NS EQUATION方程推导

NS EQUATION方程推导
NS EQUATION方程推导

伯努利方程推导

根据流体运动方程P F dt V d ??+=ρ1 上式两端同时乘以速度矢量 ()V P V F V dt d ???+?=???? ??ρ 1 22 右端第二项展开—— () ()V P V P V F V dt d ???-???+?=???? ? ?ρρ1122 利用广义牛顿粘性假设张量P ,得出单位质量流体微团的动能方程 () E V div p V P div V F V dt d -+?+?=??? ? ?? ρρ1 22 右第三项是膨胀以及收缩在压力作用下引起的能量转化项(膨胀:动能增加<--内能减少) 右第四项是粘性耗散项:动能减少-->内能增加 热流量方程:用能量方程减去动能方程 反映内能变化率的热流量方程 ()() dt dq V P div V F V T c dt d +?+?=+ ρυ12/2 () E V div p V P div V F V dt d -+?+?=???? ? ? ρρ122 得到 ()()E V div p T c dt d dt dq dt dq E V div p T c dt d -+=++-= ρ ρυυ / 对于理想流体,热流量方程简化为: ()V d i v p T c dt d dt dq ρυ+= 这就是通常在大气科学中所用的“热力学第一定律”的形式。 由动能方程推导伯努利方程: 对于理想流体,动能方程简化为:() V div p V P div V F V dt d ρρ+?+?=??? ? ??122无热流量项。 又因为() V pdiv p V z pw y pv x pu V P div -??-=??? ???++-=???????)()()(故最终理想流体的动能方 程可以写成: p V V F V dt d ??-?=???? ? ?ρ 22 【理想流体动能的变化,仅仅是由质量力和压力梯度力对流体微团作功造成的,而与热能不 发生任何转换。】 假设质量力是有势力,且质量力位势为Φ,即满足:Φ-?=F 考虑Φ为一定常场,则有: dt d V V F Φ- =Φ??-=?

伯努利方程的推导

第八节伯努利方程 ●本节教材分析 本节属于选学内容,但对于一些生活现象的解释,伯努利方程是相当重要的.本节主要讲述了理想流体,理想流体的定常流动,然后结合功和能的关系推导出伯努利方程,最后运用伯努利方程来解释有关现象. ●教学目标 一、知识目标 1知道什么是理想流体,知道什么是流体的定常流动. 2知道伯努利方程,知道它是怎样推导出来的. 二、能力目标 学会用伯努利方程来解释现象. 三、德育目标 通过演示,渗透实践是检验真理的惟一标准的思想. ●教学重点 1.伯努利方程的推导. 2.用伯努利方程来解释现象. ●教学难点 用伯努利方程来解释现象. ●教学方法 实验演示法、归纳法、阅读法、电教法 ●教学用具 投影片、多媒体课件、漏斗、乒乓球、两张纸 ●教学过程 用投影片出示本节课的学习目标: 1.知道什么是理想气体. 2.知道什么是流体的定常流动. 3.知道伯努利方程,知道它是怎样推导出来的,会用它解释一些现象. 学习目标完成过程: 一、导入新课 1.用多媒体介绍实验装置 把一个乒乓球放在倒置的漏斗中间 2.问:如果向漏斗口和两张纸中间吹气,会出现什么现象? 学生猜想: ①乒乓球会被吹跑; ②两张纸会被吹得分开. 3.实际演示: ①把乒乓球放在倒置的漏斗中间,向漏斗口吹气,乒乓球没被吹跑,反而会贴在漏斗上

