过氧化氢酶产生菌的研究

过氧化氢酶产生菌的研究
过氧化氢酶产生菌的研究

过氧化氢酶产生菌的研究

摘要:过氧化氢酶一类以过氧化氢为专一底物,通过催化一对电子的转移而最终将其降解为水和氧气的酶。

关键字:过氧化氢酶发酵调控

过氧化氢酶简介

过氧化氢酶(Hydrogen peroxide oxidoreductase,catalase EC 1.11.1.6.) 是一类以过氧化氢为专一底物,通过催化一对电子的转移而最终将其降解为水和氧气的酶。研究表明几乎所有的需氧微生物中都存在过氧化氢酶,只有少数好氧菌如过氧化醋杆菌Acetobacter peroxydas 不存在过氧化氢酶。除谢氏丙酸杆菌Propionibacterium shermanji 和巨大脱硫弧菌Desulfovibrio gigas 等微生物外,绝大多数厌氧微生物体内不存在过氧化氢酶。根据过氧化氢酶在结构和序列水平上的异同将其划分为 3 个亚群,即单功能过氧化氢酶(Monofunctional catalase or Typicalcatalase)、双功能过氧化氢酶(Catalase-peroxidase) 和假过氧化氢酶(Pseudocatalase or Mn-catalasee)。大多数的过氧化氢酶由4 个相同的亚单位组成,分子量在240 kDa 左右,在亚基的活性部位各含一个血红素基团。来自哺乳动物以及某些真菌和细菌的过氧化氢酶还含有 4 个紧密结合的NADPH 分子。过氧化氢酶可被氰化合物、苯酚类、叠氮化物、过氧化氢、尿素及碱等物质所阻抑。过氧化氢酶主要集中存在于细胞的过氧化物酶体中,另外线粒体和细胞质中也含有少量的过氧化氢酶。过氧化氢酶能及时分解细胞内产生(主要为SOD 歧化产物) 或由胞外进入细胞的过氧化氢。避免了过氧化氢通过Fenton 和Harber-weiss 反应产生·OH。同时过氧化氢酶还能对血红蛋白及其他含巯基蛋白质起到保护作用,使它们不被氧化。人们研究过氧化氢酶的历史可追溯到100 多年前,早在1811 年就已发现动植物组织可以分解过氧化氢产生氧气,到1892 年Jacobson 证明了在动植物组织内有专一分解过氧化氢的酶,即过氧化氢酶的存在。1901 年Loew 第一次报道了过氧化氢酶的生物化学特性。到1937 年,Sumner 和Dounce 首次从牛的肝脏中分离得到过氧化氢酶的结晶,这是最早分离得到的高纯度酶之一。随后相继报道了哺乳动物的肝脏、红细胞及大多数微生物体内均含有此酶,其中哺乳动物组织中过氧化氢酶的含量差异很大,肝脏中含量最高,

结缔组织中含量最低,在上述组织细胞内过氧化氢酶主要与细胞器如线粒体和过氧化物酶体结合的形式存在,而在红细胞中则以可溶的状态存在。过氧化氢酶来源丰富,存在于几乎所有好氧生物中和一部分厌氧生物中。动物过氧化氢酶存在于动物的主要组织中,尤以肝与红细胞为最多,脑、心脏与骨骼肌为最少,动物肝脏是过氧化氢酶的一个很大来源,国内外均已实现这一工艺的工业化生产。另外,巴西研究者开发了从人胎盘中提取医用过氧化氢酶的技术。植物方面,主要集中在过氧化氢酶保护植物抗氧化机理方面的研究。不同来源的过氧化氢酶在细胞中的位置有所不同。动物红细胞、肝脏以及细菌的过氧化氢酶存在于细胞质中,必须将细胞破碎才能提取到过氧化氢酶,因此酶的分离、提纯较为复杂。细菌过氧化氢酶的热、碱稳定性虽然可随来源不同而不同,但因为是胞内酶,实现高产和提取均不方便。酵母的过氧化氢酶主要积累于胞内,而一些丝状真菌的过氧化氢酶则主要分泌于胞外,胞内也含有一定量的过氧化氢酶。因此选用嗜热丝状真菌来生产过氧化氢酶在应用和产品提取方面具有较大优势。此外也有研究通过构建基因工程菌来生产过氧化氢酶。目前商业化的过氧化氢酶以动植物提取和微生物发酵生产为主,本文将重点讨论微生物来源的过氧化氢酶的生产。自20 世纪80 年代以来,织物和纸张的生产者以及其他工业就已经开始使用过氧化氢代替有毒的氯气来漂白和消毒产品。过氧化氢可用于消除新鲜水果和蔬菜上有害的细菌,如沙门氏菌和大肠杆菌,还可用于消毒奶制品,为食品的纸包装如果汁盒消毒也不必冷藏储存等。在去除生产过程中剩余的过氧化氢的过程中,人们将注意力转向了具有非常高的催化效率的过氧化氢酶,因此过氧化氢酶在食品、医药、临床等行业都有着广泛的用途。目前过氧化氢酶主要的应用领域包括:1) 临床。在临床分析中,过氧化氢酶对研究自由基代谢失衡、抗衰老和肿瘤发病机理具有一定价值,对某些疾病的诊断、鉴别诊断亦具有重要意义[12,14]。过氧化氢酶可消除过氧化氢,对超氧化物歧化酶起保护作用,因而具有抗衰老作用[15]。2) 医药。由于过氧化氢具杀菌、清洁、漂白及消毒的功效,常用于器械消毒。如在隐形眼镜消毒过程中添加过氧化氢酶可分解消毒液中残留的过氧化氢。国内、外均有研究的专利发表[16-18]。3) 食品加工。过氧化氢酶可使食品保鲜,并作为消除啤酒、饮料中分子氧、活性氧和自由基的抗氧化剂。此外过氧化氢酶可与葡萄糖氧化酶并用作为氧的去除剂,还可用于牛乳杀菌及干酪原料乳的杀菌[19]。4) 其他工业。与过氧化氢同时使用,用于橡胶成型、塑料及多泡性粘合剂。纸浆、纤维、毛漂白工艺中除残留的过氧化氢。加入化妆品中可防止皮肤衰老,还可处理半导体

废水。近年来随着过氧化氢在纺织、造纸、制浆等行业的普遍应用,市场对过氧化氢酶的需求也呈大幅增长趋势。

PH对酶活力的影响

在25℃的测活体系中,改变不同的pH值,研究pH值对酶催化底物H2O2水解活力的影响将等量的酶液与不同pH值的缓冲液等量混合,室温下放置30min后,然后取出10μL处理的酶液正常的测活体系(25℃,pH7.0)中检

测酶的剩余活力,结果表明pH对酶的碱稳定性范围较宽,在pH7~14区

域较稳定。

温度对酶活力的影响

粗酶在不同温度下(30~100℃)的50mm的磷酸缓冲(PH7.0)热处理10min后,迅速冷却到室温,然后取出10μL处理的酶液在正常的测活体系(25℃,pH7.0)表明酶在85℃以下热处理30min,酶活力基本保持不变,在8 5℃以上酶活力开始下降,随着处理的温度升高,酶活力呈快速下降.实验说明酶在85℃以内都具有较好的热稳定性.高于85 ℃,酶极不稳定。

