胶体化学总结

胶体化学总结
胶体化学总结

题型名词解释 10-15个填空题20-30个简答题6-8个计算题5-6个以下内容仅供参考

1.相:体系中物理化学性质完全相同的均匀部分

2.界面:相与相的交界面

3.表面:一相为气相的界面为表面

4.比表面:单位体积或重量的物质所具有表面积的总和

5.胶体化学:是研究胶体体系的科学,是物理化学的重要的分支,随着胶体化学的发展已成为一门独立学科

6.表面化学:研究发生表面或界面上的一切物理和化学现象的一门学科

7.胶体体系:分散相粒子半径在1-100nm的体系

特点:1)分散度:1~100nm 2)多分散体系 3)热力学不稳定性

8.制备胶体的一般条件:a分散相在介质中溶解度必须极小(必要条件) b稳定剂存在

9.胶体制备方法:1)分解法:机械分散法、电分解法、超声波法、胶溶法;

2)凝聚法:物理方法、化学方法(还原法、水解法、氧化法、复分解法)

10.凝聚法原理(填空)p9

11.溶胶的净化:溶胶中的粗粒子,可以通过过滤,沉降、离心或超滤的办法将其除去:过多的电解质,必须用渗析、

电渗析、超过虑或渗透和反渗透的办法除去

12.单分散溶胶:指在特定条件下制取的胶粒尺寸、形状和组成皆相同的溶胶

13.单分散溶胶的爆发式成核理论:欲制备单分散溶胶,必须控制溶质的过饱和程度,使之略高于成核浓度,于是在

短的时间内形成全部晶核,称为爆发式成核

14.扩散:由于分子热运动和布朗运动,有浓度梯度存在下,观察到胶粒从高浓度到低浓度的定向迁移现象

15.布朗运动:悬浮在液体或气体中的粒子处于连续的、不规则的运动之中

扩散是布朗运动的宏观表现,而布朗运动是扩散的微观形式

16.测定扩散系数D的常用方法:孔片法、自由交界法、光子相关谱法

17.丁道尔效应:以一束强烈的光线射入溶胶后,在入射光的垂直方向可以看到一道明亮的光带(是判断溶胶与分子

溶液最简便的方法)

本质:光本质是电磁波。当光波作用到介质中小于光波波长的粒子上时,粒子中的电子被迫振动,成为二次波源,向各个方向发射电磁波,这就是散射光散。也就是我们所观察到的散射光

18.Rayleigh散射定律:1)散射光强度I与入射光波长的4次方反比。

2)散射光强度I与单位体积中的质点数c成正比。

3)散射光强度I与粒子体积v的平方成正比。

4)粒子的折射率与周围介质的折射率相差越大,粒子的散射光越强(简答,做必要说明)19.与Beer定律区别:Rayleigh散射定律,对于粒子半径在47nm以下的溶胶,导出了散射光强度和入射光强度之间

的关系;Beer透过定律,描述透过光和入射光强度的关系

20.超显微镜原理:以普通显微镜为基础,采用特殊物镜(聚光器),光纤不直接进物镜,侧面照射胶粒,使粒子发生

散射,强的光信号纳米级粒子可见

特点:1)分辨率高 5~150nm 2)观察胶粒发出的散射光,不是胶粒本身

分类:狭缝式、心形聚光器

应用:1)可以测定球状胶粒的平均半径 2)间接推测胶粒的形状和不对称性

3)判断粒子分散均匀的程度 4)观察胶粒的布朗运动、电泳、沉降和凝聚等现象

21.胶体电动现象:因电而动(胶粒移动—电泳介质移动—电渗)

因动而电(介质移动—流动电位胶粒移动—沉降电位)

22.电泳:在外电场的作用下带电粒子在介质中定向迁移的现象

23.电渗析:在外加电场作用下,带电的介质通过多孔膜或毛细管作定向移动,这种现象称为电渗析

24.流动电势:含有离子的液体在外力的作用下,流经多孔塞或毛细管时会产生电势差。这种因带电介质流动而产生

的电势称为流动电势

25.沉降电势:在重力场的作用下,带电的分散相粒子,在分散介质中迅速沉降时,使底层与表面层的粒子浓度悬殊,

从而产生电势差,这就是沉降电势

26.质点表面电荷的来源:a电离 b离子吸附 c晶格取代 d非水介质中质点带电的原因

27.胶团结构胶核:组成胶粒核心部分的固态微粒胶粒:胶核与吸附层组成的胶粒

胶团:胶粒与扩散层的反离子组成了胶团溶胶:胶团分散于液体介质便成了溶胶

28.扩散双电层模型(两个电位:表面电位、流动电位)p57

表面电位(热力学电位):粒子表面到均匀液相总的电位差

流动电势(电动电势):滑动面处与溶液内部的电势差值

29.Stern模型 p58图3-24

三个电位 1)表面电位

2)Stern电位:Stern面与溶液内部的电位差(大小与特性吸附离子的电性与数量有关)

3)流动电势

30.电位计算 p61(电泳淌度记住球形粒子和棒形粒子的结果)

31.流体分类(具体图及特点牛顿流体、塑性流体、假塑性流体,只记这三个)p67 图3-33

牛顿流体1)直线,粘度不变 2)过原点,有力就产生流动

塑性流体1)曲线不过原点在纵轴有一截距 2)在低剪切速率为曲线 3)在中高剪切速率为直线

假塑性流体1)过原点,一触即动,无网状结构

2)曲线无直线段,横坐标增大,体系中不规则状态的粒子沿流动方向流动,变形

32.溶胶的稳定性表征:1)热力学上为不稳定体系 2)动力学上的稳定体系 3)聚集稳定性

研究胶体的稳定性,主要以聚集稳定性为主

33.DLVO原理:在胶团的双电层理论基础上,前苏联学者和荷兰学者提出了有关胶体稳定性的理论,简称DLVO理论。

认为:溶胶在一定条件下是稳定存在还是聚沉,取决于粒子间的相互吸引力和静电斥力。若斥力大于吸引力则溶胶稳定,反之则不稳定。

要点1)胶粒存在斥力(静电斥力、分子渗透力、离子渗透力)、引力(范德华力)

2)系统的总位能 E=Ea+Er,是x的函数,决定稳定性

3)电解质的加入,影响斥力位能,c变化改变溶胶的稳定性

4)溶剂化作用—聚结稳定性,水化膜斥力—聚沉的机械能力

5)布朗运动,克服重力场的动力学稳定性

34.胶粒间总相互作用能(图,并且配上具体分析)p77 图3-47

分析:1)距离较远时,离子场未重叠,引力起作用,总位能为负

2)距离变近,离子场重叠,斥力起作用,总位能为正(一定距离时,总位能最大,达峰值Emax,越过此峰值,Ef降)

3)距离再拉近,Eh激增,起主导作用,总位能为负

4)再接近,Er激增,说明不能无限接近(不能重合)

