金属基复合材料性能的影响因素

金属基复合材料性能的影响因素
金属基复合材料性能的影响因素

金属基复合材料性能的影响因素

摘要:金属基复合材料具有高比强度、高比模量、低热膨胀系数等优点,近年来发展非常迅速。但其性能一致性差的问题制约了其应用,因此复合材料的性能设计受到了普遍的关注。本文综述了基体、增强体、基体与增强体相容性、工艺、界面等因素对金属基复合材料性能的影响。

关键词:金属基复合材料性能影响因素设计

1 引言

金属基复合材料被誉为21世纪的材料, 它兼有金属的塑性和韧性,以及其它材料如陶瓷的高强度和高刚度,而且比重小,因此具有较高的比强度、比刚度和更好的热稳定性、耐磨性以及尺寸稳定性等优点,从而在机械、汽车、航空航天、兵器、电子等许多领域得到了应用[1~3]。

尽管金属基复合材料在过去的30年里在世界范围内得到了广泛的研究和发展,但是还没有在工业上得到广泛的应用,其原因主要在于它的成本高、性能低于期望值、相对较低的稳定性和大的性能波动、不可回收利用、环境污染等几个障碍[4~5]。目前在国内发展复合材料,关键是要实现低成本、高性能、一致性好、稳定的制备技术和根据力学原理以及使用者的期望设计出令用户满意的性价比的材料。这就涉及到复合材料的设计问题,而性能决定了复合材料在工程上的应用,所以性能的影响因素一直是研究的热点。但是由于金属基复合材料的强化机理不明确,至今在金属基复合材料的设计理论上还存在着较大的盲目性。因此对复合材料性能的影响因素的研究是一个使金属基复合材料走出低谷获得突破的重要课题。

2 影响金属基复合材料的因素

2.1 基体的影响

不同的基体对复合材料的抗拉强度、屈服强度、结合强度有较大的影响。但并不是基体强度越高,复合材料的强度越高,而是存在一个最佳匹配[6]。姜龙涛等[7]对AlN颗粒在不同铝合金中的增强行为的研究表明,在低强度的L3纯铝上可以得到最大的增强率,而在高强度的LY12合金上没有得到高的增强率,相比之下具有良好塑性和较高强度的LD2合金作为基体时,具有较高的强度。而康国政等[8]认为基体本身的强度较低时,复合材料中基体的强度将有较大幅度的提高,因此对基体本身强度较低的复合材料通过基体原位性能的大幅度提高使复合材料抗拉强度的提高十分明显。这些研究都说明基体同增强体之间存在着优化选择、合理匹配的问题。

基体的合金化也对复合材料的强度有重要影响。Tsudo等[9]探讨过铝合金成分对

Al2O3颗粒增强铝基复合材料力学性能的影响。他们的研究表明Cu和Ni加到铝合金中,高温时抗弯强度增加,增加Al的体积分数也能增加抗弯强度.

另外稀土元素的加入也能提高复合材料的强度,如稀土Ce的加入对基体起着强化作用[10]。但是稀土元素对复合材料具体的强化原因目前尚未有一致的结论。

2.2 增强体的影响

增强体的加入可以通过对基体金属的显微组织,如亚结构、位错组态、晶粒尺寸及材料密度等的改变,改善和弥补基体金属性能上的不足。增强体的性质对复合材料的强度起着至关重要的作用。加入增强体后,材料的抗拉强度和屈服强度都有所提高。增强体的主要贡献是通过基体合金的微观组织变化实现的,另外它是载荷的主要承受者,其次它对位错的产生,亚晶结构细化也起着重要的影响。

例如SiCp/Al复合材料由于增强颗粒的加入,晶界面积增加,固溶处理时,基体内由于热错配产生的位错,异号位错相互抵消,同号位错则经攀移排列成垂直于滑移晶面的小角度晶界形成亚晶界,这样亚晶界面积也随之相应增加。由Hall-Petch关系式可知,晶界、亚晶界的增加,基体合金晶粒、亚晶结构和共晶Si颗粒细化,可在一定程度上提高复合材料的强度[11]。

2.3 基体和增强体相容性的影响

基体合金与颗粒增强体之间的界面相容性也是一个必须重视的问题。尤其当采用铝合金为基体时,界面上常出现氧化物元素富集等现象,有时界面上基体与增强体发生化学反应生成新相,如Al4C3、MgO或MgAl2O4。因此对于不同的颗粒增强体,为避免界面反应物产生的危害,在保证复合材料性能的前提下基体合金的成分应有所调整。由于铝合金中的不同溶质元素所引起的时效析出行为具

有一定的差异,颗粒增强铝基复合材料对基体的显微组织十分敏感。从这一角度出发,为充分发挥复合材料的性能优越性,也必须选择合适的基体合金[12]。

此外,颗粒增强体的加入,导致了基体合金的微观组织发生显著的变化。主要体现为,由于基体和增强体热膨胀系数(CET)的差别引起的错配应力在基体中诱发了高密度位错、晶粒尺寸变化、残余应力(热错配应力)、时效析出组织等。这些微观组织的改变都会不同程度地对复合材料的性能产生重要的影响[12]。

2.4 工艺的影响

不同的制备方法使得复合材料的性能有很大的差异。热处理工艺,例如淬火就能对复合材料起到一定的强化作用。时效对复合材料也有明显的强化作用。二次加工对复合材料的强度也有很大的影响。

原位生成法制备的复合材料,由于原位增强相不仅尺寸非常细小(一般<1um),

而且与基体有着良好的界面相容性,从而使得这种复合材料较传统的外加增强相复合材料具有较高的强度。高能球磨法使增强体颗粒弥散均匀分布于基体中,而常规混合法制备的复合材料中存在增强体颗粒的偏聚现象[13]。颗粒越均匀越有利于提高复合材料的强度。

2.5 界面的影响

界面是复合材料中普遍存在且非常重要的组成部分,是影响复合材料行为的关键因素之一。金属基复合材料宏观性能的好坏很大程度上取决于基体和增强体之间的界面结合状况[14]。而温度-时间引起的界面反应是金属基复合材料中大多数承载体不能发挥最佳性能的主要原因之一。为了获得更高的强度,应该形成稳定的界面结合。界面结构与性能是基体和增强体性能能否充分发挥,形成最佳综合性能的关键。金属基复合材料的界面结构非常复杂,有3种结合类型5种结合方式[4],而且界面区尺寸为纳米级,难以分析表征,很多问题在理论上难以解释。为了兼顾有效传递载荷和阻止裂纹扩展两个方面,必须要有最佳的界面结合状态和强度。