过氧化氢酶的应用

食品工业:半个世纪以前CAT就开始应用于食品工业。利用 C A T 能分解 H 2 O2 产生 O2 的性质, 可在烘烤食品制造过程中将 C A T 和过氧化氢一起用作疏松剂。但 C A T 更广泛的应用是对牛奶等的消毒。在牛奶保存或奶酪制造前用过氧化氢对牛奶或液体鸡蛋制品进行消毒, 然后用 CAT 去除残余的过氧化氢。这一过程可以在低温下进行, 从而避免高温处理造成的蛋白质变性和某些营养物质的破坏。

环保行业:目前发达国家环保行业的过氧化氢消费量约占过氧化氢总消费量的 10 % ~ 15 %。用 CAT 取代化学试剂降解工业废水中含有的 H 2 O2 可以避免二次污染, 同时也可以降解芳环化合物和脂族化合物。其中辣根过氧化氢酶( H RP) 由于价格便宜且失活慢, 已在很多含酚废水处理中得到了应用。

造纸工业:近年来造纸行业相继以H2O2漂白代替传统漂白方法, 并通常用SO2和亚硫酸氢钠去除漂白后的H2O2。随着世界各国对环境和安全问题的考虑, 促进了去除H2 O2方法的深入研究, 有研究表明, CAT可在

10min内将 H2O2降解, 在这个领域具有广阔的用前景。2004 年美国能源部的爱达荷国家工程和环境实验室的研究者们分离并生产了一种过

氧化氢酶产品( 命名为超稳定过氧化氢酶) , 可应用于纺织和造纸行业的漂白过程,该项工作被评为 200 4 年 100 个最显著的技术成果之一。

纺织行业:在印染加工过程中, 传统的去除过氧化氢的工艺有两种, 一为织物经漂白后用大量热水、冷水反复清洗( 至少应洗 3 次) 再进行染色; 二为织物经漂白后用还原剂还原, 再用水清洗一遍后进行染色。而应用过氧化氢酶可快速去除过氧化氢, 只需要冷洗一遍, 甚至不用水洗, 并可以与染色工艺同浴。该方法可节约用水及能源、缩短工艺时间、实现安全染色、减少布面磨损,并有利于保护环境。

工业酶催化:在许多氧化酶的催化过程中会生成H2O2的副产物, 而

H2O2往往会对底物、产物或酶造成降解, 因此,过氧化氢酶能快速分解H2O2的性质使其在工业酶催化中也有重要的应用。例如, 在利用乙醇酸氧化酶催化乙醇酸生产乙醛酸的过程中, 由于副产物H2O2容易导致产物乙醛酸的降解和酶的失活, 人们通常采用乙醇酸氧化酶和过氧化

氢酶的双酶催化体系, 使催化过程能够顺利进行, 并保持较高的产率。菌种来源

微生物过氧化氢酶的野生菌株生产

微生物过氧化氢酶发酵研究最早可追溯到1951年,Brizuela 等首次报道了用杆菌Bacillus 发酵生产过氧化氢酶。后来,研究者不断筛选出新的过氧化氢酶生产菌株,同时发展出各种优化发酵过程的方法。由于过氧化氢酶在微生物中普遍存在,生物多样性赋予了微生物多种可能的过氧化氢酶合成、分泌和调控机制,因此通过菌种筛选提高发酵水平是一种十分有效手段。目前为止,至少筛选出8 种产过氧化氢酶的微生物,如变幻青霉Penicillumvariabile、黑曲Aspergillus niger、酿酒酵母Saccharomyces cereisiae、葡萄球菌Staphylococcus、溶壁微球菌Micrococcus lysodeiktious、嗜热囊菌Thermoascus aurantiacus、枯草芽胞杆菌Bacillus

subtilis、放射型根瘤菌Rhizobium radiobacte 等(表1)。目前最高的过氧化氢酶发酵水平是在枯草杆菌中获得的,最高产量达到18 000 U/mL,生产强度可以达到1 000 U/(mL·h)[21]。除菌种筛选外,培养条件优化(pH、温度、溶氧等) 和培养基优化等手段也运用到微生物过

氧化氢酶的发酵中,过氧化氢酶的发酵水平不断提高赵志军等通过培养基优化,使过氧化氢酶产量从30 U/mL 提高到3 258 U/mL[23]。邓宇等通过氮源优化,使酶活从3 000 U/mL 提高到11 000 U/mL[22]。经过50 多年的努力,研究者将过氧化氢酶的发酵水平从78 U/mL提高到18 000 U/(mL·h),生产强度从0.1 U/(mL·h) 提高到1 000 U/(mL·h)。但随着菌种筛选工作的不断开展,从自然界直接筛选获得产酶水平大幅提升的微生物的几率越来越小,这就要求研究者通过基因工程手段定向的构建能够高产过氧化氢酶的微生物。

基因工程菌构建

为了进一步提高微生物过氧化氢酶的产量,研究者尝试构建基因工程菌来高效生产过氧化氢酶。Furuta 等在1990 年首次报道了以大肠杆菌为宿主构建产过氧化氢酶的基因工程菌,基因来源是小鼠肝脏细胞,但获得的产量不高[31]。接下来科学家尝试了各种来源的过氧化氢酶基因和表达宿主。到目前为止,毕赤酵母Pichia pastoris、结核分枝杆菌Mycobacterium tuberculosis 、多形汉逊酵母Hansenula polymorpha 、枯草芽胞杆菌Bacillussubtilis 等已作为生产基因工程过氧化氢酶的宿主,过氧化氢酶基因的来源也拓展到稻瘟病菌Magnaporthe grisea、枯草芽胞杆菌Bacillus subtilis、嗜冷杆菌Psychrobacte、人体细胞、嗜热脂肪芽胞杆菌Bacillus stearothermophilus 、酿酒酵母Saccharomyces cerevisiae 等来源。菌种选育

菌株的初筛

将部分样品溶于100 mL水中,分别稀释获得浓度为10~,10~,10_5(w /V)的样品溶液,分别移取200pL涂布于初筛培养基平板上,25℃倒置培养24h后,挑取菌落一小部分涂布于滴有H:O。的载玻片上,若没有气泡产生,则过氧化氢酶反应试验为阴性;若有气泡产生,则过氧化氢酶反应试验为阳性,挑选该菌落进行复筛。

菌株的复筛

将经过初筛得到的菌落分别接种于20 mL种子培养基,25℃,200 r/min摇床培养24 h后离心,取菌液2 mL,并用蒸馏水稀释至10 mL备用。将稀释的菌液离心并收集菌体,以pH 7.0,0.2 mmol/L磷酸盐缓冲液重悬菌体,并在冰浴中超声破碎,离心后取上清测过氧化氢酶活性。