35.聚沉值:使一定量溶胶在一定时间内完成聚沉所需电解质的最小浓度,离子价数越少,其聚沉值越大

36.聚沉能力:是聚沉值的倒数,聚沉值越大的电解质,聚沉能力越小;反之聚沉值越小的电解质,其聚沉能力越强

37.敏化作用:当加入大分子物质量少时,憎液溶胶胶粒粘附于大分子上,大分子起一定的桥梁作用,把胶粒联系在

一起,使之更容易聚沉

38.金值概念:当憎液溶胶中加入足量大分子溶液后,大分子吸附在胶粒周围起保护溶胶作用。用“金值”作为大分

子保护金溶胶能力的量度,金值小,保护能力强

39.比表面:通常用来表示物质分散程度,有两种常用的表示方法:一种是单位质量的固体所具有的表面积,另一种

是单位体积固体具有的表面积

40.净吸力:相界面上的分子受到一个垂直于液体表面、指向液体内部的“合吸力”,常称为净吸力

41.表面自由能:相界面上的分子因受到液相内部和气相分子力的不均衡而使相界面上的分子有向液体内部运移趋势

和能量

42.表面能:外界所消耗的功储存于表面,成为表面分子所具有的一种额外的势能

43.表面张力:增加单位面积所消耗的功,也可以说是单位面积上的表面自由能

单位:N/m

方向:表面张力的方向与液面相切或平行

结论:分子间力引起净吸力,净吸力引起表面张力,表面张力永远和液面相切,而和净吸力垂直

44.测定液体表面张力的方法:1)毛细管上升法 2)环膜法 3)气泡最大压力法

45.Young-Laplace方程在任意曲面推导 p96

46.Kelvin公式推导 p98

47.润湿角:液滴在固体表面上形成液滴,在平衡液滴的气-液-固三相接触点,作气-液界面的切线,此切线与固-液

界面之间的夹角

48.粘附功Wa:在粘附过程中等温等压条件下,单位面积的液体表面与单位面积固体表面粘附时对外做的最大功

(p99 式4-33)

49.浸润热:恒温恒压下浸润单位面积固体体系表面自由焓的变化(降低或对外做的功)。

50.铺展系数:恒温恒压下,铺展单位面积时,体系表面自由焓的降低或对外做的功

51.铺展过程:1)液体在固体表面上置换气体展开过程---铺展

2)液-液铺展油在水上消失,水的表面形成油的表面和油-水界面

52.p105最上面的关于润湿角的判据

53.表面活性剂:一种在很低浓度即能大大降低溶剂(一般指水)的表面张力(液-液张力)改变体系的表面状态,从

而产生了润湿和反润湿,乳化和破乳,分散和凝聚,气泡和消泡,以及增溶等一系列作用的化学物质

分类 p111-p112表面活性剂分类

按能否电离及离子类型:(1)阴离子型:羧酸盐、硫酸酯盐、磺酸盐、磷酸酯盐

(2)阳离子型:伯胺盐、仲胺盐、叔胺盐、季胺盐

(3)两性离子型:氨基酸型、甜菜碱

(4)非离子型:聚乙二醇型、多元醇型

按溶解性:水溶性、油溶性

按分子量:高分子表面活性剂(相对分子质量大于10000)、中(1000--10000)、低(100—1000)

按用途:渗透剂、润湿剂、乳化剂、增溶剂、分散剂、絮凝剂、起泡剂

54.Krafft点:缓慢加热离子型的表面活性剂,随着温度的升高,溶解度逐渐升高,当达到某一温度后其溶解度突然

迅速增加,这个温度点就被称为Krafft点

Krafft点高,亲水性弱,亲油性强;Krafft点低,亲水性强,亲油性弱

55.浊点:缓慢加热非离子型表面活性剂的透明水溶液,到某一温度后溶液发生浑浊,表示表面活性剂开始析出。溶

液呈浑浊的最低温度叫做“浊点”

浊点高,亲水性强,亲油性弱;浊点低,亲水性弱,亲油性强

56.表面活性剂的亲油亲水平衡(HLB值):表面活性剂分子中亲水基团将分子拉向水相,亲油基团将分子拉向油相,

恒量表面活性剂分子亲水,亲油特性的参数为HLB值(1-40)

离子型表面活性剂的HLB值计算---基团贡献值

石蜡 HLB=0 油酸 HLB=1 油酸钾HLB=20 十二烷基硫酸酯钠盐HLB=40

聚氧乙烯型非离子表面活性剂HLB值 HLB=(亲水基分子量/(亲水基的分子量+亲油基的分子量))*20

=(亲水基的重量%)*20=E*20

混合表面活性剂的HLB值 HLB(ab)=HLBa*a%+HLBb*b%

57.胶束:表面活性剂是两亲分子,溶解在水中达一定浓度时,其非极性部分会自相结合,形成聚集体,使憎水基向

里,亲水基向外,这种多分子聚集体称为胶束

58.临界胶束浓度(CMC):胶束开始明显形成时溶液中活性剂的浓度。

59.影响CMC因素1)同系物中若亲水基相同,亲油基中碳氢链越长,则CMC越小

2)亲油基中的烷基相同时,非离子活性剂的CMC比离子型活性剂小得多

3)亲油基中烷基相同时无论是离子型还是非离子型,不同的亲水基对CMC影响小

4)分子中原子种类和个数皆相同的活性剂亲水基支化程度高者,其CMC也大

5)含氟活性剂的CMC比同类型同碳数的活性剂的CMC小得多

6)无机盐对活性剂的CMC影响显著

7)长链极性有机物对活性剂的CMC也有影响,链越长,对CMC的影响越大

8)混合表面活性剂对CMC的影响

60.吉布斯公式 p125 5-12

61.增溶作用:指难溶性和不溶性有机物在表面活性剂胶束水溶液中溶解度增大的现象

62.乳状液:是一种多分散相体系,两种互不相溶的液体,其中一种液体以极小的液滴形式均匀分散,另一种液体中

所构成的分散体系

分类:水包油型(O/W)、油包水型(W/O)、多重乳状液(O/W/O)、(W/O/W)

内相:乳状液中以小液滴形式存在的那一相(分散相)外相:相对于内相的另一相(连续相)

63.乳化作用:在一定条件下使互不相容的两种液体形成有一定稳定性的液液分散体系的作用

64.乳状液的制备过程

1)混合方式:机械搅拌、胶体磨、超声波乳化器、均化器

2)加入方式:转向乳化法、瞬间成皂法、自然乳化法、界面复合物生成法、轮流加液法

3)影响分散度因素:分散方法、分散时间、乳化剂浓度

65.乳状液类型的鉴别:1)稀释法 2)染色法 3)电导法 4)观测法 5)滤纸润湿法

66.影响乳状液类型因素

1)分散相相体积分散相体积小于26%只能形成O/W型,分散相相体积分数74%以上,只能形成W/O型

2)几何因素当乳化剂的亲水基和疏水基体积相差很大,大的一端亲和的液相将构成乳状液的外相,另一液相为

内相

3)液滴聚结速度亲水基占优势—水包油型亲油基占优势—油包水型

67.乳化剂的溶解度易溶于水的乳化剂易形成O/W型乳液,易溶于油的乳化剂易形成W/O型乳液

68.乳化剂的分类:1)合成表面活性剂 2)高分子聚合物乳化剂 3)天然乳化剂固体颗粒乳化剂

69.乳状液变型:变型也叫反相,是指O/W型(W/O型)乳状液变成W/O型(O/W型)乳状液的现象。

影响因素:1)乳化剂类型 2)相体积 3)温度 4)电解质

70.乳状液的破坏过程:1)分层 2)絮凝 3)聚结 4)相分离

方式:①化学法②顶替法③电破乳法④加热法⑤机械法

71.吸附作用:因为物质表面上的原子或分子力场的不饱和,有吸引其他分子的能力,是固体表面最重要的性质之一

吸附质:被吸附的物质。吸附质可以是气体或液体

吸附剂:能吸附别的物质的物质。吸附剂为固体且常为多孔性固体

72.物理吸附和化学吸附的关系

表7-1 和三句话(1.区别并不是绝对的,有时二者可相伴发生 2.在气体吸附中,因为吸附是放热的,所以无论是物理吸附还是化学吸附,吸附量均随温度的升高而降低 3.同一个吸附系统,在低温下是物理吸附,在高温下则为化学吸附,物理吸附为化学吸附创造条件)