目前有很多界面优化的方法,具体手段有:金属基体合金化、增强体表面涂层处理、改变粘结剂及制备工艺和参数的控制等。

3 结束语

金属基复合材料作为新兴的材料,具有特殊的优异性能,更由于其可设计性,被认为是具有很大实用价值的先进材料。金属基复合材料在提高其性能及加工方面仍处于研究阶段。

影响金属基复合材料性能除了以上这些内部因素外,还有很多外部因素,如温度、环境都会对金属基复合材料的强度产生影响。如何有效地利用有利因素,去除不利因素,从而提高金属基复合材料的性能是个值得进一步探讨的问题。

参考文献

[1]孙国雄,廖恒成,潘冶.颗粒增强金属基复合材料的制备技术和界面反应与控制[J].特

种铸造及有色合金,1998,(4):12.

[2]王军,贾成厂.逐步熔融凝固法制备金属基复合材料[J].金属热处理,2000,(4):

25.

[3]华林.金属基复合材料成分、性能和应用[J].材料与工艺,1995,(4):37.

[4]李成功.金属基复合材料的研究与发展[J].宇航材料工艺,1995,25(4):1-5.

[5]黄泽文.金属基复合材料的大规模生产和商品化发展[J].材料导报,1996,增刊:

18-25.

[6]武高辉,赵永春,马森林.短纤维增强金属基复合材料的力学性能与其基体强度的

宏观相关性[J].先进制造与材料应用技术,1996,(6):9-13.

[7]姜龙涛,武高辉,孙东立.AlN颗粒在不同铝合金中的增强行为[J].材料科学与工

艺,2001,9(1):47-51.

[8]康国政,高庆,杨川,张吉喜,刘世楷.基体特性对δ-Al2O3/Al合金复合材料力

学行为的影响[J].复合材料学报,2000,17(2):25-29.

[9]Tsudo,Hiroyuki,Yoshida,Hideto,Shimojima,Hiromasa.Effect of Al alloy composition

on mechanical properties of Al2O3 particles reinforced aluminum composite[J].Journal of Japan Society of Powder and Powder Metallurgy,Japan,1998,45(11):1024-1027.[10]陈凯,俞蒙槐,胡上序.ZA22/Al2O3 (F)复合材料室温拉伸强度的模拟研究[J]金

属学报,1997,33(4):437-442.

[11]丁占来,樊云昌,齐海波,任德亮.SiCp/Al合金基复合材料的室温拉伸性能[J].中

国有色金属学报,1999,9(Suppl.1):265-269.

[12]马森林.超细亚微米铝基复合材料的拉伸行为及断裂机制[D].哈尔滨:哈尔滨工

业大学,1999,3.

[13]张奎,樊建中,张永忠,吕晋宁,桑吉梅,张少明,石力开.颗粒增强复合材料增

强体颗粒分布均匀性研究[J].稀有金属,1999,23(1):62-65.

[14]张大童,李元元,龙雁.铝基复合材料研究进展[J].轻合金加工技术,2000,28(1):

5-10.

金属基复合材料的现状与展望

金属基复合材料的现状与 展望 学院:萍乡学院 专业:无机非金属材料 学号:13461001 姓名:蒋家桐

摘要综述了金属基复合材料的进展情况,重点阐述了颗粒增强金属基复合材料和金属基复合 涂层的进展,包括其性能、现有品种、制备工艺、应用情况. 同时报道了目前本领域研究存在的问 题,如:力学问题、界面问题、热疲劳问题,并在此基础上展望发展前景. 关键词颗粒增强金属基复合材料,复合涂层材料,界面,热疲劳,功能梯度材料 随着近代高新技术的发展,对材料不断提出多方面的性能要求,推动着材料向高比强度、高比刚度、高比韧性、耐高温、耐腐蚀、抗疲劳等多方面发展[1 ] . 复合材料的出现在很大程度上解决了材料当前面临的问题,推进了材料的进展.金属基复合材料(MMC) 是以金属、合金或金属间化合物为基体,含有增强成分的复合材料. 这种材料的主要目标是解决航空、航天等高技术领域提高用材强度、弹性模量和减轻重量的需要,它在60 年代末才有了较快的发展,是复合材料一个新的分支. 目前尚远不如高聚物复合材料那样成熟,但由于金属基复合材料比高聚物基复合材料耐温性有所提高,同时具有弹性模量高、韧性与耐冲击性好、对温度改变的敏感性很小、较高的导电性和导热性,以及无高分子复合材料常见的老化现象等特点,成为用于宇航、航空等尖端科技的理想结构材料. 1 进展情况 目前,金属基复合材料基本上可分为纤维增强和颗粒增强两大类,所用的基体包括Al , Mg ,Ti 等轻金属及其合金以及金属间化合物等,也有少量以钢、铜、镍、钴、铅等为基体. 增强 纤维主要有碳及石墨纤维、碳化硅纤维、硼纤维、氧化铝纤维等,增强颗粒有碳化硅、氧化铝、硼 化物和碳化物等. 用以上的各种基体和增强体虽可组成大量金属基复合材料的品种,但实际上 只有极少几种有应用前景,多数仍处在研究开发阶段,甚至也有不少品种目前尚看不到其应用 前景[2 ] . 1. 1 纤维增强金属基复合材料 纤维增强金属基复合材料,由于具有高温性能好、比强度、比模量高、导电、导热性好等优 点,而成为复合材料的主要类型. 1. 2 颗粒增强金属基复合材料 由于纤维增强金属基复合材料存在上述缺点,从而未能得以大规模工业应用,只有美国、 日本等少数发达国家用于军事工业. 为此,近年来国际上又将注意力逐渐转移到颗粒增强金属 基复合材料的研究上. 这一类金属基复合材料与纤维增强金属基复合材料相比制备工艺简单, 成本低,可采用常规金属加工设备来制造,这样有利于其开发和应用. 可见,颗粒增强金属基复 合材料是非常有发展前途的. 金属基颗粒复合材料通常是作为耐磨、耐热、耐蚀、高强度材料开发的,目前用于颗粒增强

