技的发展,膜分离技术以其装置简单,操作方便的优点在各行各业得到广泛应用。本文主要阐述了膜分离技术的原理、特点、发展历史及其在工业生产、食品工业、制药行业和海水淡化等领域的应用,并简述了膜分离技术的未来发展方向。 关键词:膜分离技术;膜分离技术的应用;微滤;纳滤;超滤;反渗透 1 膜分离技术的国内外研究历史[1] 膜分离现象早在250多年以前就被发现, 但是膜分离技术的工业应用是在20世纪60年代以后。其大致的发展史为: 20世纪30年代微孔过滤;40年代渗析;50年代电渗析;60年代反渗透;70年代超滤; 80 年代气体分离;90年代渗透汽化。数十年来, 膜分离技术发展迅速, 特别90年代以后,随着膜 (TFC 膜) 的研制成功, 膜分离技术的应用领域已经渗透到人们生活和生产的各个方面。膜分离技术作为一种新兴的高效分离技术, 已经被广泛应用于化工、环保、电子、轻工、纺织、石油、食品、医药、生物工程、能源工程等。 我国膜技术始于上世纪 50 年代末,1966年聚乙烯异相离子交换膜在上海化工厂正式投产。1967年用膜技术进行海水淡化工作。我国在70年代对其它膜技术相继进行研究开发( 电渗析、反渗透、超滤、微滤膜) ,80年代进入应用推广阶段。中国科学院大连化物所在 1985年首次研制成功中空纤维氮气氢气分离器,现已投入批量生产。我国在1984年进行渗透汽化研究,1998年我国在燕山化工建立第一个千吨级苯脱水示范工程。中国科技部把渗透汽化透水膜、低压复合膜、无机陶瓷膜及天然气脱湿膜等列入”九五”重点科技攻关计划,分别由清华大学、南京化工大学及中科院大连化物所、杭州水处理中心承担,进行重点开发公关。1998年10月国家发改委在大连投资兴建国家膜工程中心,技术上以中国科学院大连化物所为依托。 经过20年的努力, 中国在膜分离技术的研究开发方面已涌现出一批具有实用价值, 接近或达到国际先进水平的成果。但从总体上讲, 中国的膜分离技术和世界先进水平相比还有不小的差距, 需进一步研究开发。 2 膜分离技术概述 2.1膜分离技术原理 膜分离技术是一种使用半透膜的分离方法,在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术。

新分离技术论文

湘潭大学 《新分离技术》课程论文题目: 学院: 专业: 学号: 姓名: 完成日期:

膜分离技术在水处理方面的应用 摘要:介绍了常见的膜分离技术及其特点,阐述了反渗透、超滤、纳滤、微滤、电渗析这些常规膜分离技术的研究和在水处理技术中的应用情况。 关键词:膜、膜分离技术、水处理 1.膜分离技术的概述 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。膜分离技术以高效、节能、不产生二次污染等优点已在水处理领域取得了显著的工程业绩。膜技术在水处理中应用是利用水溶液(原水) 中的水分子具有透过分离膜的能力,而溶质或其他杂质不能透过分离膜,在外力作用下对水溶液(原水) 进行分离,从而达到提高水质的目的。 液体膜技术主要包括微滤、超滤、反渗透和电渗析等。反渗透(RO)是液体/液体分离过程中最可能使用的膜分离过程;纳滤只截留超过一价的负电荷离子,如硫酸盐、磷酸盐,而能通过单价的负离子;一般认为超滤(UF)的分离机理为筛孔分离过程,在静压差(0.1~0.5MPa)为推动力的作用下,原料液中溶剂及小溶质粒子由高压的料液侧透过膜到低压侧,而大粒子组分被膜所阻挡;微滤(MF)过程理论上只有悬浮固体被截留,而其它甚至蛋白质都可以自由通过膜。四种膜分离过程特点如下图及表:

在我国,1965年开始反渗透的研究,1975年开始超滤研究,至今已走过40多年历程,与国际基本同步,成为仅次于欧美、日本的膜技术大国,在反渗透、超滤、微滤、纳滤、电渗析、气体分离膜、无机膜、渗透气化等领域都进行了成功的研究并已形成市场化工业体系,生产企业300多家,年工业总产值近30亿元。现由于源水日益匮乏、污染,膜技术逐步进入给水处理中。20世纪80年代中期,美国杜邦集团,法国利昂水务,德利满集团把微滤膜、超滤膜(UF ) 、纳滤膜(NF) 、高超滤膜(HUF) 、低超滤膜(LUF) 等技术应用到自来水厂处理饮用水;美国1987 年在Key Stone colo 建成第一个微滤(MF)水厂。我国宁波、东莞市局部供水系统也使用了膜技术。但从利用膜技术建第一个净化分厂方面来讲,我国的研究、生产与应用已经落后于先进国家。现在膜技术更加成熟,在自来水制造工艺上使用更加广泛,规模更大。 2.膜分离技术在水处理方面的应用 2.1微滤的应用 微滤分离为动态膜过滤分离过程,其原理为筛分,与超滤相同, 是目前应用范围最广最为成熟的膜分离技术,常与超滤连用,可在常温、低压下运行,无相变,具有操作简单、能耗低、通量大等特点。 Broom 等利用重金属沉淀物(经石灰或硫化物处理)形成的动态膜,采用微滤法去除混合电镀废液中的重金属。史红文等选择0.5m μ孔径的无机膜,采用沉淀一微滤法去除电镀废液中的+2Ni ,能保障出水中+ 2Ni ≤1.0mg/l 。 连续膜过滤技术在污水处理方面应用越来越广,其核心是高抗污染膜以及与之相配合的膜清洗技术,可以实现对膜的不停机在线清洗,从而做到对料液不间断连续处理,保证生产

分离分析技术课程论文:气相色谱-质谱联用技术的原理及应用资料

《分离分析技术》课程论文 气相色谱-质谱联用技术的原理及应用 学院化学化工学院 专业化学 年级201级化学班 姓名 指导教师甘甜职称副教授 成绩及评语 2015 年12 月24 日

目录 摘要 (1) 关键词 (1) 引言 (1) 1.气相色谱–质谱联用技术的原理 (1) 1.1气相色谱原理 (1) 1.2质谱原理 (2) 2.气相色谱–质谱联用技术的常用术语 (2) 3.气相色谱–质谱联用技术的优点 (3) 4.气相色谱–质谱联用技术的应用 (3) 4.1 GC-MS在医药方面的应用 (3) 4.2 GC-MS在食品方面的应用 (4) 4.3GC-MS在环境监测中的应用 (4) 4.4GC-MS在有机合成中的应用 (4) 4.5 GC-MS在刑事鉴识中的应用 (5) 参考文献 (5) Abstract (6) Keywords (6)

气相色谱-质谱联用技术的原理及应用 姓名:学号:20135051 摘要:本文首先对气相色谱-质谱联用技术的原理、常用术语进行综述,然后介绍了它的优点,最后总结了气相色谱-质谱联用技术的应用。 关键词:气相色谱-质谱联用技术;原理;常用术语;应用 引言 气相色谱-质谱联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的技术。GC-MS利用了色谱的高分离能力和质谱的高鉴别特性,可对复杂的混合样品进行分离、定性、定量分析的一次完成,是一种完美的现代分析方法。GC-MS是联用技术中最完善、应用最广泛的技术,在分析检测和科研的许多领域起着重要作用。 1.气相色谱–质谱联用技术的原理 气相色谱是一种公认的快速、高效的分离技术。在定性方面,由于它是利用保留时间作为鉴定手段而受到很大限制。质谱法与之相反,虽不适用于混合物的分析,但却是一种高效的定性分析技术,可以方便地给出纯化合物的分子结构信息。气相色谱–质谱联用技术不仅能充分发挥其各自的优点,而且可以弥补相互的不足[1]。气相色谱–质谱联用技术利用气相色谱作为质谱的进样系统,使复杂的化学组分得到分离;利用质谱仪作为检测器进行定性和定量分析。 1.1 气相色谱原理 气相色谱法是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用,是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气–固色谱(GSC)和气–液色谱(GLC)。 气相色谱(GC)是以气体为流动相的色谱方法,当多组分的混合物进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分在色谱柱中彼此分