73.吸附曲线

吸附等温线在一定温度下,改变气体的压力,测定平衡吸附量,压力与吸附量的关系曲线

吸附等压线在一定压力下,不同温度与吸附量的关系曲线

https://www.360docs.net/doc/574702485.html,ngmuir吸附等温式 p180 式7-14 P/V=… S比=Vm*Ao*Na/(22400*m)

75.Bet二常数方程式 p182 式7-20 V/Vm=…

笔记例题

1.p43 例如藤黄水

2.p44 例大气压

3.p126 例乙醇水溶液

4.水的表面张力72mN/m Hg的表面张力485mN/m 水和汞之间的界面张力378mN/m 求水和汞之间的粘附功Wa

润湿热Wi 铺展系数S(最好画图)

界面与胶体化学

系 专业 班 学 姓 ┉┉┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉

纳米材料的研究进展 摘要: 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,组件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。本文介绍了纳米材料和纳米技术的概念及其研究进展,并且着重介绍了纳米材料的应用及纳米材料的发展前景预测。 关键词:纳米材料纳米技术研究进展应用发展趋势。 引言: 新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的 战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。 指由纳米单元构成的任何类型的材料,如金属、陶瓷、聚合物、半导体、玻璃和复合材料等。这些纳米级的结构单元,如纳米粒子(0维)、碳纳米管(1维)和纳米层(2维)等又是由原子和分子组成的。通过改变纳米结构单元的大小,控制内部和表面的化学性质及它们的组合,就能设计材料的特性和功能。 1、纳米材料和纳米技术 1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点。诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等。 2、纳米材料的研究进展 纳米材料的研究最初源于十九世纪六十年代对胶体微粒的研究,二十世纪六十年代后,研究人员开始有意识得通过对金属纳米微粒的制备和研究来探索纳米体系的奥秘。1984年,德国萨尔布吕肯的格莱特(Gleiter)教授[3] 把粒径为6nm的金属铁粉原位加压制成世界上第一块纳米材料,开创纳米材料学之先河。1990年7月,在美国巴尔的摩召开了第一届国际纳 米科学技术学术会议(Nano-ST),标志着纳米材料学作为一个相对独立学科的诞生。 中科院沈阳金属所的卢柯小组[6]在纳米材料及相关亚稳材料领域取得了突出的成绩。他发展的利用非晶完全晶化制备致密纳米合金的方法已与惰性气体蒸发后原位加压法、高能球磨法成为当前制备金属纳米块材的三种主要方法之一。他们发现的纳米铜的室温超塑延展性,被评为2000年中国十大科技新

配位化学课程论文

配合物的化学键理论 摘要:化学键理论在配位化学中有着重要的运用,它现在主要有三大流派。本文就回顾化学键的发展历程,并对三大化学键理论做出仔细的阐述。 关键字:化学键价键理论分子轨道理论晶体场理论配位场理论 十八世纪后半叶,欧洲的化学家开始了定量的化学实验的研究。法国化学家普劳斯特通过测定部分化合物的重量组成而提出了定组成定律即一个化合物不管它是天然的还是人工合成的组成该化合物的各元素的重量百分比是固定不变的这一定律促使人们进一步研究化合物是怎样组成的和靠什么力结合在一起的。化合物的定组成结构和性质有什么关系。由此化学键理论产生和逐步发展起来。 1 化学键的发展历程 最早化学家假设原子和原子之间是用一个神秘的钩钩住的,这种设想至今仍留下痕迹,化学键的“键”字就有钩的意思。 1916年,德国科学家柯塞尔考察大量的事实后得出结论:任何元素的原子都要使最外层满足8 电子稳定结构。柯塞尔的理论能解释许多离子化合物的形成,但无法解释非离子型化合物。1923 年,美国化学家路易斯发展了柯塞尔的理论,提出共价键的电子理论:两种元素的原子可以相互共用一对或多对电子,以便达到稀有气体原子的电子结构,这样形成的化学健叫做共价健。 柯塞尔和路易斯的理论常叫原子价电子理论。它只能定性地描述分子的形成,化学家更需要对化学键做定量阐述。 1927 年,海特勒和伦敦用量子力学处理氢分子,用近似方法计算出氢分子体系的波函数和能量获得成功,这是用量子力学解决共价键问题的首例。1930 年,鲍林更提出原子成键的杂化理论(杂化轨道理论)。1932 年,洪德把单键、多键分成δ和∏键两类。δ健是指在沿着连接两个原子核的直线(对称轴)上电子云有最大重叠的共价键,这种键比较稳定。∏键是指沿电子云垂直于这条直线方向上结合而成的键,这种键比较活泼。这就使价键理论进一步系统化,使经典的化合价和化学键有机地结合在一起了。 由于上述的价键理论对共扼分子、氧气分子的顺磁性等事实不能有效解释,因此本世纪30 年代后又产生一种新的理论——分子轨道理论。 分子轨道理论在1932 年首先由美国化学家马利肯提出。他用的方法跟经典化学相距很远,一时不被化学界接受,后经密立根、洪德、休克尔、伦纳德等人努力,使分子轨道理论得到充实和完善。它把分子看作一个整体,原子化合成分子时,由原子轨道组合成分子轨道,