优化发酵

过氧化氢酶与胁迫物的关系及诱导产酶过氧化氢酶可由过氧化氢等诱导物诱导表达[1,38-40]。表3 列出了几种典型微生物在过氧化氢和O2?胁迫下抗氧化物酶的表达情况。可以看出,过氧化氢酶是各种微生物细胞(特别是对于Bacillus 属的微生物) 抵抗活性氧胁迫最主要的抗氧化物酶由于活性氧消耗了胞内的还原力,因此在活性氧胁迫下六磷酸葡萄糖脱氢酶(Glucose-6-phosphate-dehydrogenase,G6PD) 的活性也得到了提高G6PD的作用是提供维持细胞内氧化还原环境平衡的还原力NADPH。在微生物氧化应激研究中,还发现一些新表达的蛋白,其生理作用目前还不是很清楚,但从已经确定的来看,大多是一些控制抗氧化酶转录和表达的调控因子[21,42]。过氧化氢酶作为微生物体内专一清除过氧化氢的抗氧化物酶,其合成受到底物(过氧化氢) 的直接诱导。已有的研究表明,过氧化氢对过氧化氢酶诱导作用主要取决于其浓度,一般来说,低浓度过氧化氢诱导过氧化氢酶合成,过氧化氢酶立即分解过氧化氢,以消除过氧化氢对细胞的继续毒害,同时提高了细胞对过氧化氢胁迫的抵抗能力[46]。但当过氧化氢浓度超过过氧化氢酶的分解能力或过氧化氢酶来不及分解过氧化氢时,过氧化氢及其产物OH·会不加选择地攻击细胞成分,引起细胞代谢紊乱,抑制细胞生长,导致过氧化氢酶合成水平低。更为重要的是OH·本身会直接攻击过氧化氢酶活性中心导致过氧化氢酶失活,破坏细胞的防御系统,加剧氧自由基对细胞的氧化损伤[47]。另外,过氧化氢对过氧化氢酶合成的诱导作用还取决于胁迫方式,Janero 等发现连续添加非致死浓度的过氧化氢能够刺激肌原细胞(Cardiacmyocytes) 过氧化氢酶的合成,而一次性添加较高浓度(25 μmol/L) 的过氧化氢却不能诱导过氧化氢酶合成[48]。由于O2?诱导超氧化物歧化酶合成的同时会产生过氧化氢,因此在O2?胁迫下过氧化氢酶也会有不同程度的提高[4,40]。另有研究表明,一些环境因素如温度、盐胁迫也能够诱发胞内O2?的产生从而提高过氧化氢酶合成水平。Bai 等发现在黑曲霉Aspergillusniger 生长的对数期或稳定期提高培养温度(25℃~35℃),胞内活性氧浓度增加了1.3 倍和2.8 倍,从而诱导了过氧化氢酶合成[49]。过氧化氢胁迫对过氧化氢酶合成的影响除了与微生物种类、过氧化氢浓度和胁迫方式有关外,还与细胞生理状态(不同生长时期)、营养环境条件等因素相关[50]。表4 列举了通过诱导或胁迫促进野生菌发酵生产过氧化氢酶的方法。例如,姚丹丹等使用枯草芽胞杆菌作为生产菌株,通过过氧化氢和乙醇诱导,使过氧化氢酶产

量从11 000 U/mL 提高到23 000 U/mL,生产强度从360 U/(mL·h) 提高到640 U/(mL·h)[51]。可见,通过添加活性氧、过氧化氢、甲醇等物质进行诱导或胁迫产酶,对过氧化氢酶野生菌而言是一种十分有效的提高微生物产量的方法。此外,过氧化氢酶的胁迫机制也提醒我们,基因工程菌中过量表达的过氧化氢酶可能会影响到宿主菌自身对环境氧胁迫的响应。例如过量合成的过氧化氢酶会降低宿主细胞的氧胁迫水平,这时如果通过发酵控制提高环境的溶氧水平,将在不伤害细胞的前提下促进生长和代谢速率。

未来展望

过氧化氢酶发酵生产目前的研究主要集中在菌种筛选、培养基和发酵条件优化、基因工程菌构建等方面,发酵水平仍需进一步提高。考虑到纺织加工处理的条件需要,需要开发出更加适应高温和碱性条件的过氧化氢酶用于过氧化氢漂白后的酶处理。因此,未来的研究重点将围绕以下几个方面进行:1) 通过菌种筛选,获取高产和能耐受高pH、高温度的过氧化氢酶的菌株。通过野生菌发酵过程控制与优化,提高发酵产量。同时对编码耐高温、高碱过氧化氢酶的基因进行鉴定。2) 从耐高温高碱过氧化氢酶基因出发构建工程菌,结合现代在线控制与分析技术,进行过氧化氢酶发酵过程优化与控制研究,提高产酶水平。3) 通过定点突变、定向进化等分子改造手段,提高过氧化氢酶的温度、pH 耐受性,提高应用性能。

未来的研究重点将围绕以下几个方面进行:1) 通过菌种筛选,获取高产和能耐受高pH、高温度的过氧化氢酶的菌株。通过野生菌发酵过程制与优化,提高发酵产量。同时对编码耐高温、高碱过氧化氢酶的基因进行鉴定。2) 从耐高温高碱过氧化氢酶基因出发构建工程菌,结合现代在线控制与分析技术,进行过氧化氢酶发酵过程优化与控制研究,提高产酶水平。3) 通过定点突变、定向进化等分子改造手段,提高过氧化氢的温度、pH 耐受性,提高其应用性能。

过氧化氢酶活力的测定实验报告

竭诚为您提供优质文档/双击可除过氧化氢酶活力的测定实验报告 篇一:实验35过氧化氢酶的活性测定 植物在逆境下或衰老时,由于体内活性氧代谢加强而使h2o2发生累积。h2o2可以直接或间接地氧化细胞内核酸,蛋白质等生物大分子,并使细胞膜遭受损害,从而加速细胞的衰老和解体。过氧化氢酶可以清除h2o2,是植物体内重要的酶促防御系统之一。因此,植物组织中h2o2含量和过氧化氢酶活性与植物的抗逆性密切相关。本实验用分光光度法测定过氧化氢含量,利用高锰酸钾滴定法和紫外吸收法测定过氧化氢酶活性。 一、过氧化氢含量的测定 【原理】 h2o2与硫酸钛(或氯化钛)生成过氧化物—钛复合物黄色沉淀,可被h2so4溶解后,在415nm波长下比色测定。在一定范围内,其颜色深浅与h2o2浓度呈线性关系。 【仪器和用具】 研钵;移液管0.2ml×2支,5ml×1支;容量瓶10ml×

7个,离心管5ml×8支;离心机;分光光度计。 【试剂】 100μmol/Lh2o2丙酮试剂:取30%分析纯h2o257μl,溶于100ml,再稀释100倍;2mol/L硫酸;5%(w/V)硫酸钛;丙酮;浓氨水。【方法】 1.制作标准曲线:取10ml离心管7支,顺序编号,并按表40-1加入试剂。 待沉淀完全溶解后,将其小心转入10ml容量瓶中,并用蒸馏水少量多次冲洗离心管,将洗涤液合并后定容至10ml 刻度,415nm波长下比色。 2.样品提取和测定:(1)称取新鲜植物组织2~5g(视h2o2含量多少而定),按材料与提取剂1∶1的比例加入4℃下预冷的丙酮和少许石英砂研磨成匀浆后,转入离心管 3000r/min下离心10min,弃去残渣,上清液即为样品提取液。(2)用移液管吸取样品提取液1ml,按表35-1加入5%硫酸钛和浓氨水,待沉淀形成后3000rpm/min离心10min,弃去上清液。沉淀用丙酮反复洗涤3~5次,直到去除植物色素。(3)向洗涤后的沉淀中加入2mol硫酸5ml,待完全溶解后,与标准曲线同样的方法定容并比色。3.结果计算:植物组织中h2o2含量(μmol/gFw)= 式中c—标准曲线上查得样品中h2o2浓度(μmol);Vt —样品提取液总体积(ml);V1—测定时用样品提取液体积