不掉下来; ②平行地放两张纸,向它们中间吹气,两张纸不但没被吹开,反而会贴近 4.导入:为什么会出现与我们想象不同的现象,这种现象又如何解释呢?本节课我们就来学习这个问题. 二、新课教学 1.理想流体 (1)用投影片出示思考题: ①什么是流体? ②什么是理想流体? ③对于理想流体,在流动过程中,有机械能转化为内能吗? (2)学生阅读课文,并解答思考题: (3)教师总结并板书 ①流体指液体和气体; ②液体和气体在下列情况下可认为是不可压缩的. a:液体不容易被压缩,在不十分精确的研究中可以认为液体是不可压缩的. b:在研究流动的气体时,如果气体的密度没有发生显著的变化,也可以认为气体是不可压缩的. ③a:流体流动时,速度不同的各层流体之间有摩擦力,这叫流体具有粘滞性. b:不同的流体,粘滞性不同. c:对于粘滞性小的流体,有些情况下可以认为流体没有粘滞性. ④不可压缩的,没有粘滞性的流体,称为理想流体.对于理想流体,没有机械能向内能的转化. 2 定常流动 (1)用多媒体展示一段河床比较平缓的河水的流动. (2)学生观察,教师讲解. 通过画面,我们可以看到河水平静地流着,过一会儿再看,河水还是那样平静地流着,各处的流速没有什么变化,河水不断地流走,可是这段河水的流动状态没有改变,河水的这种流动就是定常流动. (3)学生叙述什么是定常流动 流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动就叫定常流动. (4)举例:自来水管中的水流,石油管道中石油的流动,都可以看作定常流动. (5)学生阅读课文,并回答下列思考题: ①流线是为了表示什么而引入的? ②在定常流动中,流线用来表示什么? ③通过流线图如何判断流速的大小? (6)学生答: ①为了形象地描绘流体的流动,引入了流线; ②在定常流动中,流线表示流体质点的运动轨迹; ③流线疏的地方,流速小;流线密的地方,流速大. 3.伯努利方程 (1)设在右图的细管中有理想流体在做定常流动,且流动 方向从左向右,我们在管的a1处和a2处用横截面截出一段流 体,即a1处和a2处之间的流体,作为研究对象.设a1处的横截面积为S1,流速为V1,高度

伯努利方程的推导及其实际应用

伯努利方程的推导及其实际应用总结 楼主:西北荒城时间:2015-03-03 14:08:00 点击:1091 回复:0 一,伯努利方程的推导 1726年,荷兰科学家丹尼尔·伯努利提出了描述理想流体在稳流状态下运动规律伯努利原理,并用数学语言将之精确表达出来,即为伯努利方程。伯努利方程是流体力学领域里最重要的方程之一,学习伯努利方程有助于我们更深刻的理解流体的运动规律,并可以利用它对生活中的一些现象作出解释。同时,作为土建专业的学生,我们将来在实际工作中,很可能要与水、油、气等流体物质打交道,因此,学习伯努利方程也有一定的实际意义。作为将近300岁高龄的物理定律,伯努利方程的理论是非常成熟的,因此不大可能在它身上研究出新的成果。在本文中,笔者只是想结合自己的理解,用自己的方式推导出伯努利方程,并应用伯努利方程解释或解决现实生活中的一些问题。 既然要推导伯努利方程,那么就首先要理解一个概念:理想流体。所谓理想流体,是指满足以下两个条件的流体:1,流体内部各部分之间无黏着性。2,流体体积不可压缩。需要指出的是,现实世界中的各种流体,其内部或多或少都存在黏着性,并且所有流体的体积都是可以压缩的,只是压缩的困难程度不同而已。因此,理想流体只是一种理想化的模型,其在现实世界中是不存在的。但为了对问题做简化处理,我们可以讲一些非常接近理想流体性质的流体视为理想流体。 假设有某理想流体在某细管中做稳定流动。如图,在细管中任取一面积为s1的截面,其与地面的相对高度h1,,流体在该截面上的流速为v1,并且该截面上的液压为p1。某一时刻,有流体流经s1截面,并在dt时间内发生位移dx1运动到新截面s2。由于细管中的水是整体移动的,现假设细管高度为h2处有一截面s3,其上流体在相同的时间内同步运动到了截面s4,流速为v2,共发生位移dx2。则有如下三个事实: 1:截面s1、s2之间流体的体积等于截面s3、s4之间流体的体积,即s1dx1=s2dx2 2:截面s1、s3之间流体的体积等于截面s2、s4之间流体的体积(由事实1可以推知) 3:细管中相应液体的机械能发生了变化。 事实1和事实2实际上是质量守恒的体现,事实3则须用能量守恒来解释,即外力对该段流体做功的总和等于该段流体机械能的变化。因截面s2、s3之间流体的运动状态没有变化,故全部流体机械能的变化实质上是截面s1、s2之间