界面与胶体化学试卷A

系 专业 班 学号 姓 名 ┉┉ ┉┉ ┉┉┉┉ ┉ ┉密┉ ┉ ┉┉┉┉┉┉┉ ┉封┉┉ ┉┉ ┉┉┉┉┉┉ 线 ┉┉┉┉ ┉┉┉┉ ┉ ┉

乳化液的研究进展 摘要针对目前国内外乳化液在食品、化妆品、医药等各类生活用品的应用及发展论述。本文通过世界乳化液发展史,各类乳化液的作用延伸到现实生活中的应用,通过不同性质的物质经过实验加工合成各种各样对人们生产活动息息相关的乳化液。乳化液的应用主要体现在食品添加剂、化妆品的乳化理论与乳化技术上,都是通过人民生产生活对其的要求日益提高,乳化液相关工作人员不断改进乳化液的原料、生产合成工艺逐步完善乳化液的功能。得出了根据各种乳化液的HLB值不同、乳化液与分散相的亲和性、乳化液的配伍作用可以细分各类乳化液的相应及相对作用推广乳化液在各领域的使用。 关键字:乳化液,食品添加剂,化妆品,乳化液的HLB值 引言乳化液广泛应用于化工、食品、造纸、涂料、印染、纺织、环保、石油、医药、金属加工、石油产品、废水处理等各个领域。本文主要介绍乳化液的发展、制备、性质及应用,反映了乳化最新研究与应用成果,对乳化液的研究、开发和应用提供参考。 1.乳化液的乳化原理 乳化液作为一类食品添加剂,在食品工业中扮演着重要的角色,它是现代食品工业的重要组成部分,在食品工业中的需求量约占添加剂的50%[1]。基于其表面活性性质和与食品组分的相互作用,乳化液不仅在各种原料混合、融合等一系列加工过程中起乳化、分散、润滑和稳定等作用,而且还可以改进和提高食品的品质和稳定性。比如,它可以使食品舌感润滑、保持质感,还被用作蛋糕的起泡剂、豆腐的消泡剂等。在面包生产中,乳化液可以保护淀粉粒,防止老化,从而使面包食感得到改良,并在防氧化、抗菌和品质等方面得到改善。 乳化液是一种表面活性剂,既有亲水基团,又有亲油基团,两者分别处于两端,形成不对称的分子结构。可将两种不溶物质“吸附”在一起。乳化液是乳液的一种稳定剂,也是表面活性剂的一种。 乳化液可以分散在分散质的表面,形成薄膜或者是双电层,可以是分散相带有电荷,这样就可以阻止分散相的小液滴互相凝结,使形成的乳浊液比较稳定。例如,在农药的原药(固态)或原油(液态)中加入一定量的乳化液,再把它们溶解在有机溶剂里,混合均匀后可制成透明液体,叫乳油。常用的乳化液有肥皂、阿拉伯胶、烷基苯磺酸钠、硬脂酸钠盐、羧酸盐、硫酸盐等。 1.1液体物料中的乳化原理 在两种不相混合的液体中(如油和水),乳化液分子能吸附于液体界面上,并定向排列,亲水基团指向水相,疏水基团指向油相,通过乳化液的“架桥”作用,使水和油两相紧密地融 合在一起。 1.2 固体物料中的乳化原理乳化液与食品中的蛋白质、淀粉、脂类作用,改善食品结构。碳

专题讲解-界面现象-胶体化学

表面吉布斯自由能和表面张力 1、界面: 密切接触的两相之间的过渡区(约几个分子的厚度)称为界面(interface),通常有液-气、液-固、液-液、固-气、固-液等界面,如果其中一相为气体,这种界面称为表面(surface)。 2、界面现 象: 由于界面两侧的环境不同,因此表面层的分子与液体内的分子受力不同: 1.液体内部分子的吸引力是对称的,各个方向的引力彼此抵销,总的受力效果是合力为零; 2.处在表面层的分子受周围分子的引力是不均匀的,不对称的。 由于气相分子对表面层分子的引力小于液体内部分子对表面层分子的引力,所以液体表面层分子受到一个指向液体内部的拉力,力图把表面层分子拉入内部,因此液体表面有自动收缩的趋势;同时,由于界面上有不对称力场的存在,使表面层分子有自发与外来分子发生化学或物理结合的趋势,借以补偿力场的不对称性。由于有上述两种趋势的存在,在表面会发生许多现象,如毛细现象、润湿作用、液体过热、蒸气过饱和、吸附作用等,统界面现象。 3、比表面(Ao) 表示多相分散体系的分散程度,定义为:单位体积(也有用单位质量的)的物质所具有的表面积。用数学表达式,即为: =A/V A 高分散体系具有巨大的表面积。下表是把一立方厘米的立方体逐渐分割成小立方体时,比表面的增长情况。高度分散体系具有巨大表面积的物质系统,往往产生明显的界面效应,因此必须充分考虑界面效应对系统性质的影响。

4、表面功 在温度、压力和组成恒定时,可逆地使表面积增加dA所需要对体系做的功,称为表面功(ω’)。 -δω’=γdA (γ:表面吉布斯自由能,单位:J.m-2) 5、表面张力 观察界面现象,特别是气-液界面的一些现象,可以觉察到界面上处处存在着一种张力,称为界面张力(interface tension)或表面张力(surface tension)。它作用在表面的边界面上,垂直于边界面向着表面的中心并与表面相切,或者是作用在液体表面上任一条线两侧,垂直于该线沿着液面拉向两侧。如下面的例子所示: 计算公式: -δω'= γdA (1) 式中γ是比例常数,在数值上等于当T、p及组成恒定的条件下,增加单位表面积时所必须对体系作的非膨胀功。 我们从另一个角度来理解公式(1)。先请看下面的例子。 从上面的动画可知:肥皂膜将金属丝向上拉的力就等于向下的重力(W 1+W 2 ),即 为

配位化学总结

1 配位化学导论总结 1. 配位化学 1) 定义:金属或金属离子同其他分子或离子相互结合的化学。 2) 基础:无机化学 3) 重要性:与其他学科互相渗透的交叉性学科 4) 发展: ● 近代配位化学: “键理论”等理论无法全面说明形成机理与成键方式. ● 现代配位化学理论:建立:1893年,瑞士化学家维尔纳提出了现代的配位键、配位数和配位化合物结构的基本概念,并用立体化学观点成功地阐明了配合物的空间构型和异构现象。 2. 配合物的基本概念 1) 定义:由具有接受孤对电子或多个不定域电子的空位原子或离子(中心体)与可以给出孤对电子或多个不定域电子的一定数目的离子或分子(配体)按一定的组成和空间构型所形成的物种称为配位个体,含有配位个体的化合物成为配合物。 2) 组成: 内界、外界、中心体、配体、配位原子 3) 配体分类: 4) 中心原子的配位数: ● 定义:单齿配体:配位数等于内界配体的总数。多齿配体:各配体的配位原子数与配体个数乘积之和。 ● 影响中心原子的配位数因素: A 、按配 体所含配 位原子的 数目分两 种: B 、根据 键合电子 的特征分 为三种:

3. 配合物的分类 4. 配合物的命名 原则是先阴离子后阳离子,先简单后复杂。 一、简单配合物的命名: (1)先无机配体,后有机配体 cis - [PtCl2(Ph3P)2] 顺-二氯 二?(三苯基磷)合铂(II) (2) 先列出阴离子,后列出阳离子,中性分子(的名称) K[PtCl3NH3] 三氯?氨合铂(II)酸钾 (3) 同类配体(无机或有机类)按配位原子元素符号的英文字母顺序排列。 [Co(NH3)5H2O]Cl3 三氯化五氨?一水合钴(III) 中心离子 对配位数 的影响 配体对配 位数的影 响1、按中心原 子数目分为: 2、按配合物 所含配体种 类分为: 3、按配体的 齿数分类: 4、按配合物 地价键特点 分类:

当代无机化学研究前沿与进展研究

化学前沿 【论文摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。 当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述: 一、无机合成与制备化学研究进展 无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的 基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面: (一)极端条件合成 在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。 (二)软化学合成 与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温 和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”,正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究领域中 占有一席之地。 (三)缺陷与价态控制 缺陷与特定价态的控制是固体化学和固体物理重要的研究对象, 也是决定和优化材料 性能的主要因素。材料的许多性质如发光、导电、催化等都和缺陷与价态有关。晶体生长行为和材料的反应性与缺陷关系密切, 因此, 缺陷与价态在合成中的控制显然成为重要的科学题。缺陷与特定价态的生成和变化与材料最初生成条件有关, 因此,可通过控制材料生成条件来控制材料中的缺陷和元素的价态。 (四)计算机辅助合成 计算机辅助合成是在对反应机理有了了解的基础上进行的理论模拟过程。国际上一般为建立与完善合成反应与结构的原始数据库, 再在系统研究其合成反应与机理的基础上, 应用神经网络系统并结合基因算法、退火、mon te2carlo 优化计算等建立有关的合成反应数学模型与能量分布模型, 并进一步建立定向合成的专家决策系统。