过氧化氢酶

过氧化氢酶 过氧化氢酶,是催化过氧化氢分解成氧和水的酶,存在于细胞的过氧化物体内。过氧化氢酶是过氧化物酶体的标志酶, 约占过氧化物酶体酶总量的40%。过氧化氢酶存在于所有已知的动物的各个组织中,特别在肝脏中以高浓度存在。过氧化氢酶在食品工业中被用于除去用于制造奶酪的牛奶中的过氧化氢。过氧化氢酶也被用于食品包装,防止食物被氧化。 触酶 过氧化氢酶(CAT)是一种酶类清除剂,又称为触酶,是以铁卟啉为辅基的结合酶。它可促使H2O2分解为分子氧和水,清除体内的过氧化氢,从而使细胞免于遭受H2O2的毒害,是生物防御体系的关键酶之一。CAT作用于过氧化氢的机理实质上是H2O2的歧化,必须有两个H2O2先后与CAT相遇且碰撞在活性中心上,才能发生反应。H2O2浓度越高,分解速度越快。 来源 几乎所有的生物机体都存在过氧化氢酶。其普遍存在于能呼吸的生物体内,主要存在于植物的叶绿体、线粒体、内质网、动物的肝和红细胞中,其酶促活性为机体提供了抗氧化防御机理。 CAT是红血素酶,不同的来源有不同的结构。在不同的组织中其活性水平高低不同。过氧化氢在肝脏中分解速度比在脑或心脏等器官快,就是因为肝中的CAT含量水平高。 过氧化氢酶历史 作为一种物质,过氧化氢酶是在1811年被过氧化氢(H2O2)的发现者泰纳尔(Louis Jacques Thénard)首次发现。1900年,Oscar Loew将这种能够降解过氧化氢的酶命名为“catalase”,即过氧化氢酶,并发现这种酶存在于许多植物和动物中。1937年,詹姆斯·B·萨姆纳将来自牛肝中的过氧化氢酶结晶,并在次年获得了该酶的分子量。1969年,牛的过氧化氢酶的氨基酸序列得以解出。而后,1981年,其三维结构得以解析。 功能 过氧化氢是一种代谢过程中产生的废物,它能够对机体造成损害。为了避免这种损害,过氧化氢必须被快速地转化为其他无害或毒性较小的物质。而过氧化氢酶就是常常被细胞用来催化过氧化氢分解的工具。 但过氧化氢酶真正的生物学重要性并不是如此简单:研究者发现基因工程改造后的过氧化氢酶缺失的小鼠依然为正常表现型,这就表明过氧化氢酶只是在一些特定条件下才对动物是必不可少的。 一些人群体内的过氧化氢酶水平非常低,但也不显示出明显的病理反应。这很有可能是因为正常哺乳动物细胞内主要的过氧化氢清除剂是过氧化物还原酶(peroxiredoxin),而不是过氧化氢酶。

过氧化氢酶(CAT)活性的测定

过氧化氢酶(CAT)活性的测定:紫外吸收法 一、目的与要求 过氧化氢酶普遍存在于植物的所有组织中,其活性与植物的代谢强度及抗寒、抗病能力有一定关系,故常加以测定。 二、原理 过氧化氢酶(catalase)属于血红蛋白酶,含有铁,它能催化过氧化氢分解为水和分子氧,在此过程中起传递电子的作用,过氧化氢则既是氧化剂又是还原剂。可根据H2O2的消耗量或O2的生成量测定该酶活力大小。过氧化氢在240nm 波长下有强烈吸收,过氧化氢酶能分解过氧化氢,使反应溶液的吸光度(A240)随反应时间而降低。根据测量吸光率的变化速度即可测出过氧化氢酶的活性。三、材料、仪器设备及试剂 (一)材料:小麦或其它叶片 (二)仪器设备:1. 研钵;2.紫外分光光度计;3. 离心机;4. 恒温水浴; 5. 容量瓶。 (三)试剂: 1. 0.2 mol/L pH7.8磷酸缓冲液(pH7.8: 0.2mol/L Na2HP04 91.5 ml; 0.2mol/L NaH 2P0 4 8.5 ml); 2.0.1 mol/LH2O2 (30%的H2O2溶液5.68ml稀释至1000ml) 二、实验步骤: 1、酶液提取称取新鲜植物叶片或其它组织0.5g,置于研钵中,加入2~3ml 4℃下预冷的pH7.0磷酸缓冲液和少量石英砂研磨匀浆后,转入25ml 容量瓶中,并用缓冲液冲研钵数次,合并冲洗液,并定容到刻度。混合均匀,将容量瓶置5℃冰箱中静置10min,取上清液在4000r/min下离心15min,上清液即为过氧化氢粗提液,5℃下保存备用。 2、测定10ml试管3支,其中2支为样品测定管,1支为空白管,按表1-1顺序加入试剂。 25℃预热后,逐管加入0.6ml0.1mol/l的H2O2,每加完1管立即记时,并迅速倒入石英比色杯中,260nm下测定吸光度,每隔1min读数1次,共测4min,待3支管全部测完后,按式(1-1)计算酶活性。

高中生物实验知识:过氧化氢酶活性的测定

高中生物实验知识:过氧化氢酶活性的测定过氧化氢酶广泛存在于植物的所有组织中,能将过氧化氢分解为氧和水,可使生物机体免受过氧化氢的毒害作用。测定过氧化氢酶的方法有测压法、滴定法以及分光光度法等。用氧电极法测量放氧速度,方法灵敏而快速。放氧速度与过氧化氢酶活性成正比。 仪器药品 氧电极仪记录仪 电磁搅拌器超级恒温水浴 注射器、微量注射器容量瓶 反应杯亚硫酸钠 过氧化氢酶 50mmol/L磷酸缓冲液,pH7.0(见附表2)。 50mmol/L过氧化氢溶液:取1.4ml30%H2O2用磷酸缓冲液定容至250ml即得。 标准过氧化氢酶溶液:称取过氧化氢酶 (Sigma)1.0mg(110U/mg),溶于50mmol/L磷酸缓冲液 (pH7.0)11ml中,使酶浓度为10U/ml。 操作步骤 1.仪器的标定 按实验88步骤进行仪器的标定,以求得记录纸上每小格相当的含氧量。