非晶态金属材料综述

非晶态金属材料 一,非晶态金属材料 非晶态金属材料是指在原子尺度上结构无序的一种金属材料。大部分金属材料具有很高的有序结构,原子呈现周期性排列(晶体),表现为平移对称性,或者是旋转对称,镜面对称,角对称(准晶体)等。而与此相反,非晶态金属不具有任何的长程有序结构,但具有短程有序和中程有序(中程有序正在研究中)。一般地,具有这种无序结构的非晶态金属可以从其液体状态直接冷却得到,故又称为“玻璃态”,所以非晶态金属又称为“金属玻璃”或“玻璃态金属”。 制备非晶态金属的方法包括:物理气相沉积,固相烧结法,离子辐射法,甩带法和机械法。 二,非晶态金属的特点 由于传统的金属材料都以晶态形式出现。但这类金属熔体,由于极快的速率急剧冷却,例如每秒钟冷却温度大于100万度,冷却速度极快,而高温下液态时原子呈无序状态,因被迅速“冻结”而形成无定形的固体,此时这称为非晶态金属;由于其内部结构与玻璃相似,故又称金属玻璃。 这种材料强度和韧性兼具,即强度高而韧性好,一般的金属在两点上是相互矛盾的,即强度高而韧性低,或与此相反。而对于非晶态金属,其耐磨性也明显地高于钢铁材料。 非晶态金属还具有优异的耐蚀性,远优于典型的不锈钢,这可能是因为其表面易形成薄而致密的钝化膜;同时由于其结构均匀,没有金属晶体中经常存在的晶粒、晶界和缺陷,所以不易产生引起电化学腐蚀 并且非晶态金属还具有优良的磁学性能;由于其电阻率比一般金属晶体高,可以大大减少涡流损失,低损耗、高磁导,故使其成为引人注目的新型材料,也被誉为节能的“绿色材料”。 另外,非晶态金属有明显的催化性能;它还可作为储氢材料。 但是非晶态合金也有其致命弱点,即其在500度以上时就会发生结晶化过程,因而使材料的使用温度受到限制。还有其制造成本较高,这点也限制非晶态金属广泛应用。

金属基复合材料的种类与性能

金属基复合材料的种类与性能 摘要:金属基复合材料科学是一门相对较新的材料科学,仅有40余年的发展历史。金属基复合材料的发展与现代科学技术和高技术产业的发展密切相关,特备是航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,有力地促进了先进复合材料的迅速发展。单一的金属、陶瓷、高分子等工程材料均难以满足这些迅速增长的性能要求。金属基复合材料正是为了满足上述要求而诞生的。 关键词:金属;金属基复合材料;种类;性能特征;用途 1. 金属基复合材料的分类 1.1按增强体类型分 1.1.1颗粒增强复合材料 颗粒增强复合材料是指弥散的增强相以颗粒的形式存在,其颗粒直径和颗粒间距较大,一般大于1μm。 1.1.2层状复合材料 这种复合材料是指在韧性和成型性较好的金属基材料中含有重复排列的高强度、高模量片层状增强物的复合材料。片曾的间距是微观的,所以在正常比例下,材料按其结构组元看,可以认为是各向异性的和均匀的。 层状复合材料的强度和大尺寸增强物的性能比较接近,而与晶须或纤维类小尺寸增强物的性能差别较大。因为增强物薄片在二维方向上的尺寸相当于结构件的大小,因此增强物中的缺陷可以成为长度和构件相同的裂纹的核心。 由于薄片增强的强度不如纤维增强相高,因此层状结构复合材料的强度受到了限制。然而,在增强平面的各个方向上,薄片增强物对强度和模量都有增强,这与纤维单向增强的复合材料相比具有明显的优越性。 1.1.3纤维增强复合材料 金属基复合材料中的一维增强体根据其长度的不同可分为长纤维、短纤维和晶须。长纤维又叫连续纤维,它对金属基体的增强方式可以以单项纤维、二维织物和三维织物存在,前者增强的复合材料表现出明显的各向异性特征,第二种材料在织物平面方向的力学性能与垂直该平面的方向不同,而后者的性能基本是个向同性的。连续纤维增强金属基复合材料是指以高性能的纤维为增强体,金属或他们的合金为基体制成的复合材料。纤维是承受载荷的,纤维的加入不但大大改变了材料的力学性能,而且也提高了耐温性能。 短纤维和晶须是比较随机均匀地分散在金属基体中,因而其性能在宏观上是各向同性的;在特殊条件下,短纤维也可以定向排列,如对材料进行二次加工(挤压)就可达到。 当韧性金属基体用高强度脆性纤维增强时,基体的屈服和塑性流动是复合材料性能的主要特征,但纤维对复合材料弹性模量的增强具有相当大的作用。 1.2按基体类型分 主要有铝基、镁基、锌基、铜基、钛基、镍基、耐热金属基、金属间化合物基等复合材料。目前以铝基、镁基、钛基、镍基复合材料发展较为成熟,已在航天、航空、电子、汽车等工业中应用。在这里主要介绍这几种材料 1.2.1铝基复合材料 这是在金属基复合材料中应用最广的一种。由于铝合金基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利条件。再制造铝基复合材料时通常并不是使用纯铝而是铝合金。这主要是由于铝合金具有更好的综合性能。

金属基复合材料综述

金属基复合材料综述 专业: 学号: 姓名: 时间:

金属基复合材料综述 摘要:新材料的研究、发展与应用一直是当代高新技术的重要内容之一。其中复合材料,特别是金属基复合材料在新材料技术领域中占有重要的地位。金属基复合材料对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用,因此倍受人们重视。本文概述了金属基复合材料的发展历史及研究现状,对金属基复合材料的分类、性能、应用、制备方法、等进行了综述,提出了金属基复合材料研究中存在的问题,探讨了金属基复合材料的发展趋势。 关键词:金属基复合材料;分类;性能;应用;制备;发展趋势 Abstract: The research development and application of new composites are one of the important matters in modern high science and technology. This paper summarizes the met al matrix composites and the development history of the present situation and the classific ation of the metal matrix composites, performance, application and preparation methods, w as reviewed, and put forward the metal matrix composites the problems existing in the res earch, discusses the metal matrix composites trend of development. Keywords: Metal matrix composites; Classification; Performance; Application; Preparation; Development trend. 1.引言 复合材料是继天然材料,加工材料和合成材料之后发展起来的新一代材料。按通常的说法,复合材料是指两种或两种以上不同性质的单一材料,通过不同的复合方法所得到的宏观多相材料。随着现代科学技术的迅猛发展,对材料性能的要求日益提高。常希望复合材料即具有良好的综合性能,又具有某些特殊性能。金属基复合材料是近年来迅速发展起来的高性能材料之一,对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用。相信随着科学技术的不断发展,新的制造方法的出现,高性能增强物价格的不断降低,金属基复合材料在各方面将有越来越广阔的应用前景。

金属基复合材料的研究进展

金属基复合材料的研究进展 姓名:@@@ 学号:@@@@ 学院:@@@@ 专业:@@@@

目录 1金属基复合材料发展史 (1) 2金属基复合材料的制造方法 (1) 2.1扩散法 (1) 2.1.1扩散粘结法 (1) 2.1.2无压力金属渗透法 (2) 2.1.3预制体压力浸渗法 (2) 2.2沉积法 (2) 2.2.1反应喷射沉积法(RAD) (2) 2.2.2溅射沉积法 (2) 2.2.3化学气象沉积法 (2) 2.3液相法 (2) 2.4熔体搅拌法 (3) 3金属基复合材料的应用概况 (3) 3.1金属基复合材料的范畴界定 (3) 3.2金属基复合材料全球市场概况 (3) 3.2.1MMCs在陆上运输领域的应用 (4) 3.2.2MMCs在电子/热控领域的应用 (4) 3.2.3MMCs在航空航天领域的应用 (5) 3.2.4MMCs在其它领域的应用 (5) 3.3中国的金属基复合材料研究现状 (7) 4金属基复合材料研究的前沿趋势 (7) 4.1金属基复合材料结构的优化 (7) 4.1.1多元/多尺度MMCs (8) 4.1.2微结构韧化MMCs (8) 4.1.3层状MMCs (8) 4.1.4泡沫MMCs (8) 4.1.5双连续/互穿网络MMCs (8) 4.2结构-功能一体化 (8) 4.2.1高效热管理MMCs (8) 4.2.2低膨胀MMCs (9) 4.2.3高阻尼MMCs (9) 4.3碳纳米管增强金属基纳米复合材料 (9) 5总结与展望 (9) 参考文献 (10)

金属基复合材料的研究进展 摘要:在过去的三十年里,金属基复合材料凭借其结构轻量化和优异的耐磨、热学和电学性能,逐渐在陆上运输(汽车和火车)、热管理、民航、工业和体育休闲产业等诸多领域实现商业化的应用,确立了作为新材料和新技术的地位。本文概述了金属基复合材料的发展历史和制造方法。并且在综述金属基复合材料的研究与应用现状的基础上,对其研究的前沿趋势进行了展望。 关键词:金属基复合材料;制造方法;性能;应用;前沿展望 金属基复合材料(MMCs),是在各金属材料基体内用多种不同复合工艺,加进增强体,以改进特定所需的机械物理性能。金属基复合材料在比强度、比钢度、导电性、耐磨性、减震性、热膨胀等多种机械物理性能方面比同性材料优异得多。因此,金属基复合材料在新兴高科技领域,宇航、航空、能源及民用机电工业、汽车、电机、电刷、仪器仪表中日益广泛应用。 1金属基复合材料发展史 近代金属基复合材料的研究始于1924年Schmit[1]关于铝/氧化铝粉末烧结的研究工作。在30年代,又出现了沉淀强化理论[2,3],并在以后的几十年中得到了很快地发展。到了60年代,金属基复合材料已经发展成为复合材料的一个新的分支。到了80年代,日本丰田公司首次将陶瓷纤维增强铝基复合材料用于制造柴油发动机活塞,从此金属基复合材料的研制与开发工作得到了飞快地发展。土耳其的S.Eroglu等用离子喷涂技术制得了NiCr-Al/MgO-ZrO2功能梯度涂层。目前,金属基复合材料已经引起有关部门的高度重视,特别是航空航天部门推进系统使用的材料,其性能已经接近了极限。因此,研制工作温度更高、比钢度、比强度大幅度增加的金属基复合材料,已经成为发展高性能材料的一个重要方向。1990年美国在航天推进系统中形成了3 250万美元的高级复合材料(主要为MMC)市场,年平均增长率为16%,远远高于高性能合金的年增长率[4]。到2000年,金属基复合材料的市场价值达到了1.5亿美元,国防/航空用金属基复合材料已占市场份额的80%[5]。预计到2005年市场对金属基复合材料的需求量将达161 t,平均年增长率为4.4%。 2金属基复合材料的制造方法 金属基复合材料的种类繁多,制造方法多样,但总体上可以归纳为4种生产方法。2.1扩散法 扩散法是将作为基本的金属粉末与裸露或有包覆层的纤维在一起压型和烧结,或在基体金属的薄箔之间置入增强剂进行冷压或热压制成金属基复合材料的方法[6]。 2.1.1扩散粘结法 这种方法常用于粉末冶金工业。对于颗粒、晶须等增强体可以采用成熟的粉末冶金法,即把增强体与金属粉末混合后冷压或热压烧结,也可以用热等压工艺。对于连续增强体比较复杂,需先将纤维进行表面涂层以改善它与金属的润湿性并起到阻碍与金属反应的作用,再浸入液态金属中制成复合丝,最后把复合丝排列并夹入金属薄片后热压烧结,对于难熔金属