配位化学基础

配位化学基础 配位化学就是在无机化学基础上发展起来得一门具有很强交叉性得学科,配位化学旧称络合物化学,其研究对象就是配合物得合成、结构、性质与应用。配位化学得研究范围,除最初得简单无机加与物外,已包括含有金属-碳键得有机金属配位化合物,含有金属-金属键得多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成得大环配位化合物,以及生物体内得金属酶等生物大分子配位化合物。 一、配合物得基本概念 1、配合物得定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子得一定数目得离子或分子(统称为配体)与具有接受孤对电子或多个不定域电子得空位得原子或离子(统称为中心原子),按一定得组成与空间构型所形成得化合物。结合以上规定,可以将定义简化为:由中心原子或离子与几个配体分子或离子以配位键相结合而形成得复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)得化合物称为配位化合物。 配体单元可以就是配阳离子,配阴离子与中性配分子,配位阳离子与阴离子统称配离子。配离子与与之平衡电荷得抗衡阳离子或阴离子结合形成配位化合物,而中性得配位单元即时配位化合物。但水分子做配体得水合离子也经常不瞧成配离子。 配位化合物一般分为内界与外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元得配位化合物则无外界。配合物得内界由中心与配体构成,中心又称为配位化合物得形成体,多为金属,也可以就是原子或离子,配体可以就是分子、阴离子、阳离子。 2、配位原子与配位数 配位原子:配体中给出孤对电子与中心直接形成配位键得原子 配位数:配位单元中与中心直接成键得配位原子得个数配位数一般为偶数,以4、6居多,奇数较少 配位数得多少与中心得电荷、半径及配体得电荷、半径有关: 一般来说,中心得电荷高、半径大有利于形成高配位数得配位单元,如氧化数为+1得中心易形成2配位,氧化数为+2得中心易形成4配位或6配位,氧化数为+3得易形成6配位。配体得半径大,负电荷高,易形成低配位得配位单元。 配位数得大小与温度、配体浓度等因素有关: 温度升高,由于热震动得原因,使配位数减少;配体浓度增大,利于形成高配位。

界面与胶体化学复习题及答案

习题1 1. 一定体积的水,当聚成一个大水球或分散成许多水滴时,同温度下,两种状 态相比,以下性质保持不变的有: (A)表面能 (B)表面张力 (C)比表面 (D)液面下的附加压力 2.在下图的毛细管内装入普通不润湿性液体,当将毛细管右端用冰块冷却时,管 内液体将: (A)向左移动 (B)向右移动 (C)不移动 (D)左右来回移动 3.在298 K下,将液体水分散成小液滴,其热力学能: (A) 增加 (B)降低 (C) 不变 (D)无法判定 4.在相同温度下,固体冰和液体水的表面张力哪个大? (A)冰的大 (B)水的大 (C)一样大 (D)无法比较 5.在临界温度时,纯液体的表面张力 (A) 大于零 (B)小于零 (C)等于零 (D)无法确定 6.在 298 K时,已知 A液的表面张力是 B液的一半,其密度是 B液的两倍。如 果A液在毛细管中上升1.0×10-2m,若用相同的毛细管来测 B液,设接触角相等, B液将会升高: (A) 2×10-2m (B) 1/2×10-2m (C) 1/4×10-2m (D) 4.0×10-2m 7.下列说法中不正确的是: (A)生成的新鲜液面都有表面张力 (B)平面液体没有附加压力 (C)弯曲液面的表面张力的方向指向曲率中心 (D)弯曲液面的附加压力指向曲率中心 8.微小晶体与普通晶体相比较,哪一种性质不正确? (A)微小晶体的饱和蒸气压大

(B)微小晶体的溶解度大 (C)微小晶体的熔点较低 (D)微小晶体的溶解度较小 9.在空间轨道上运行的宇宙飞船中,漂浮着一个足够大的水滴,当用一根内壁干净、外壁油污的玻璃毛细管接触水滴时,将会出现: (A)水并不进入毛细管 (B)水进入毛细管并达到管内一定高度 (C)水进入毛细管并达到管的另一端 (D)水进入毛细管并从另一端滴出 10.同外压恒温下,微小液滴的蒸气压比平面液体的蒸气压: (A) 大 (B) 一样 (C) 小 (D) 不定 11.用同一支滴管滴下水的滴数和滴相同体积苯的滴数哪个多? (A)水的多 (B)苯的多 (C)一样多 (D)随温度而改变 12. 25℃时,一稀的肥皂液的表面张力为0.0232 N·m-1,一个长短半轴分别为0.8 cm和0.3 cm的肥皂泡的附加压力为: (A) 5.8 Pa (B) 15.5 Pa (C) 18.4 Pa (D) 36.7 Pa 13.已知 293 K时,水-辛醇的界面张力为 0.009 N·m-1,水-汞的界面张力为 0.375 N·m-1,汞-辛醇的界面张力为 0.348 N·m-1,故可以断定: (A)辛醇不能在水-汞界面上铺展开 (B)辛醇可以在水-汞界面上铺展开 (C)辛醇可以溶在汞里面 (D)辛醇浮在水面上 14.在农药中通常都要加入一定量的表面活性物质,如烷基苯磺酸盐,其主要目的是: (A) 增加农药的杀虫药性 (B) 提高农药对植物表面的润湿能力 (C) 防止农药挥发 (D) 消除药液的泡沫 15.将半径相同的三根玻璃毛细管分别插入水、乙醇水溶液和NaCl水溶液中,三根毛细管中液面上升高度分别为h1,h2,h3,则: (A) h1>h2>h3 (B) h1>h3>h2 (C) h3>h1>h2 (D) h2>h1>h3

当代无机化学研究前沿与进展

当代无机化学研究前沿与进展 【摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。 【关键词】:无机化学;研究前沿;研究进展 当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述: 一、无机合成与制备化学研究进展 无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面: (一)极端条件合成 在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。 (二)软化学合成 与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”, 正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究领域中占有一席之地。