2.绘制酶活性标准曲线 (1)在反应杯中放满过氧化氢磷酸缓冲液,开启电磁搅拌器搅动10分钟,插入电极,吸去溢出在电极外面的溶液,调节移位旋钮,使记录笔位于满刻度的10─20%左右,使记录纸走动,1─2分钟后温度达到平衡,记录笔画出直线。 (2)用微量注射器从电极塞小孔中注入10μ110U/ml过氧化氢酶,立即记录最初90秒钟内的氧释放曲线。 (3)根据上述同样步骤,注入不同浓度的过氧化氢酶10μl(例如浓度为20、30、40、50U/ml等),记录氧释放曲线。(4)取放氧曲线的直线部分,根据其斜率及走纸速度,计算每分钟氧的释放量。 (5)以过氧化氢酶活性单位为横坐标,每分钟氧的释放量为纵坐标,绘制标准曲线。 3.样品测定 (1)在反应怀内注入50mmol/L过氧化氢磷酸缓冲液搅动10分钟,插上电极,待记录为一直线后,注入10μl合适浓度的待测酶液样品,立即记下最初90秒钟内的放氧曲线。(2)根据样品的放氧曲线,计算得到每分钟的放氧量,在标准曲线上查得酶活性大小。 (3)如果没有标准的过氧化氢酶,不能计算酶活性单位时,也可以用每分钟的放氧量相对地表示酶的活性大小。

试验七过氧化氢酶活力的测定

实验七过氧化氢酶活力的测定 一、实验目的 掌握过氧化氢酶活力测定的原理和方法 二、实验原理 过氧化氢酶(catalase,CAT,EC1.11.1.6)普遍存在于植物的各种组织中,其活力大小与植物的代谢强度和抗寒、抗病能力有一定的联系,故常需进行测定。 过氧化氢酶能把过氧化氢分解成水和氧,其活力大小以一定时间内一定量的酶所分解的过氧化氢量来表示。被分解的过氧化氢量可用碘量法间接测定。当酶促反应进行一定时间后,终止反应,然后以钼酸铵作催化剂,使未被分解的过氧化氢与碘化钾反应放出游离碘,再用硫代硫酸钠滴定碘。其反应为: 过氧化氢酶 2H2O2-------------------------2H2O+O2 钼酸铵 H2O2+2KI+H2SO4------------------------I2+K2SO4+2H2O I2+2Na2S2O3-------------2NaI+Na2S4O6 反应完后,以样品溶液和空白溶液的滴定值之差求出被酶分解的过氧化氢量,即可计算出酶的活力。 三、仪器、试剂和材料 1、仪器:天平,研钵,容量瓶,恒温水浴,移液管,三角瓶,滴定管。 2、试剂: (1)0.01mol|L的过氧化氢溶液; (2)1.8mol|L的硫酸溶液; (3)10%钼酸铵溶液; (4)0.02mol|L硫代硫酸钠溶液; (5)1%的淀粉溶液; (6)20%的碘化钾溶液; (7)碳酸钙粉末。 四、操作步骤 1、酶液提取:称取新鲜油麦菜0.25g,剪碎置研钵中,加入0.1g碳酸钙和2mL水研磨成匀浆,用漏斗移入50mL的容量瓶,研钵用少量的水冲洗,冲洗液也一并移入容量瓶中, 然后用水定容。摇荡片刻,静置澄清后吸取20.0mL上清液至100ml容量瓶中,加水定容,摇匀后备用。 2、取三个100mL三角瓶编号,向各瓶准确加入稀释后的酶液10.0ml,随即在3号瓶中加入1.8mol|L硫酸5.0ml以终止酶的活力,作为空白溶液。各瓶均加入5.0mL0.01mol|L过氧化氢溶液,每加一瓶即摇匀并开始记时。5min(必须准确)后立即向1、2号瓶各加5.0mL1.8mol|L硫酸溶液。 3、各瓶分别加入1.0mL20%的碘化钾溶液和3滴钼酸铵溶液,然后依次用0.02mol|L的硫代硫酸钠滴定,滴定至溶液淡黄色后加入5滴1%的淀粉溶液,再继续滴定至蓝色消失即到终点,记下各瓶消耗的硫代硫酸钠的体积。

过氧化氢酶(CAT)活性测定

过氧化氢酶(CAT)活性测定 高锰酸钾滴定法 (李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社.2000.165-167)一、原理 过氧化氢酶(catalase,CA T)普遍存在于植物的所有组织中,其活性与植物的代谢强度及抗寒、抗病能力有一定关系,它属于血红蛋白酶,含有铁,能催化过氧化氢分解为水和分子氧,在此过程中起传递电子的作用,过氧化氢则既是氧化剂又是还原剂。 22 R(Fe OH 3+-) R(Fe2+ 2 2) 2 +2 H O 2+O2 因此,可以根据H2O2的消耗量或者O2的生成量测定该酶活力的大小。 在该体系中加入一定量(反应过量)的H2O2溶液,经酶促反应后,用标准高锰酸钾溶液(在酸性条件下)滴定多余的H2O2,即可求出消耗的H2O2的量。 5H2O2+2KMnO4+4H2SO45O2+2KHSO4+8H2O+2MnSO4 二、材料、仪器设备及试剂 (一)材料 植物器官(花瓣、叶片等) (二)仪器设备 冰箱、离心机、微量加样器(1ml、20μl、100μl)、移液管、精密电子天平、试管、研钵、剪刀、镊子、三角瓶、恒温水浴、容量瓶、酸式滴定管 (三)试剂 (1)10% H2SO4 (2)0.2mol/L PH7.8磷酸缓冲液 (3)0.1mol/L高锰酸钾标准液:称取KMnO4(AR)3.1605g,用新煮沸冷却蒸馏水配制 成1000mL,再用0.1mol/L草酸溶液标定 (4) 0.1mol/L H2O2:取30% H2O2(大约等于17.6 mol/L)5.68mL,稀释至1000mL,用 0.1mol/L高锰酸钾标准液(在酸性条件下)进行标定 (5) 0.1mol/L草酸:称取优级纯H2C2O4.2H2O12.607g,用蒸馏水溶解后,定溶1000mL。

过氧化物酶、过氧化氢酶活性测定方法及试剂配制

过氧化物酶(POD )活性测定 【实验原理】 过氧化物酶广泛分布于植物的各个组织器官中,在有H 202存在条件下,过氧化物酶能使愈创木酚氧化,生成茶褐色的4-邻甲氧基苯酚,可用分光光度计测生成物的含量来测定活性。 【实验试剂】 愈创木酚、30%过氧化氢、20mmol/LKH2PO4、100mmol/L 磷酸缓冲液(pH6.0)、反应混合液[100mmol/L 磷酸缓冲液(Ph6.0)50mL ,加入愈创木酚28uL,加热搅拌,直至愈创木酚溶解,待溶液溶解冷却后,加入30%过氧化氢19uL ,混合均匀保存在冰箱中] 【方法步骤】 (1)、粗酶液的提取 称取小麦叶片0.25g ,加20mmol/LKH2PO4 2.5mL ,于研钵中研成匀浆,以4000r/min 离心10分钟,收集上清液保存在冷处,所得残渣再用20mmol/LKH2PO4 2.5mL 提取一次,全并两次上清液,所得的即为粗酶提取液(酶活性过高,稀释10倍)。 (2)、酶活性的测定 取试管3只,于一只中加入反应混合液3mL ,KH2PO41mL ,作为校零对照,另外三只中加入反应混合液3mL ,稀释后的酶液1mL (如表1),立即开启秒表,于分光光度计470nm 波长下测量OD 值,每隔1min 读数一次(4min )。以每分钟表示酶活性大小,将每分钟OD 值增加0.01定义为一个活力单位。 表1 紫外吸收法测定POD 酶活性配置表 4.结果计算 以每分钟吸光度变化值表示酶活性大小,即以 ΔA 470 /[min · g (鲜重) ]表示之。也可以用每 min 内 A 470 变化 0.01 为 1 个过氧化物酶活性单位( u )表示。 POD 总活性[u/g(FW)]= 式中:POD 总活性以酶单位每克鲜重表示。其中 △470=ACK-AE 比活力单位以酶单位每毫克蛋白表示。 ACK ——照光对照管的吸光度。 AE ——样品管的吸光度。 Vt ——样品液总体积,mL 。 FW t V . V A T ? ? ? ? 1 470 01 0 ?