金属基复合材料

14.3.2金属-非金属复合材料 14.3.2.1金属基复合材料的性能特征 金属基复合材料与一般金属相比,具有耐高温、高比强度、高的比弹性模量、小的热膨胀系数和良好的抗磨损性能。与聚合物基复合材料相比,不仅剪切强度高、对缺口不敏感,而且物理和化学性能更稳定,如不吸湿、不放气、不老化、抗原子氧侵蚀、抗核、抗电磁脉冲、抗阻尼,膨胀系数低、导电和导热性好。由于上述特点,使金属基复合材料更适合空间环境使用,是理想的航天器材料,在航空器上也有潜在的应用前景。 14.3.2.2金属基复合材料的研究与应用 表14.101 和表14.102简要概述了各类金属基复合材料在航空航天领域的应用概况。金属基复合材料(MMC)的研究始于20世纪60年代,美国和俄罗斯在航空航天用金属基复合材料的研究应用方面处于领先的地位。20世纪70年代,美国把B/Al复合材料应用到航天飞机轨道上,该轨道器的主骨架是采用89种243根重150g的B/Al管材制成,比原设计的铝合金主骨架减重145g。美国还用B/Al复合材料制造了J-79和F-100发动机的风扇和压气机叶片,制造了F-106、F-111飞机和卫星构件,并通过了实验,其减重效果达20%~66%。苏联的B/AL复合材料与80年代达到实用阶段,研制了多种带有接头的管材和其他型材,并成功地制造出能安装三颗卫星的支架。由于B纤维的成本高,因此自70年代中期美国和苏联又先后开展C/AL复合材料的研究,在解决了碳纤维与铝之间不湿润的问题以后,C/AL复合材料得到应用。美国用C/AL制造的卫星用波导管具有良好的刚性和极低的热膨胀系数,比C/环氧复合材料轻30%.。随着SiC纤维和Al2O3纤维的出现,连续纤维增强的金属基复合材料得到进一步发展,其中研究和应用较多的是SiC/AL 复合材料。连续纤维增强金属基复合材料的制造工艺复杂、成本高,因此美国又率先研究发展晶须增强的金属基复合材料,主要用于对刚度和精度要求较高的航天构件上。美国海军武器中心研制的SiC p/Al复合材料导弹翼面已经进行了发射试验,卫星的抛物面天线、太空望远镜的光学系统支架也采用了SiC p/Al复合材料,其刚度比铝大70%,显著提高了构件的精度。 MMC对航天器的轻质化、小型化和高性能化正在发挥越来越重要的作用。 MMC在航空器上的应用也有很大潜力,英国研制了SCS-6/Ti的发动机叶片,大幅度提高了其承载能力和刚度,优化了气动载荷下的翼型。用SCS-6/Ti代替耐热钢制造的RB211发动机的压气机静子,可使该构件减重40%;采用SCS-6/Ti代替镍基高温合金制作压气机叶环结构转子,可是该部件减重80%;SiC f/Ti 也可望代替不锈钢在F-22试验型飞机制作活塞杆。 表14.101 B/Al复合材料的应用 表14.102 其他MMC的应用背景

先进金属基复合材料制备科学基础

项目名称:先进金属基复合材料制备科学基础首席科学家:张荻上海交通大学 起止年限:2012.1-2016.8 依托部门:上海市科委

一、关键科学问题及研究内容 针对国家空天技术、电子通讯和交通运输领域等对先进金属基复合材料的共性重大需求和先进金属基复合材料的国内外发展趋势,本项目以克服制约国内先进金属复合材料制备科学的瓶颈问题为出发点,针对下列三个关键科学问题开展先进金属基复合材料制备科学基础研究: (1). 先进金属基复合材料复合界面形成及作用机制 界面是是增强相和基体相连接的“纽带”,也是力学及其他功能,如导热、导电、阻尼等特性传递的桥梁,其构造及其形成规律将直接影响复合材料的最终的组织结构和综合性能。因此,界面结构、界面结合及界面微区的调控是调控金属复合材料性能的最为关键的一环。揭示基体成分、添加元素、增强体特性复合工艺对复合过程中的界面的形成、加工变形、服役过程中的界面结构、特征的演变规律和效应,以及在多场下的组织演变规律和对复合材料的性能变化极为关键。复合效应的物理基础正是源于金属基体与增强体的性质差异,而在金属基复合材料复合制备过程中,二者的差异无疑会直接或间接地影响最终的复合组织和界面结构。因此,要想建立行之有效的金属基复合材料组分设计准则和有效调控先进金属基复合材料的结构与性能,就必须从理论上认识先进金属基复合材料的复合界面形成及作用机制。 (2). 先进金属基复合材料复合制备、加工成型中组织形成机制及演化规律 金属基复合材料的性能取决于其材料组分和复合结构,二者的形成不仅依赖于复合制备过程,还依赖于包括塑性变形、连接、热处理等后续加工和处理过程。只有在掌握金属基复合材料的组织结构演变规律的基础上,才有可能通过优化工艺参数精确调控微观组织,进而调控复合材料的性能。 (3). 使役条件下复合材料界面、组织与性能耦合响应机制 先进金属基复合材料中,由于增强体与金属基体的物理和力学性能之间存在巨大差异,造成在界面点阵分布不均匀,同时近界面基体中由于热错配,残余应力等导致晶体学缺陷含量较高。因此,在使役过程中,先进金属基复合材料的力学性能不仅取决于其材料组分,更加取决于增强体在基体中的空间分布模式、界面结合状态和组织与性能之间的耦合响应机制。只有揭示使役条件下复合材料界面、组织与性能耦合响应机制,才能真正体现先进金属基复合材料中增强体与基体的优势互补,充分利用其巨大潜力,也才可能优化复合和界面结构设计。