能量方程(伯努利方程)实验

- 1 - 第3章 能量方程(伯努利方程)实验 3.1 实验目的 1) 掌握用测压管测量流体静压强的技能。 2) 验证不可压缩流体静力学基本方程, 通过对诸多流体静力学现象的实验分析,进一步加深对基本概念的理解,提高解决静力学实际问题的能力。 3) 掌握流速、流量等动水力学水力要素的实验量测技能。 3.2 实验装置 能量方程(伯努利方程)实验装置见图3.1。 图3.1 能量方程(伯努利方程)实验装置图 说明:本实验装置由供水水箱及恒压水箱、实验管道(共有三种不同内径的管道)、测压计、实验台等组成,流体在管道内流动时通过分布在实验管道各处的7根皮托管测压管测量总水头或12根普通测压管测量测压管水头,其中测点1、6、8、12、14、16和18均为皮托管测压管(示意图见 图3.2),用于测量皮托管探头对准点的总水头H ’(=2g u 2 ++r p Z ),其余为普通测压管(示意图 见图3.3),用于测量测压管水头。

- 2 - 图3.2 安装在管道中的皮托管测压管示意图 图3.3安装在管道中的普通测压管示意图 3.3 实验原理 当流量调节阀旋到一定位置后,实验管道内的水流以恒定流速流动,在实验管道中沿管内水流方向取n 个过水断面,从进口断面(1)至另一个断面(i )的能量方程式为: 2g v 2111++r p Z =f i i h r p Z +++2g v 2 i =常数 (3.1) 式中:i=2,3,······ ,n ; Z ──位置水头; r p ──压强水头; 2g v 2 ──速度水头; f h ──进口断面(1)至另一个断面(i )的损失水头。 从测压计中读出各断面的测压管水头(r p Z + ),通过体积时间法或重量时间法测出管道流量,计算不同管道内径时过水断面平均速度v 及速度水头2g v 2 ,从而得到各断面的测压管水头和总水头。 3.4 实验方法与步骤 1) 观察实验管道上分布的19根测压管,哪些是普通测压管,哪些是皮托管测压管。观察管道内径的大小,并记录各测点管径至表3.1。 2) 打开供水水箱开关,当实验管道充满水时反复开或关流量调节阀,排除管内气体或测压管内的气泡,并观察流量调节阀全部关闭时所有测压管水面是否平齐(水箱溢流时)。如不平,则用吸气球将测压管中气泡排出或检查连通管内是否有异物堵塞。确保所有测压管水面平齐后才能进行实验,否则实验数据不准确。 3) 打开流量调节阀并观察测压管液面变化,当最后一根测压管液面下降幅度超过50%时停止调节阀门。待测压管液面保持不变后,观察皮托管测点1、6、8、12、14、16和18的读数(即总水头,取标尺零点为基准面,下同)变化趋势:沿管道流动方向,总水头只降不升。而普通测压管2、3、4、5、7、9、10、11、13、15、17、19的读数(即测压管水头)沿程可升可降。观察直管均匀流同一断面上两个测点2、3测压管水头是否相同?验证均匀流断面上静水压强按动水压强规律分布。弯管急变流断面上两个测点10、11测压管水头是否相同?分析急变流断面是否满足能力方程应用条件?记录测压管液面读数,并测记实验流量至表3.2、表3.3。 4) 继续增大流量,待流量稳定后测记第二组数据(普通测压管液面读数和测记实验流量)。 5) 重复第4步骤,测记第三组数据,要求19号测压管液面接近标尺零点。 6) 实验结束。关闭水箱开关,使实验管道水流逐渐排出。 7) 根据表3.1和表3.2数据计算各管道断面速度水头2g v 2和总水头(2g v 2 ++r p Z ) (分别记录于表3.4和表3.5)。

相关文档
最新文档