过氧化氢酶

过氧化氢酶在不同条件下的分解 1、摘要 通过本次实验来探究在各类植物中所含的过氧化氢酶。在试验中通过过氧化氢与四种不同的蔬菜然后用排水集氧气法观察实验现象。实验结果发现马铃薯的效果最好,每一种蔬菜都有不同含量的过氧化氢酶,而这些蔬菜取材都非常的方便,这也就为以后做实验的效率变得更加高。 关键词:过氧化氢酶蔬菜氧气 Summary: Through this experiment to explore the various types of plants containing catalase. In the experiment, four kinds of vegetables were treated by hydrogen peroxide, and then the experimental phenomena were observed by the method of draining oxygen. The experimental results showed that the best effect of potato, each kind of vegetables have different content of catalase, and these vegetables are very convenient, which will be more efficient in the future to do the experiment. Key world: CAT Vegetable Oxygen 1.2 实验背景 1.2.1 什么是过氧化氢酶? 过氧化氢酶(CAT),是催化过氧化氢分解成氧和水的酶,存在于细胞的过氧化物体内。过氧化氢酶是过氧化物酶体的标志酶, 约占过氧化物酶体酶总量的40%。过氧化氢酶存在于所有已知的动物的各个组织中,特别在肝脏中以高浓度存在。过氧化氢酶在食品工业中被用于除去用于制造奶酪的牛奶中的过氧化氢。过氧化氢酶也被用于食品包装,防止食物被氧化。① 1.2.2测定植物过氧化氢酶的生物学意义是? 过氧化氢酶大量分布于动植物细胞内,属于活性氧清除剂,可分解机体代谢过程中产生的活性氧如过氧化氢,超氧阴离子等,这些物质可对机体尤其是质膜产生毒害作用,测定这种酶的活力可以评价机体受活性氧毒害程度.过氧化氢酶的活性与植物的代谢强度及抗寒、抗病能力均有关系,可以根据这种酶的活性水平判断植物是否受到氧化损伤(比较某种因素或者复合因素作用下与正常状态下的酶活水平)。② 2、材料与方法 2.1实验对象 马铃薯、菠菜、苹果、青菜 2.2实验器材 锥形瓶、试管、塑料水槽、电子天平、称量纸、导管、量筒、剪刀、研钵、

(整理)过氧化氢酶与过氧化物酶

过氧化氢酶与过氧化物酶 朱忠勇(南京军区福州总医院, 福州350025) 过氧化氢酶和过氧化物酶, 是两种广泛存在于 动植物体内、含血红素(铁卟啉) 辅基的氧化还原酶。由于它们作用的底物都有过氧化氢, 所以在一些医 学检验杂志或教科书上, 往往将它们混淆, 甚至对其 作用机理作不恰当的解释。 1过氧化氢酶 过氧化氢酶(Hydrogen Peroxidase) 又称触酶(Catalase) , 其系统名称(Systemat ic name) 是: H2O 2: H2O 2氧化还原酶(H2O 2 ÷H2O 2 O xido redu2 catase) , 国际酶学委员会的编号为EC 11111116, 其 催化反应式如下: H2O 2+ H2O 2 触酶 2H2O + O 2 在这个反应中, 底物只有一种——过氧化氢。实 际上是一分子的H2O 2作为氢(电子) 的供体, 被氧 化成O 2; 而另一分子H2O 2被还原为H2O。 2过氧化物酶 过氧化物酶(Peroxidase) 也有人简称过氧化酶, 其系统名称是: 供体: 过氧化氢氧化还原酶(Dono r: H2 O 2O xido reductase) , 编号为EC 11111117。其催化反应式为: 供体+ H2O 2 过氧化物酶 氧化的供体+ H2O 或更简明地表达为 RH2+ H2O 2 过氧化物酶 R + 2H2O (供体) (氧化的供体) 在这个反应中, 底物有两个; 一个是H2O 2, 另一个 为一种氢(电子) 的供体(Dono r)。在医学检验中, 多 用胺类(如联苯胺, 二氨基联苯胺, 联邻甲苯胺等) 作为供体(也可以用酚) , 因为这些物质脱氢后往往 会呈现颜色。 由上述两种反应可以清楚地看出, 两种酶的区 别是十分明显的。触酶只有一种底物, 生成的是水和氧气。而过氧化物酶则要两种底物, 其反应的实质是: 酶催化供体脱氢(氧化) , 同时催化脱下的氢使 H2O 2还原为H2O。在这个反应中, 如果只有H2O 2, 没有供体, 反应不能进行。在整个反应过程中不产生氧

过氧化氢酶活力的测定

实验三过氧化氢酶活性得测定 一、实验目得: 了解过氧化氢酶得作用,掌握碘量法测定过氧化氢酶活性得原理与方法; 二、实验原理: 过氧化氢酶就是一类色素蛋白,含有铁,它能催化过氧化氢分解为水与分子氧,在此过程中起传递电子得作用,过氧化氢既就是氧化剂又就是还原剂。 R(Fe+2)2+H2O2---R(Fe+3OH)2 R(Fe+3OH)2+ H2O2 ----R(Fe+2)2+2H2O+O2 并合上式:H2O2 ----2H2O+O2 据此,可根据消耗H2O2得消耗量或O2得生成量测定该酶活力大小。在反应系统中加入一定量得过氧化氢溶液,经酶促反应后,加入过量得KI溶液生成得I2用标准得Na2S2O3滴定,根据N a2SO3消耗得体积计算H2O2得消耗量。 三、实验材料、仪器与试剂: 1、实验材料:小白菜 2、仪器:恒温水浴锅、研钵、容量瓶、刻度吸管、100mL三角瓶 3、试剂: (1)0、05mol/L H2O2 (2)2mol/LH2SO4 (3)0、1mol/L Na2S2O3 (4)1%淀粉溶液(5)10%(NH4)6Mo7O24 (6)pH7、8得磷酸缓冲液(7)20% KI (8)CaCO3 四、实验步骤: (1)酶液提取: 称取2.5g白菜叶,加少量CaCO3,2mLpH7、8得缓冲液少量,研成匀浆,移入100ml 容量瓶,用上述缓冲液冲洗研钵数次转入容量瓶中定容,静置10分钟,过滤。取滤液10mL于另一100mL得容量瓶中稀释定容待测(根据酶活高低而定)。 (2)酶促反应: 取锥形瓶4个,编好号各加入10ml酶液之后,立即向两个瓶中加入2mol/L H2SO45mL,终止酶活性,作空白对照。向另外两瓶各加H2O25mL,摇匀,在加入H2O2得那一刻起,记录时间,5分钟后迅速向实验瓶中加入2mol/LH2SO45mL,终止酶活性。向三角瓶中加1mL 20% KI与3滴(NH4)6Mo7O24,摇匀后迅速用标准Na2S2O3溶液进行滴定至淡黄色,加入1mL1%淀粉指试剂,蓝色恰好消失,记录消耗得Na2S2O3得体积V0,V;