非晶材料文献综述

本科生毕业设计(论文)文献综述文献综述题目:Ti基非晶合金的制备以及低温力学性能 姓名:孙驰 学院:材料学院 班级:04320701 指导教师:程焕武

Ti基非晶合金的制备以及低温力学性能文献综述 1.非晶合金 1.1非晶合金概述 非晶合金材料是20世纪后期材料学领域发展迅速的新型材料,是亚稳金属材料的重要组成部分。从组成物的原子模型考虑,物质可分为两类:一类为有序结构,另一类为无序结构。晶体为典型的有序结构,而气态,液态和非晶态固体都属于无序结构。在非晶体中的原子,分子的空间排列不呈现周期性和平移对称性,晶态长程有序受到破坏,知识由于原子间的相互关联作用,使其在几个原子间距的区间内仍然保持着有序特征,即具有短程有序,人们把这样一类特殊的物质状态统称为非晶态[1]。 非晶合金长程无序但短程有序,是指原子在空间排列上不呈周期性和平移对称性,但在1-2nm的微小尺度内,与近邻或次近邻原子间的键合具有一定的规律性。短程有序可分为化学短程有序和几何短程有序。化学短程有序是指合金元素的混乱状态,即每个合金原子周围的化学成分与平均成分不同的度量;几何短程有序包括拓扑短程序和畸变短程序。非晶合金的微观结构与液态金属相似,但又非完全相同,液态金属的短程有序范围约为4个原子间距,而非晶合金约为5-6个原子间距,前者中原子可以做大于原子间距的热运动,后者的原子主要做运动距离小于一个原子间距的热运动。非晶合金结构特征可以用径向分布函数RDF(r)=4πr2ρ(r)加以描述。它表示以某个原子为中心,在半径r,厚度为d(r)的球壳内的平均原子数。非晶合金的RDF(r)上出现清晰的第一峰和第二峰,没有可分辨的其它峰出现。在X射线衍射谱上,不存在晶体所特有的尖锐衍射峰,而是出现宽展的馒头峰。它的电子衍射花样是由较宽的晕和弥散的环组成,不存在表征晶态的任何斑点和条纹[2]。 1.2非晶合金与块状非晶合金的发展历史 历史上第一次制备出非晶的是Kramer于1938年利用蒸发沉积的方法实现的,此后不久,Brenner等声称用电沉积法制备出了Ni-P非晶合金。1960年 Duwez等人用快速凝固方法第一次制备出了Au 75Si 25 非晶合金,这标志了非晶 合金的诞生,这种快速凝固法是将Au 75Si 25 金属直接喷射到Cu基底上直接激冷

铝基复合材料综述

铝基复合材料综述 XXXXXXXXXXX 摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。 关键词铝基复合材料种类性能制备应用 Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys. Key words Al-based alloys kind performance approach use

1.引言 自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类 按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 3.铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 4.铝基复合材料特点 在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

复合材料综述

金属基陶瓷复合材料制备技术研究进展与应用* 付鹏,郝旭暖,高亚红,谷玉丹,陈焕铭 (宁夏大学物理电气信息工程学院,银川750021) 摘要综述了国内外在金属基陶瓷复合材料制备技术方面的最新研究进展与应用现状,展望了 国内金属基陶瓷复合材料的未来发展。 关键词金属基陶瓷复合材料制备技术应用 Development and Future Applications of Metal Matrix Composites Fabrication Technique FU Peng, HAO Xunuan, GAO Yahong, GU Yudan, CHEN Huanming (School of Physics & Electrical Information Engineering, Ningxia University, Yinchuan 750021) Abstract Recent development and future applications of metal matrix compositesfabrication technique are reviewed and some prospects of the development in metal matrix composites at home are put forward. Key words metal-based ceramic composites, fabrication technique, applications 前言:现代高技术的发展对材料的性能日益提高,单料已很难满足对性能的综合要求,材料的复合化是材料发展的必然趋势之一。陶瓷的高强度、高硬度、高弹性模量以及热化学性稳定等优异性能是其主要特点,但陶瓷所固有的脆性限制着其应用范围及使用可靠性[1—3]。因此,改善陶瓷的室温韧性与断裂韧性,提高其在实际应用中的可靠性一直是现代陶瓷研究的热点。与陶瓷基复合材料相比,通常金属基复合材料兼有陶瓷的高强度、耐高温、抗氧化特性,又具有金属的塑性和抗冲击性能,应用范围更广,诸如摩擦磨损类材料、航空航天结构件、耐高温结构件、汽车构件、抗弹防护材料等。 1 金属基陶瓷复合材料的制备 金属基陶瓷复合材料是20世纪60年代末发展起来的,目前金属基陶瓷复合材料按增强体的形式可分为非连续体增强(如颗粒增强、短纤维与晶须增强)、连续纤维增强(如石墨纤维、碳化硅纤维、氧化铝纤维等)[4—6]。实际制备过程中除了要考虑基体金属与增强体陶瓷之间的物性参数匹配之外,液态金属与陶瓷间的浸润性能则往往限制了金属基陶瓷复合材料的品种。目前,金属基陶瓷复合材料的制备方法主要有以下几种。 1.1 粉末冶金法 粉末冶金法制备金属基陶瓷复合材料即把陶瓷增强体粉末与金属粉末充分混合均匀后进行冷压烧结、热压烧结或者热等静压,对于一些易于氧化的金属,烧结时通入惰性保护气体进行气氛烧结。颗粒增强、短纤维及晶须增强的金属基陶瓷复合材料通常采用此种方法,其主要优点是可以通过控制粉末颗粒的尺寸来实现相应的力学性能,而且,粉末冶金法制造机械零件是一种终成型工艺,可以大量减少机加工量,节约原材料,但粉末冶金法的生产成本并不比熔炼法低[7]。 1.2 熔体搅拌法 熔体搅拌法是将制备好的陶瓷增强体颗粒或晶须逐步混合入机械或电磁搅拌的液态或半

金属基复合材料的应用及前景

附录: 题目:金属基复合材料的应用级展望 院(系)轻纺工程系 专业高分子材料加工技术 届别2012届 学号0919080102 姓名汪振峰 指导老师袁淑芳老师 黎明职业大学 2011年12月