新分离技术论文

液膜分离技术及其在金属离子分离富集中的应用研究进展 摘要:介绍了液膜的基本概念、类和分离分机理。与传统分离提纯技术相比,液膜分离技术具有简高便、效且成本低的特点。综述了液膜分离技术在金属离子分离和富集中的应用进展,并指出其发展前景。 关键词:液膜;分离;富集;金属离子 液膜分离是6年代中期诞生的一种新型的膜分离技术。它具有膜分离的一般特点,主要是依据膜对不同物质具有选择性渗透的性质来进行组分的分离。根据成膜材料即水膜和油膜的不同,将上述多重乳液分为OW//O型和W//型。支撑液膜是利OW用界面张力和毛细管力作用,将膜相附着在多孔支撑体的微孔中制成。静电式准液膜是8年代中期发O展了大量的研究。该技术在湿法冶金、金属离子回收、废水处理、生物制品分离与生物医药分离、化工分离等方面已显示出广泛的应用前景。目前液膜技展起来的新型液膜技术。该技术将静电相分散技术与液膜原理相结合,实现了萃取和反萃取在同一反应槽内的耦合,具备液膜过程所特有的非平衡传质特性术处理农药厂废水已实现工业化.在含锌废水处理中已进行了工业试验,液膜技术分离宇宙飞船中C:O也已成功得到应用,液膜分离技术正在得到迅速的发展。2液膜分离的分离机理乳状液膜根据膜相中是否含有载体可分为非流动载体液膜和流动载体液膜[3]。其促进传递机理如图1所示。2非流动载体的液膜传质机理.1当液膜中不含流动载体时,其分离的选择性主要取决于溶质在液膜中的溶解度。溶解度相差大.才能产生选择性,即混合物中的一种溶质的渗透速度液膜分离技术介绍液膜通常由膜溶剂、面活性剂、动载体和膜表流增强添加剂组成[2]。膜溶剂是液膜的主体.它对液膜体系的性能有一定的影响,一般选用煤油作膜溶剂。选择的依据是液膜的稳定性和对溶质的溶解性。表面活性剂是液膜的主要成分之一.它不仅对液膜的稳定性起决定作用,而且对组分通过液膜的传质速率和破乳、油相回用等都有显著影响。流动载体的作用是它能够快速、高效、选择性地传输指定的物质。膜增强添加剂用于进一步提高膜的稳定性。按构型和操作方式的不同,液膜分为乳状液膜、收稿日期:051—820—22基金项目:国家自然科学基金项目(07042261)要高。渗透速度是扩散系数和分配系数的乘积,由于扩散系数很接近(在一定的膜溶剂中)所以分配系,数的差别就成为设计非流动载体液膜选择性的关键。分配系数乃是溶质在膜相和料液相中的溶解度作者简介:沈江南(96)男,17一,浙江上虞人,博士,,讲师主要从事膜分离技术和资源利用方面的研究。维普资讯https://www.360docs.net/doc/573921152.html, 第1期沈江南,:等液膜分离技术及其在金属离子分离富集中的应用研究进展液29行化学仿生,就在于含流动载体的液膜在选择性、渗透性和定向性等三个方面类似于生物细胞膜的功能。因而液膜分离能使浓缩和分离两步合二为一同时进行,是分离科学中的一个重要突破。这试剂()RA+R■P-3液膜分离技术在金属回收中的应用3液膜分离技术分离回收稀土.1在我国蕴藏着丰富的低品位稀土矿,与其他稀土矿床相比,具有规模大、中重稀土配分高,易采选、提取工艺简单、回收率高等优点,有较高的经济价值。在低品位稀土矿山,目前主要采用电解质溶液浸试剂(R)出处理矿石,近也有用电解质溶液原地浸出提取最稀土元素。无论堆浸还是原地浸出,对浸出液处理都是采用草酸或碳铵沉淀稀土。是,但目前我国在稀土R+AR1A+R的深加工、新材料的开发和应用等方面,和国外先进()b国家相比还有一定的差距。为此.为了生产出纯度高、成本低的单一稀土.必须寻求高效低成本的分离技术。液膜提取稀土离子的特点是流程短、速度快、富集比大、试剂少、成本低.具有广阔的工业应用前景。工藤彻一【首先报道了用液膜法分离铕4】(uE)和镨(r,从此,用液膜法浓缩分离稀土的P)图1液膜分离机理()a非流动载体的液膜()b含流动载体的液膜比值,