鸡肝中过氧化氢酶提取,和大肠杆菌质粒提取详解

大肠杆菌中质粒的小量提取及核酸电泳 摘要:采用碱裂解法将大肠杆菌中的质粒DNA分子进行分离和纯化,将分离纯化后的质粒DNA分子进行琼脂糖凝胶电泳,并在紫外成像仪中观察DNA条带,以测定所得到的质粒DNA片段的分子量大小。结果表明,成功从大肠杆菌中提取出质粒DNA分子,其分子量大小约为2000bp。 关键词:质粒DNA分子;碱裂解法;分子量;电泳 引言 质粒存在于许多细菌以及酵母菌等生物中,是细胞染色体外能够自主复制的很小的环状DNA分子。碱裂解法是一种应用最为广泛的制备质粒DNA的方法,碱变性抽提质粒DNA是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。在碱性电泳缓冲液中带负电荷,所以在外加电场作用下会向正极迁移。将提取到的DNA 分子提取液中加入核酸染色剂,经过琼脂糖凝胶电泳后,利用紫外灯照射即可观察到所提取的DNA条带,第一泳道加入合适的Marker 与之进行比对,即可较为准确地估测出所提取出的质粒DNA分子量。 1 材料与方法 1.1 实验材料 (1) 含质粒Psd-T19的大肠杆菌 (2) 试剂:细菌质粒小量提取试剂盒、琼脂糖,电泳缓冲液(TAE),核酸电泳上样缓冲液(6×),标准分子量的DNA等。 1.2 实验仪器 微量移液器、试管、微波炉、离心机、电泳仪、凝胶成像系统、天平。 1.3 质粒的提取(小量试剂盒提取) (1) 首先取1.5ml混匀的菌液于1.5ml离心管中,台式离心机中12000r/m离心1min,弃上清液得到大肠杆菌菌体; (2) 按照试剂盒提取的步骤提取出大肠杆菌质粒DNA。

1.4 核酸电泳 (1) 制备1%琼脂糖凝胶,并添加GoldVied I核酸染料; (2) 加样:在离心管中混合DNA样品2-3ul和1ul上样缓冲液。采用梯度上样,上样量分别为2ul、4ul、6ul、8ul和5ulDNA分子量标记; (3) 电泳:120V,40min; (4) 观察:将电泳后的凝胶放置于透射紫外光下进行观察,对照分子量标记判断DNA样品的分子量大小。 2 实验结果与分析 大肠杆菌在37℃恒温摇床中220r/min培养24h,离心收集菌液收集菌液,之后按照试剂盒的操作步骤进行质粒提取纯化,最后进行核酸电泳,电泳图如图1-1所示。其中1,2,3,4分别代表质粒的上样量分别为2μL,4μL,6μL,,8μL,M代表5μL标准品。 DNA分子的分子量、分子构型的差异和所带电荷多少,都会影响电场中其迁移速率,另外琼脂糖凝胶的浓度、电压大小、缓冲液pH 和电泳时的温度等也影响迁移率,从而使DNA分子在凝胶中出现不同的区带。如图1-1所示,从大肠杆菌中提取的质粒DNA分子的分子量大小为2000bp,梯度上样的对比结果表明最适上样量为6ul。 图1-1 1%核酸电泳图

试验八过氧化氢酶活力的测定

实验八过氧化氢酶活力的测定 一、实验目的 掌握过氧化氢酶活力测定的原理和方法。 二、实验原理 过氧化氢酶(catalase,CAT,EC1.11.1.6)普遍存在于植物的各种组织中,其活力大小与植物的代谢强度和抗寒、抗病能力有一定的联系,故常需进行测定。 过氧化氢酶能把过氧化氢分解成水和氧,其活力大小以一定时间内一定量的酶所分解的过氧化氢量来表示。被分解的过氧化氢量可用碘量法间接测定。当酶促反应进行一定时间后,终止反应,然后以钼酸铵作催化剂,使未被分解的过氧化氢与碘化钾反应放出游离碘,再用硫代硫酸钠滴定碘。其反应为: 过氧化氢酶 2H2O22H2O+O2 钼酸铵 H2O2+2KI+H2SO4I2+K2SO4+2H2O I2+2Na2S2O32NaI+Na2S4O6 反应完后,以样品溶液和空白溶液的滴定值之差求出被酶分解的过氧化氢量,即可计算出酶的活力。 三、仪器、试剂和材料 1.仪器:天平,研钵,容量瓶,恒温水浴,移液管,三角瓶,滴定管。 2.试剂: (1)0.01mol/L的过氧化氢溶液; (2)1.8mol/L的硫酸溶液; (3)10%钼酸铵溶液; (4)0.02mol/L硫代硫酸钠溶液; (5)1%的淀粉溶液; (6)20%的碘化钾溶液; (7)碳酸钙粉末。 3、材料 油麦菜 四、操作步骤 1.酶液提取 称取新鲜油麦菜0.25g,剪碎置研钵中,加入0.1g碳酸钙和2mL水研磨成匀浆,用漏斗移入50mL的容量瓶,研钵用少量的水冲洗,冲洗液也一并移入容量瓶中,然后用水定容。摇荡片刻,静置澄清后吸取20.0mL上清液至100ml容

量瓶中,加水定容,摇匀后备用。 2.酶促反应 取三个100mL三角瓶编号,向各瓶准确加入稀释后的酶液10.0ml,随即在3号瓶中加入1.8mol/L硫酸5.0ml以终止酶的活力,作为空白溶液。各瓶均加入5.0mL0.01mol/L过氧化氢溶液,每加一瓶即摇匀并开始记时。5min(必须准确)后立即向1、2号瓶各加5.0mL1.8mol/L硫酸溶液。 3.滴定 各瓶分别加入1.0mL20%的碘化钾溶液和3滴钼酸铵溶液,然后依次用0.02mol/L的硫代硫酸钠滴定,滴定至溶液淡黄色后加入5滴1%的淀粉溶液,再继续滴定至蓝色消失即到终点,记下各瓶消耗的硫代硫酸钠的体积。 五、结果处理与分析 1.按国际酶活力单位计算 被分解的过氧化氢量(μmol)=1/2×V Na2S2O3(空白滴定值-样品测定值)(mL)×10-3×0.02×106 被分解的过氧化氢量(μmol)×酶液稀释倍数过氧化氢酶活力(U)=--------------------------------------------------------------- 时间(min)×样品重量(g)2.酶活力的习惯计算法 被分解的过氧化氢量(mg)=V Na2S2O3(空白滴定值-样品滴定值)(mL)×0.02×1/2×34.02 被分解的过氧化氢量(mg)x酶液稀释倍数过氧化氢酶活力=--------------------------------------------------------------- 样品重量(g)x时间(min) 其中0.02为硫代硫酸钠的物质的量浓度,34.02是过氧化氢的摩尔质量。 【注意事项】 酶促反应时间必须严格控制。 【思考题】 查阅文献,说明测定过氧化氢酶活力的方法有哪些,原理各是什么? 【参考资料】 郭蔼光,郭泽坤.生物化学实验技术.北京:高等教育出版社,2007:77-79.