金属基复合材料的应用及展望 汪振峰 (黎明大学,福建泉州,362000) 摘要:金属基复合材料是近几年来复合材料研究中的热点。本文综述了金属基复合材料的分类、性能特点、制备方法,总结了其主要进展及应用。 关键词:金属基复合材料;特点;应用 1、前言 随着近代高新技术的发展,对材料不断提出多方面的性能要求,推动着材料向高比强度、高比刚度、高比韧性、耐高温、耐腐蚀、抗疲劳等多方面发展。复合材料的出现在很大程度上解决了材料当前面临的问题,推进了材料的进展。 复合材料(Composite Materials)是为达到预期的使用特性将不同性质的两种或两种以上材料结合为一体而设计制造的新材料。金属基复合材料(MMCs即Metal matrix composites)是以金属、合金或金属间化合物为基体,含有增强成分的复合材料。其目标是解决航空、航天、电子、汽车、先进武器系统等高技术领域提高用材强度、弹性模量和减轻重量的需要,它在60年代末才有了较快的发展,是复合材料一个新的分支.目前尚远不如高聚物复合材料那样成熟,但由于金属基复合材料比高聚物基复合材料耐温性有所提高,同时具有弹性模量高、韧性与耐冲击性好、对温度改变的敏感性很小、较高的导电性和导热性以及无高分子复合材料常见的老化现象等特点,成为用于宇航、航空等尖端科技的理想结构材料。 金属基复合材料集高比模量、高比强度、良好的导热导电性、可控的热膨胀系数以及良好的高温性能于一体,成为当代发展迅速的重要先进材料之一。 2、金属基复合材料的分类 金属基复合材料是以金属为基体,以高强度的第二相为增强体而制得的复合材料。因此,对这种材料的分类既可按基体来进行、也可按增强体来进行。 2.1按基体分类: 2.1.1铝基复合材料 这是在金属基复合材料中应用得最广的一种。由于铝的基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利的条件。 在制造铝基复合材料时,通常并不是使用纯铝而是用各种铝合金。这主要是由于与纯铝相比,铝合金具有更好的综合性能。至于选择何种铝合金做基体,则根据实际中对复合材料的性能需要来决定。

关于金属基复合材料的一些概述

关于金属基复合材料(MMC)的一些概述 一、MMC的种类及其微观组织的一般特征 金属基复合材料(MMC),这一术语包括了很广的成分与结构范围。他们的共同点是有连续的金属基体。按照增强体的形状是连续性纤维,短纤维或者是颗粒状,复合材料的显微组织可分为下图所示的几类。更进一步的分类可基于纤维的直径和取向分布。在仔细考察特定的体系之前,认识与最终产品的微观组织结构有关的问题是有益的。下表简要的总结了复合材料的主要显微组织特征及其对性能的潜在影响。虽然有些组织参数可事先设定,但另外一些参数却难以控制。尽管如此,在设计与制造某特定的工作之前,一个重要的步骤是,事先认定一些简单的纤维组织结构目标及获得这些目标的方法。 按增强材料形态分类,可分为纤维增强金属基复合材料、颗粒和晶须增强金属基复合材料。若按金属基体分类,可分为铝基复合材料,钛基复合材料、镁基复合材料、高温合金复合材料和金属间化合物复合材料。倘若按增强体类型进行分类,则可分为单片、晶须(或者纤维)和颗粒,如下图。

二、金属基体的概述及其制备工艺 金属基体应用最多的为铝及铝合金,钛以及镁。铝的基本特点:熔点660℃,密度2.7g/cm3,其具有面心立方结构.所以其塑性优异,适合各种形式的冷、热加工。导电、导热性能好,约为铜的60%左右,同时化学活性高,在大气中铝表面与氧形成一层薄而又致密的氧化膜以防止铝继续氧化,但是强度低。钛的特点:熔点1678℃,密度4.51g/cm3。其重量轻、比强度高。纯钛的强度可通过冷作硬化和合金化而得到显著的提高.如50%的冷变形可使强度提高60%,适当合金化和热处理,则抗拉强度可达1200—1400MPa,含有氢、碳、氧、铁和镁等杂质元素的工业纯钛抗拉强度可提高到700MPa,并仍能保持良好的塑性和韧性。高温性能优良。合金化后的耐热性显著提高,可以作为高温结构材料使用,如航空发动机的压气机转子叶片等,长期使用最高温度已达540℃。在大气和海水中有优异的耐蚀性.在硫酸、盐酸、硝酸相氢氧化纳等介质中都很稳定。但是导电与导热性差.导热系数只有铜的1/l 7和铝的l/10,比电阻为铜的25倍。镁的特点:密度1.74g/cm3。由于其密度低,比强度、比刚度较高,镁具有密排六方结构,室温和低温塑性较低,但高温塑性好可进行各类形式的热变形加工。减震性能好,能承受较大的冲击振动负荷。 根据各种制备方法的基本特点,金属基复合材料的制备工艺分为四大类,即固态法;液态法;喷涂与喷射沉积法;原位复合法。 1、固态法。在一定温度的压力下,把新鲜清洁表面的相同或不相同的金届,通过表面原子的互相扩散而连接在一起。关键步骤为纤维的排布,复合材料的叠台和真空封装以及热压。其采用有机粘接剂。将增强纤维的单丝或多丝的条带分别浸溃加热后易挥发的有机粘接剂,按复合材料的设计要求的间距排列在全属基体的薄板或箔上,形成预制件。采用带槽的薄板或箔片,将纤维排布在其中。采用等离子喷涂。即先在金属基体箔片上用排布好一层纤维,然后再喷涂一层与基体金属相同的金属。纤维表面经化学或物理处理,在基体金属熔池中充分地浸渍形成金属基复合丝。为了防止复合材料在热压中的氧化,叠合好的复合材料坯科应真空封装于金属模套中。为了便于复合材料在热压后与金属模套的分离,在金属模套的内壁徐上云母粉类的涂料以利分离,注意不能涂与金属基体发生反应的涂料。在真空或保护气氛下直接放入热压模或平板进行热压合热压工艺参数主要为:热压温度、压力和时间。扩散结合的优缺点:工艺相对复杂,纤维排布、叠合以及封装手工操作多,成本高。能按照复合材料的铺层要求排布。在热压时可通过控制工艺参数的办法来控制界面反应。粉末冶金。适用于连续、长纤维增强.也可用于短纤维、颗粒或晶须增强的金属基复合材料。长纤维增强:将纤维和金属粉末按比例混合,密封在容器中,然后进行热等静压。粉末冶金的优点:工艺过程温度低,可以控制界面反应。增强材料(纤维、颗粒或晶须)与基体金属粉末可以任何比例混合,纤维含量最高可达75%,颗粒含量可达50%以上。对浸润性和密度差的要求较小采用热等静压工艺时,其组织细化、细密、均匀,一般不会产生偏析、偏聚等缺陷,可使空隙和其它内部缺陷得到明显改善,从而提高复合材料的性能。可以用传统的加工方法进行二次加工。粉末冶金的缺点:工艺过程比较复杂,金属基体必须制成金属粉末,增加了工艺的复杂性和成本。在制备铝基复合材料时,还要防止铝金属粉末引起的爆炸。