生化分离论述论文

生化分离论述 1.生物工程下游技术:一般泛指从工程菌或工程细胞的大规模培养一直到产品的分离纯化、质量检测所需要的一系列单元操作技术, 对于由生物界自然产生的或由微生物菌体发酵的、动植物细胞组织培养的、酶反应等各种生物工业生产过程获得的生物原料,经提取分离、加工并精制目的成分, 最终使其成为产品的技术,通常称为下游技术 ( Downstream Processing),也称为下游工程过程 2.膜分离是在20世纪初出现,20世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。液膜模拟生物膜的结构,通常由膜溶剂、表面活性剂和流动载体组成。它利用选择透过性原理,以膜两侧的溶质化学浓度差为传质动力,使料液中待分离溶质在膜内相富集浓缩,分离待分离物质。 3. 反胶团萃取的研究始于20世纪70年代,是一种发展中的生物分离技术。反胶团萃取的本质仍是液-液有机溶剂萃取,但与一般有机溶剂萃取所不同的是,反胶团萃取利用表面活性剂在有机相中形成的反胶团,从而在有机相内形成分散的亲水微环境,使生物分子在有机相(萃取相)内存在于反胶团的亲水微环境中,消除了生物分子,特别是蛋白质类生物活性物质难于溶解在有机相中或在有机相中发生不可逆变性的现象。 4. 色谱分离技术又称层析分离技术或色层分离技术,是一种分离复杂混合物中各个组分的有效方法。传统色谱分离技术采用固定的色谱塔进行,先进入一定量物料,然后采用洗脱剂不断洗脱,在同一出口在不同时间段就可接到不同的产品组分,此过程费时费力。经过分析并加以改进,把固定相的树脂做成可以连续流动的系统,利用物质与固定相的相对运动速度不同实现分离。 5.离子交换树脂是带有官能团(有交换离子的活性基团)、具有网状结构、不溶性的高分子化合物。通常是球形颗粒物。离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。 6.清洁生产是指将综合预防的环境保护策略持续应用于生产过程和产品中,以期减少对人类和环境的风险。清洁生产从本质上来说,就是对生产过程与产品采取整体预防的环境策略,减少或者消除它们对人类及环境的可能危害,同时充分满足人类需要,使社会经济效益最大化的一种生产模式。清洁生产是一种新的创造性的思想,该思想将整体预防的环境战略持续应用于生产过程、产品和服务中,以增加生态效率和减少人类及环境的风险。

现代分离技术与方法论文

浅谈膜分离技术的应用与前景 目录 引言 (一)、膜分离技术概述 1—1、膜分离技术的原理及优势 1—2、膜分离技术的种类 1—3、膜材料及特点 (二)、膜分离技术的设备及应用 2—1、相关设备 1、陶瓷膜分离技术和设备 2、超滤膜分离技术和设备 3、不锈钢膜分离技术和设备 4、反渗透膜分离技术和设备 5、多功能集成膜设备 6、中空纤维膜分离技术和设备 2—2、相关应用 1、膜分离技术在食品工业中的应用 2、膜分离技术在水处理中的应用 3、膜分离技术在生物技术中的应用 4、在医药工业中的应用 (三)、膜分离技术的前景及个人建议 参考文献

浅谈膜分离技术的应用与前景 项目选题 (25分) 内容 (30) 格式 (15) 表达 (15) 文献 (15) 总分 (100分) 得分 阅卷人 摘要:膜分离技术是一种新型的分离技术,它是一种分离效率高、快速而且节能的21世纪的高新技术。膜分离技术被作为一种新型的分离技术应用于现代。按照其分离过程和特征的不同,膜分离技术可以分为几种,包括电渗析、反渗透、超滤、气体分离等等。然后,介绍了膜分离的设备、应用及其一些优势。最后,张望了一下膜分离技术的前景并且提出了一些我个人的建议。 关键词:膜分离,技术,应用,前景 Abstract:The membrane extraction technique is a new type extraction technique with high efficiency,high speed and saving energy in the 21st century.Membrane separation is applied as a new kind of separation technology .The separation mechanism and characteristics of different kinds of membrane technologies were introduced,including electrodialysis,reverse osmosis,ultrafiltration,gas separation, membrane reactor and so on.Further more,the equipment ,the application , and some advantage of it. Finally, application prospect of membrane separation technology was presented ,and my opinion advise. Keywords:membrane separation; technique; application;progress 引言:人们对膜进行科学研究是近几十年来的事。1950年朱达W.Juda试制出选择透过性能的离子交换膜,奠定了电渗析的实用化基础。1960年洛布和索里拉简(首次研制成世界上具有历史意义的非对称反渗透膜,这在膜分离技术发展中是一个重要的突破,使膜分离技术进入了大规模工业化应用的时代。其发展的历史大致为:20世纪30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化。[1]此外,以膜为基础的其它新型分离过程,以及膜分离与其它分离过程结合的集成过程也日益得到重视和发展。我国的膜分离技术的发展是从1958年对离子交换膜的研究开始的,起步比较晚,但经过数十年坚持不懈的努力,我国在膜分离技术的研究开发方面已涌现出一批具有实用价值,接近或达到国际先进水平的成果。但从总体上讲,中国的膜分离技术和世界先进水平相比还有不小的差距,还有待于进一步研究开发。

相关文档
最新文档