配位化学基础

配位化学基础 配位化学是在无机化学基础上发展起来的一门具有很强交叉性的学科,配位化学旧称络合物化学,其研究对象是配合物的合成、结构、性质和应用。配位化学的研究范围,除最初的简单无机加和物外,已包括含有金属-碳键的有机金属配位化合物,含有金属-金属键的多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成的大环配位化合物,以及生物体内的金属酶等生物大分子配位化合物。 一、配合物的基本概念 1.配合物的定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子的一定数目的离子或分子(统称为配体)和具有接受孤对电子或多个不定域电子的空位的原子或离子(统称为中心原子),按一定的组成和空间构型所形成的化合物。结合以上规定,可以将定义简化为:由中心原子或离子和几个配体分子或离子以配位键相结合而形成的复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)的化合物称为配位化合物。 配体单元可以是配阳离子,配阴离子和中性配分子,配位阳离子和阴离子统称配离子。配离子与与之平衡电荷的抗衡阳离子或阴离子结合形成配位化合物,而中性的配位单元即时配位化合物。但水分子做配体的水合离子也经常不看成配离子。 配位化合物一般分为内界和外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元的配位化合物则无外界。配合物的内界由中心和配体构成,中心又称为配位化合物的形成体,多为金属,也可以是原子或离子,配体可以是分子、阴离子、阳离子。 2.配位原子和配位数 配位原子:配体中给出孤对电子与中心直接形成配位键的原子 配位数:配位单元中与中心直接成键的配位原子的个数配位数一般为偶数,以4、6居多,奇数较少 配位数的多少和中心的电荷、半径及配体的电荷、半径有关: 一般来说,中心的电荷高、半径大有利于形成高配位数的配位单元,如氧化数为+1的中心易形成2配位,氧化数为+2的中心易形成4配位或6配位,氧化数为+3的易形成6配位。配体的半径大,负电荷高,易形成低配位的配位单元。 配位数的大小与温度、配体浓度等因素有关: 温度升高,由于热震动的原因,使配位数减少;配体浓度增大,利于形成高配位。 配位数的大小与中心原子价电子层结构有关: 价电子层空轨道越多一般配位数较高 配位数的大小与配体位阻和刚性有关: 配体的位阻一般都会使中心原子的配位数降低,位阻越大、离中心原子越近,配位数的降低程度也就越大。配体的刚性不利于配体在空间中的取向,长回事中心原子的配位数降低。 3.配体的类型

胶体化学论文

胶体化学与表面化学 14无机非 杜君 学号:1403031008 胶体化学是胶体体系的科学,随着胶体化学的迅速发展,它已成为一门独 立的学科。这是因为有一方面由于胶体现象很复杂,有它自己独特的规律性; 它在科学研究方面发挥着巨大的作用;不仅如此,它与无机化学、材料化学等 相关学科也有着密切关系,如利用微乳技术制取纳米颗粒、利用溶胶—凝胶法 制压电陶瓷等。 胶体体系的重要特点之一,是具有很大的表面积。任何表面,在通常情况 下实际上都是界面,如水面即液体与气体的界面、桌面即固体与气体的界面等,在任何两相界面上都可以发生复杂的物理或化学现象,总称为表面现象,也就 是界面现象。胶体化学中所说的界面现象,不仅包括物体表面上发生的物理化 学现象以及物体表面分子(或原子)和内部的有什么不同,而且还包括一定量 的物体经高度分散后(这时表面积将强烈增大)给体系的性质带来怎样的影响,例如粉尘为什么会爆炸、小液珠为什么能成球、汞的小液滴在洁净玻璃上成球 而水的小液滴铺展、活性炭为什么能脱色等等,这些问题都与界面现象有关。 界面现象涉及的范围很广,研究界面现象具有十分重要的意义。 表面化学就是研究表面现象的一门学科,从历史角度看,表面化学是胶体 化学的一个重要分支,也是其中最重要的一个部门,二者密切相关。胶体化学 与表面化学内容包括胶体的制备和性质、凝胶、界面现象和吸附、乳状液的基 本知识及其应用,如丁达尔现象、电泳及电渗、双电层结构和相应电位分布、 双电层理论、DLVO理论、表面张力产生原因及肥皂去污等原理。 胶体的制备与性质和表面现象是胶体化学最核心的内容。胶体的制备与 性质包括胶体的运动性质、光学性质、电学性质、流变性质、制备及净化方法 及胶团的结构和与其相关的双电层理论及模型等相关内容:由于胶粒对光的散 射作用产生了丁达尔现象;由于不同溶胶中胶粒的大小不同,使之对透过其中 的光的散射、反射作用不同,故使溶胶产生各种颜色;由于胶粒带电的性质使 之产生了电泳及电渗现象;由于它带电的性质又产生了双电层理论;又由于它 带电的性质引出了DLVO理论及对其聚沉性的研究。

界面与胶体化学复习题及答案

应化124班 1. 一定体积的水,当聚成一个大水球或分散成许多水滴时,同温度下,两种状 态相比,以下性质保持不变的有: (A)表面能 (B)表面张力 (C)比表面 (D)液面下的附加压力 2.在下图的毛细管内装入普通不润湿性液体,当将毛细管右端用冰块冷却时,管 内液体将: (A)向左移动 (B)向右移动 (C)不移动 (D)左右来回移动 3.在298 K下,将液体水分散成小液滴,其热力学能: (A) 增加 (B)降低 (C) 不变 (D)无法判定 4.在相同温度下,固体冰和液体水的表面张力哪个大? (A)冰的大 (B)水的大 (C)一样大 (D)无法比较 5.在临界温度时,纯液体的表面张力 (A) 大于零 (B)小于零 (C)等于零 (D)无法确定 6.在 298 K时,已知 A液的表面张力是 B液的一半,其密度是 B液的两倍。如 果A液在毛细管中上升1.0×10-2m,若用相同的毛细管来测 B液,设接触角相等, B液将会升高: (A) 2×10-2m (B) 1/2×10-2m (C) 1/4×10-2m (D) 4.0×10-2m 7.下列说法中不正确的是: (A)生成的新鲜液面都有表面张力 (B)平面液体没有附加压力 (C)弯曲液面的表面张力的方向指向曲率中心 (D)弯曲液面的附加压力指向曲率中心 8.微小晶体与普通晶体相比较,哪一种性质不正确?

(A)微小晶体的饱和蒸气压大 (B)微小晶体的溶解度大 (C)微小晶体的熔点较低 (D)微小晶体的溶解度较小 9.在空间轨道上运行的宇宙飞船中,漂浮着一个足够大的水滴,当用一根内壁干净、外壁油污的玻璃毛细管接触水滴时,将会出现: (A)水并不进入毛细管 (B)水进入毛细管并达到管内一定高度 (C)水进入毛细管并达到管的另一端 (D)水进入毛细管并从另一端滴出 以下说法中正确的是( C )。 (A) 溶胶在热力学和动力学上都是稳定系统; (B) 溶胶与真溶液一样是均相系统; (C) 能产生丁达尔效应的分散系统是溶胶; (D) 通过超显微镜能看到胶体粒子的形状和大小 二、判断题 1、溶胶是均相系统,在热力学上是稳定的。(√) 2、长时间渗析,有利于溶胶的净化与稳定。(×) 3、有无丁达尔(Tyndall)效应是溶胶和分子分散系统的主要区别之一。(√) 4、亲液溶胶的丁达尔(Tyndall)效应比憎液胶体强。(×) 5、在外加直流电场中,碘化银正溶胶向负电极移动,而其扩散层向正电极移动。(√) 6、新生成的Fe(OH)3沉淀中加入少量稀FeCl3溶液,会溶解,再加入一定量的硫酸盐溶 液则又会沉淀。(√) 7、丁达尔效应是溶胶粒子对入射光的折射作用引起的。(×) 8、胶束溶液是高度分散的均相的热力学稳定系统。(√) 9、胶体粒子的扩散过程和布朗运动本质上都是粒子的热运动而发生的宏观上的定向迁移现 象。(√) 10、在溶胶中加入电解质对电泳没有影响。(×) 二、填空题 1.界面吉布斯自由能和界面张力的相同点是 不同点是。 2.液态汞的表面张力 g= 0.4636 N·m-1+ 8.32×10-3N·m-1·K-1·T - 3.13×10-7N·m-1·K-2·T2 在 400 K时,汞的(?U/?A)T, V = 。 3.液滴越小,饱和蒸气压越 __________;而液体中的气泡越小,气泡内液体的饱和蒸气压越 __________。 4. 300 K时,水的表面张力g= 0.0728 N·m-1,密度r为 0.9965×103kg·m-3。