关于非晶态金属材料的研究

第三节非晶态金属材料研究现状与前景 1. 非晶态金属材料及性质 非晶态金属是一种“年轻”的金属材料,从它诞生以来,就显示出了巨大的潜能。人们不断地发现它的各种奇异的、优良的特性,非晶材料已被广泛应用与此同时,人们对该材料的磁性、电学性质、力学性质、化学性质以及非晶态之形成及结构进行了广泛的研究,希望在这个亚稳的非晶态结构基础上研发出具有全新的结构和性能的新材料。 1. 1 非晶态金属材料 物质的结构决定了其性质. 物质材料按其结构分类,可分为晶体和非晶体两大类.常见的金属材料从结构上看一般都属于晶体材料.近几十年来,人们发现了金属存在的另一种结构形式——非晶态. 如果把晶体结构的金属视为金属的“常现性态”的话,那么,非晶态金属就是金属的“特常现性态”.非晶态金属又可形象的称为金属玻璃(非晶合金原子的混乱排列类似于玻璃) .对于金属材料来说,通常情况下,当金属或合金从液体凝固成固体(例如钢水凝固成钢锭)时,原子总是从液体的混乱排列转变成固体的整齐排列,即成为晶体.因为只有这样,其结构才最稳定.但是,如果金属或合金的凝固速度非常快(例如以106℃/ s 的冷却速率将铁-硼合金熔体凝固) ,原子来不及整齐排列便被冻结住了,最终的原子排列方式类似于液体,是混乱的,这就是非晶合金.从理论上说,任何物质只要它的液体冷却速率足够快,原子来不及整齐排列就凝固,那么原子在液态时混乱排列并迅速冻结,就可以形成非晶[2 ].有人根据这一特点又将非晶合金称为“过冷液”.但是,不同的物质形成非晶所需要的冷却速度大不相同.例如,普通的玻璃熔体只要慢慢冷却下来,得到的玻璃就是非晶态. 而单一的金属则需要108℃/ s 以上的冷却速度才能形成非晶态. 目前,受工艺水平的限制,在实际生产中难以达到如此高的冷却速度,也就是说,普通的单一的金属难以在生产中制成非晶.故非晶态金属多为合金,纯的非晶态金属很少. 非晶态金属结构是一种亚稳态结构.在一定的条件下(比如高温、强冲击作用) 会向更稳定的状态——晶态转变而变成普通晶态金属.我们把这一转变过程称为

金属基复合材料性能的影响因素

金属基复合材料性能的影响因素 摘要:金属基复合材料具有高比强度、高比模量、低热膨胀系数等优点,近年来发展非常迅速。但其性能一致性差的问题制约了其应用,因此复合材料的性能设计受到了普遍的关注。本文综述了基体、增强体、基体与增强体相容性、工艺、界面等因素对金属基复合材料性能的影响。 关键词:金属基复合材料性能影响因素设计 1 引言 金属基复合材料被誉为21世纪的材料, 它兼有金属的塑性和韧性,以及其它材料如陶瓷的高强度和高刚度,而且比重小,因此具有较高的比强度、比刚度和更好的热稳定性、耐磨性以及尺寸稳定性等优点,从而在机械、汽车、航空航天、兵器、电子等许多领域得到了应用[1~3]。 尽管金属基复合材料在过去的30年里在世界范围内得到了广泛的研究和发展,但是还没有在工业上得到广泛的应用,其原因主要在于它的成本高、性能低于期望值、相对较低的稳定性和大的性能波动、不可回收利用、环境污染等几个障碍[4~5]。目前在国内发展复合材料,关键是要实现低成本、高性能、一致性好、稳定的制备技术和根据力学原理以及使用者的期望设计出令用户满意的性价比的材料。这就涉及到复合材料的设计问题,而性能决定了复合材料在工程上的应用,所以性能的影响因素一直是研究的热点。但是由于金属基复合材料的强化机理不明确,至今在金属基复合材料的设计理论上还存在着较大的盲目性。因此对复合材料性能的影响因素的研究是一个使金属基复合材料走出低谷获得突破的重要课题。 2 影响金属基复合材料的因素 2.1 基体的影响 不同的基体对复合材料的抗拉强度、屈服强度、结合强度有较大的影响。但并不是基体强度越高,复合材料的强度越高,而是存在一个最佳匹配[6]。姜龙涛等[7]对AlN颗粒在不同铝合金中的增强行为的研究表明,在低强度的L3纯铝上可以得到最大的增强率,而在高强度的LY12合金上没有得到高的增强率,相比之下具有良好塑性和较高强度的LD2合金作为基体时,具有较高的强度。而康国政等[8]认为基体本身的强度较低时,复合材料中基体的强度将有较大幅度的提高,因此对基体本身强度较低的复合材料通过基体原位性能的大幅度提高使复合材料抗拉强度的提高十分明显。这些研究都说明基体同增强体之间存在着优化选择、合理匹配的问题。

金属基复合材料的制备方法

金属基复合材料的制备方 法 Newly compiled on November 23, 2020

金属基复合材料的制备技术 摘要:现代科学技术的发展和工业生产对材料的要求日益提高,使普通的单一材料越来越难以满足实际需要。复合材料是多种材料的统计优化,集优点于一身,具有高强度、高模量和轻比重等一系列特点。尤其是金属基复合材料(MMCs)具有较高工作温度和层间剪切强度,且有导电、导热、耐磨损、不吸湿、不放气、尺寸稳定、不老化等一系列的金属特性,是一种优良的结构材料。 Abstract: The development of modern science and technology and industrial production of materials requirements increasing, the ordinary single material is more and more difficult to meet the actual needs. Composite material is a variety of statistical optimization, set merit in a body, has the advantages of high strength, high modulus and light specific gravity and a series of characteristics. Especially the metal matrix composite ( MMCs ) has the high working temperature and interlaminar shear strength, and a conductive, thermal conductivity, wear resistance, moisture, do not bleed, dimensional stability, aging and a series of metal properties, is a kind of structural material. 关键词:复合材料(Composite material)、发展概况(Development situation)、金属基复合材料(Metal base composite materia l)、发展前景(Development prospect) 正文: 一:复合材料简介 复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观的形式复合而成的多相材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。②夹层复合材料。③细粒复合材料。④混杂复合材料。[1] 二:金属基复合材料简介

相关文档
最新文档