现代配位化学研究的领域及配位学的应用

现代配位化学的研究领域及配位化学的应用现代配位化学既有理论又有事实,它把最新的量子力学成就作为自己阐述配合物性质的理论基础, 也力图用热力学、动力学的知识去揭示配位反应的方向 和历程。 已经进入到了现代发展阶段的现代配位化学具有如下三个特点: ●从宏观到微观 现代配位化学进入到物质内部层次的研究阶段,也即进入了微观水平的研 究阶段。现在不只研究配位化合物的宏观性质,而且更重视物质微观结构的研 究即原子、分子内部结构特别是原子、分子中电子的行为和运动规律的研究, 从而建立了以现代化学键理论为基础的化学结构理论体系。 现代配位化学是既有翔实的实验资料又有坚实的理论基础的完全科学。 ●从定性描述向定量化方向发展 现代配位化学特别是结构配位化学已普遍应用线性代数、群论、矢量分析、拓扑学、数学物理等现代的数学理论和方法了,并且应用电子计算机进行科学 计算,对许多反映结构信息及物理化学性能的物理量进行数学处理。这种数学 计算又与高灵敏度、高精确度和多功能的定量实验测定方法相结合,使对配位 化合物性质和结构的研究达到了精确定量的水平。 ●既分化又综合,出现许多边缘学科 现代配位化学一方面是加速分化,另一方面却又是各分支学科之间的相互 综合、相互渗透,形成了许多新兴的边缘学科。 配位化学的地位 一、现代配位化学的研究领域

现代配位化学主要有七大活跃领域部分,分别为超分子化学、兀酸配休及小分子配体络合物、过渡金属有机络合物、金属原子簇络合物、络合催化、生物配位化学、富勒烯化学-老元素新发现(纳米材料)。 (一)超分子化学 超分子化学是研究两种以上的化学物种通过分子间力相互作用缔结而成为具有特定结构和功能的超分子体系的科学。简而言之,超分子化学是研究多个分子通过非共价键作用,而形成的功能体系的科学。 超分子化学是一门处于化学学科与物理、生命科学相互交叉的前沿学科。它的发展不仅与大环化学(冠醚、穴醚、环糊精、杯芳烃、富勒烯等)的发展密切相关,而且与分子自组装、分子器件和新颖有机材料的研究息息相关。从某种意义上讲,超分子化学将四大基础化学(有机化学、无机化学、分析化学和物理化学)有机地融合成一个整体。 1.分子识别 所谓分子识别是指主体(受体)对客体(底物)选择性结合并产生某种特定功能的过程,是分子组装及超分子功能的基础(锁与钥匙的关系)。

配位化学进展

配位化学进展 配位化学是在无机化学基础上发展起来的一门边沿学科。它所研究的主要对象为配位化合物(CoordinationCompounds,简称配合物)。早期的配位化学集中在研究以金属阳离子受体为中心(作为酸)和以含N、O、S、P等给体原子的配体(作为碱)而形成的所谓"Werner配合物"。第二次世界大战期间,无机化学家在围绕耕耘周期表中某些元素化合物的合成中得到发展,在工业上,美国实行原子核裂变曼哈顿(Manhattan)工程基础上所发展的铀和超铀元素溶液配合物的研究。以及在学科上,195l年Panson和Miler对二茂铁的合成打破了传统无机和有机化合物的界限。从而开始了无机化学的复兴。 当代的配位化学沿着广度、深度和应用三个方向发展。在深度上表现在有众多与配位化学有关的学者获得了诺贝尔奖,如Werner创建了配位化学,Ziegler和Natta的金属烯烃催化剂,Eigen的快速反应。Lipscomb的硼烷理论,Wnkinson 和Fischer发展的有机金属化学,Hoffmann的等瓣理论Taube研究配合物和固氮反应机理,Cram,Lehn和Pedersen 在超分子化学方面的贡献,Marcus的电子传递过程。在以他们为代表的开创性成就的基础上,配位化学在其合成、结构、性质和理论的研究方面取得了一系列进展。在广度上表现在自Werner创立配位化学以来,配位化学处于无机化学趼究

的主流,配位化合物还以其花样繁多的价键形式和空间结构在化学理论发展中。及其与其它学科的相互渗透中。而成为众多学科的交叉点。在应用方面,结合生产实践。配合物的传统应用继续得到发展。例如金属簇合物作为均相催化剂,在能源开发中C1化学和烯烃等小分子的活化,螯合物稳定性差异在湿法冶金和元素分析、分离中的应用等。随着高新技术的日益发展。具有特殊物理、化学和生物化学功能的所谓功能配合物在国际上得到蓬勃的发展。 自从Werner创建配位化学至今100年以来,以Lehn为代表的学者所倡导的超分子化学将成为今后配位化学发展的另一个主要领域。人们熟知的化学主要是研究以共价键相结合的分子的合成、结构、性质和变换规律。超分于化学可定义为分子间弱相互作用和分子组装的化学。分子间的相互作用形成各种化学、物理和生物中高选怿性的识别、反应、传递和调制过程。而这些过程就导致超分子的光电功能和分子器件的发展。 我国配位化学的研究在中华人民共和国成立前几乎属于空白。1949年后随着国家经济建设的发展,仅在个别重点高等院校及科研单位开展了这方面的教学和科研工作,60年代中期以前。主要工作集中在简单配合物的合成、性质、结构及其应用方面的研究。特别是在溶液配合物的平衡理论、混合和多核配合物的稳定性、取代动力学、过渡金属配位催化以

中级无机化学[第三章配位化学] 山东大学期末考试知识点复习

第三章配位化学 1.配合物 配合物:由提供孤对电子或多个不定域电子的一定数目的离子或分子(配体)和接受孤对电子或多个不定域电子的原子或离子(统称中心原子)按一定组成和空间构型所形成的化合物。其中,与中心原子直接相连的原子称为配位原子,与同一中心原子连接的配位原子数目称为配位数;由中心金属离子和配体构成的络合型体称为内界,通常用“[]”标出。 配合物的命名:配体名称在先,中心原子名称在后。阴离子名称在先,阳离子名称在后,两者间用“化”或“酸”相连。不同配体名称的顺序与化学式的书写顺序相同,相互间以圆点隔开,最后一种配体名称之后加“合”字。配体个数在配体名称前用中文数字表示。中心原子的氧化态在元素名称之后用括号内的罗马数字表示。 2.配合物的异构 立体异构:包括几何异构和旋光异构。配合物内界中两种或两种以上配体在空间的排布方式不同所产生的异构现象称为几何异构。若由配体在空间的排布方式不同所产生的异构体之间互为对映体,则这种异构现象称为旋光异构。 电离异构:配合物在溶液中电离时,由于内界和外界配体发生交换而生成不同配离子的异构现象称为电离异构。 键合异构:含有多种配位原子的单齿配体用不同的配位原子参与配位而产生的异构现象称为键合异构。 配位异构:在配阴离子与配阳离子形成的配合物盐中,配阴离子与配阳离子中配体与中心离子出现不同组合的现象称为配位异构。 3.配合物的常用制备方法 加成反应:路易斯酸碱之间直接反应,得到酸碱加合型配合物。加成后配位

数增大。 取代反应:用一种适当的配体(通常是位于光谱化学序列右边的配体)取代配合物中的某些配体(通常是位于光谱化学序列左边的配体)。取代后配位数通常不变。 氧化还原反应:伴随有中心金属氧化态变化的制备反应,在许多情况下同时伴随有配体的取代反应。 热解反应:在升高温度时,配合物中易挥发的配体失去,外界阴离子占据失去配体的配位位置,相当于固相取代反应。 4.配合物的化学键理论 (1)晶体场理论理论要点: (a)中心金属离子具有电子结构,配体视为无电子结构的阴离子或偶极子,二者之间存在的静电吸引作用产生配位键。 (b)中心金属离子的电子与配体电子之间存在排斥作用。由于配体在中心离子周围的分布具有方向性,配体的静电场作用使中心离子的d轨道发生能级分裂。分裂的方式与分裂的程度取决于配位场的类型及配体、中心离子的性质。 (c)中心离子的电子在配位场能级中的占据结果,使配合物获得一个晶体场稳定化能(CFSE)。 晶体场理论可以定性解释配合物的吸收光谱、稳定性、磁性、结构畸变等,但无法解释金属与配体间的轨道重叠作用,不能很好地解释光谱化学序列。 (2)配位场理论理论要点:配体的存在使中心金属离子与配体之间存在的化学键作用既包括静电作用也包括共价作用(既有σ成键作用也有π成键作用)。金属离子的d电子局限在金属原子核附近运动,不进入配体范围,但是配位场负电荷的影响使中心金属离子的d轨道能级分裂。在配位场中,分裂能既决定于静电作用,又决定于共价作用(其中首先包括σ成键作用,其次包括π成键作用)。

胶体与界面化学复习题库

一、凝胶 1.什么是凝胶?有何特征(两个不同)? 外界条件(如温度、外力、电解质或化学反应)的变化使体系由溶液或溶胶转变为一种特殊的半固体状态,即凝胶。(又称冻胶) 其一,凝胶与溶胶(或溶液)有很大的不同。溶胶或溶液中的胶体质点或大分子是独立的运动单位,可以自由行动,因而溶胶具有良好的流动性。凝胶则不然,分散相质点互相连接,在整个体系内形成结构,液体包在其中,随着凝胶的形成,体系不仅失去流动性,而且显示出固体的力学性质,如具有一定的弹性、强度、屈服值等。 其二,凝胶和真正的固体又不完全一样,它由固液两相组成,属于胶体分散体系,共结构强度往往有限,易于遭受变化。改变条件,如改变温度、介质成分或外加作用力等,往往能使结构破坏,发生不可逆变形,结果产生流动。由此可见,凝胶是分散体系的一种特殊形式,共性质介于固体和液体之间。 2.举例说明什么是弹性和非弹性凝胶? 由柔性的线性大分子物质,如洋菜吸附水蒸气先为单分子层吸附,然后转变为多分子层吸附,硫化橡胶在苯蒸气中的吸附则是从一开始即为多分子层吸附。这类凝胶的干胶在水中加热溶解后,在冷却过程中便胶凝成凝胶。如明胶、纤维素等,在水或水蒸气中都发生吸附。不同的吸附体系,其吸附等温线的形状不同,弹性凝胶的吸附与解析通常会形成较窄的滞后圈。 由刚性质点(如SiO2、TiO2,V2O5、Fe2O3等)溶胶所形成的凝胶属于非弹性凝胶,亦称刚性凝胶。大多数的无机凝胶,因质点本身和骨架具有刚性,活动性很小,故凝胶吸收或释出液体时自身体积变化很小,属于非膨胀型。通常此类凝胶具有多孔性结构,液体只要能润湿,均能被其吸收,即吸收作用无选择。这类凝胶脱水干燥后再置水中加热一般不形成原来的凝胶,更不能形成产生此凝胶的溶胶,因此这类凝胶也称为不可逆凝胶。 3.试述凝胶形成的基本条件? ①降低溶解度,使被分散的物质从溶液中以“胶体分散状态”析出。②析 出的质点即不沉降,也不能自由行动,而是构成骨架,在整个溶液中形 成连续的网状结构。 4.凝胶形成的方法有哪几种? 改变温度转换溶剂加电解质进行化学反应 5.凝胶的结构分为哪4种类型? A 球形质点相互联结,由质点联成的链排成三维的网架Ti02、Si02等凝胶。 B 棒状或片状质点搭成网架,如V205凝胶、白土凝胶等。 C 线型大分子构成的凝胶,在骨架中一部分分子链有序排列,构成微晶区,如明胶凝胶、棉花纤维等。 D 线型大分子因化学交联而形成凝胶,如硫化橡胶以及含有微量:二乙烯苯的聚苯乙烯都属于此种情形。

配位化学的创始人---维尔纳(AlfredWerner)

配位化学的创始人---维尔纳(Alfred.Werner) 上官亦卿 (西北大学化学系05级材料化学专业 西安 710069) 摘要:本文主要介绍配位化学之父——维尔纳发现配位理论的过程、所获得的成 就、与同时代科学家袁根生的争论以及简谈配位化学的发展。 关键词:维尔纳 配位化学理论 配位化学的发展 1913年诺贝尔奖金获得者,配位化学的奠基人维尔纳(1866—1919,瑞士)是第一个认识到金属离子可以通过不只一种“原子价”同其他分子或离子相结合以生成相当稳定的复杂物类,同时给出与配位化合物性质相符的结构概念的伟大科学家。 一、实践与挑战 配位化合物曾经是对无机化学家的一个挑战。在早期的化学中,他们似乎是不寻常的和反抗通常原子规律的。 通常元素都有固定的原子价,如Na +、O 2-、Cu +2/+3、P -3/+3/+5。然而,某些元素的化合物却难以用通常原子价图式去解释。例如Cr 的原子价是+3,为什么原子价都已经满足CrCl 分子和NH 分子,却依然能够相互作用形成CrCl ·6NH 分子?同样,PtCl 可以继续同NH 作用生成PtCl ·4NH ? 33332323对于CoCl 3·6H 2O 的有趣故事,人们知道的更早。1799年的塔萨厄尔(Tassaert)往CoCl 2溶液中加入氨水,先生成Co(OH)2沉淀,继续加入氨水则Co(OH)2溶解,放置一天后便析出一种橙色晶体,经过分析得知是CoCl 3·6NH 3,Co(OH)2在过量氨的存在下被氧化成3价。起初,人们把这种橙色晶体看成是稳定性较差的CoCl 3和6NH 3分子加合物;但事实却相反,当把它加热到150°C 时,却无法释放出氨;用稀硫酸溶解后,回流几个小时也不生成硫酸铵。这一特征引起了人们的注意[1]。 1847年前后,根特(F.A.Genth)进一步研究了三价钴盐与氨生成的几种化合物,并分析了他们的组成。结果表明:钴盐与氨的化合物不仅因氨分子的数量不同而有不同的颜色,而且钴氨盐中氯的行为也有所不同。 上述复杂的现象,显然不能用简单的原子价规律给予圆满说明,不少人在这方面常识,并未成功。 二、需要冲破旧理论的框子 原子价的概念需要扩充,但是当时的一些化学家却抱着僵死的观念不放。如

相关文档
最新文档