过氧化氢酶CAT试剂盒说明书

过氧化氢酶C A T试剂 盒说明书 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

过氧化氢酶(CAT)试剂盒说明书 一、测定原理: 过氧化氢酶(CAT)分解H2O2的反应可通过加入钼酸铵而迅速中止,剩余的H2O2与钼酸铵作用产生一种淡黄色的络合物,在405nm处测定其变化量,可计算出CAT的活力。试剂一(ml) 二、试剂组成与配制: 试剂一:液体100 ml×1瓶,4℃保存6个月。 试剂二:底物液体10 ml×1瓶,4℃保存6个月。 试剂三:显色粉剂×1瓶,4℃保存6个月。加双蒸水至100 ml溶解,4℃保存1个月。(如果底部有不溶粉末沉淀,直接取上清使用,不影响测定结果) 试剂四:液体10 ml×1瓶,4℃保存6个月。天冷时会凝固,临用前37℃水浴至透明方可使用。 三、组织样本的检测 1、组织匀浆液的制备:准确称取组织重量,按重量(g):体积(ml)=1:9的比例加入9倍体积的生理盐水,冰水浴条件下,制备成10%的组织匀浆,2500转/分离心10分钟,取上清,再用生理盐水稀释成最佳取样浓度,待测(最佳取样浓度摸索减附录)。 2、操作表:

混匀,波长405nm ,光径0.5cm ,双蒸水调零,测定各管吸光度值。 注:一般样本没有高脂等导致显着差异情况,对照管的样本更换成双蒸 水,做1-2管对照即可。如需做样本自身对照,则试剂盒所测定样本数 量减至48样。 3.组织中CAT 活力的计算: (1)定义:每毫克组织蛋白每秒种分解1umol 的H2O2的量为一个活力单 位。 (2)计算公式: )ml /mgprot (601271)OD -OD ()mgprot /U (CAT *待测样本蛋白浓度取样量 值测定值对照活力组织匀浆中 ÷???=注:*271为斜率的倒数 (3)计算举例: 取10%水稻叶片匀浆0.05ml 做CAT 检测,测得对照管吸光度为0.605, 测定管吸光度为0.332,同时测得10%水稻叶片匀浆蛋白浓度为3.1303 mgprot/ml 。则计算结果为: ()/mgprot U 7351.101303.305 .0601271332.0704.0)mgprot /U (CAT =÷???-=活力组织匀浆中注:1.测定血清和血浆时,如果样本不溶血,每批样本只需要随机挑2

高中生物实验:过氧化氢酶活性的测定

高中生物实验:过氧化氢酶活性的测定原理 过氧化氢酶广泛存在于植物的所有组织中,能将过氧化氢分解为氧和水,可使生物机体免受过氧化氢的毒害作用。测定过氧化氢酶的方法有测压法、滴定法以及分光光度法等。用氧电极法测量放氧速度,方法灵敏而快速。放氧速度与过氧化氢酶活性成正比。 仪器药品 氧电极仪记录仪 50mmol/L磷酸缓冲液,pH7.0(见附表2)。 50mmol/L过氧化氢溶液:取1.4ml30%H2O2用磷酸缓冲液定容至250ml即得。 标准过氧化氢酶溶液:称取过氧化氢酶(Sigma)1.0mg(110U/mg),溶于50mmol/L磷酸缓冲液(pH7.0)11ml中,使酶浓度为10U/ml。 仪器的标定 按实验88步骤进行仪器的标定,以求得记录纸上每小格相当的含氧量。 绘制酶活性标准曲线 在反应杯中放满过氧化氢磷酸缓冲液,开启电磁搅拌器搅动10分钟,插入电极,吸去溢出在电极外面的溶液,调节移位旋钮,使记录笔位于满刻度的10─20%左右,使记录纸走动,1─2分钟后温度达到平衡,记录笔画出直线。

用微量注射器从电极塞小孔中注入10μ110U/ml过氧化氢酶,立即记录最初90秒钟内的氧释放曲线。 根据上述同样步骤,注入不同浓度的过氧化氢酶10μl(例如浓度为20、30、40、50U/ml等),记录氧释放曲线。 样品测定 在反应怀内注入50mmol/L过氧化氢磷酸缓冲液搅动10分钟,插上电极,待记录为一直线后,注入10μl合适浓度的待测酶液样品,立即记下最初90秒钟内的放氧曲线。 根据样品的放氧曲线,计算得到每分钟的放氧量,在标准曲线上查得酶活性大小。 如果没有标准的过氧化氢酶,不能计算酶活性单位时,也可以用每分钟的放氧量相对地表示酶的活性大小。 颜色反应、染色类 试剂实验名称发生颜色变化的物质或结构颜色变化或现象斐林试剂检测生物组织中的还原糖还原糖蓝色→棕色→砖红色双缩脲试剂检测生物组织中的蛋白质蛋白质蓝色→紫色苏丹Ⅲ/Ⅳ检测生物组织中的脂肪脂肪橘黄/红色碘液检测生物组织中的淀粉淀粉蓝色甲基绿观察DNA和RNA在细胞中的分布DNA绿色吡罗红观察DNA和RNA 在细胞中的分布RNA红色溴麝香草酚蓝水溶液探究酵母菌的细胞呼吸方式CO2蓝色→绿色→黄色重铬酸钾溶液探究酵母菌的细胞呼吸方式酒精橙色→灰绿色龙胆紫(醋酸洋红溶液)观察根尖分生组织细胞有丝分裂染色体深色健那绿(活性染料)用高倍显微镜观察线粒体

过氧化氢酶米氏常数的测定

过氧化氢酶米氏常数的测定 傅璐121140012 一、实验目的 1. 了解米氏常数的测定方法 2. 学习提取生物组织中的酶 二、实验原理 1.米氏反应动力学 (Michaelis-Menten Equation): 米氏方程 2.米氏常数的意义: ①反映酶的种类:Km是一种酶的特征常数,只与酶的种类有关,与酶浓度、 底物浓度无关。 ②米氏常数是酶促反应达到最大反应速度Vmax一半时的底物浓度。其数值大 小反映了酶与底物之间的亲和力:Km值越大,亲和力越弱,反之Km值越小,亲和能力越强。 ③Km可用来判断酶(多功能酶)的最适底物:Km值最小的酶促反应对应底物 就是该酶的最适底物。 3.米氏常数的求法: 该方法的缺点是难以确定最大 反应速度Vmax。

该作图法应用最广。但在低浓度是v值误差较大,在[S]等差值实验时作图点较集中于纵轴。因此在设计底物浓度时,最好将1/[S]配成等差数列,这样可使点距较为平均,再配以最小二乘回归法,就可以得到较为准确的结果。 此法优点是横轴上点分布均匀,缺点是1/v会放大误差,同时对底物浓度的选择有要求。[S]<>Km时直线将在原点附近与轴相交。 4.氧化酶:生物体内重要的三种氧化酶类,其作用均是消除体内自由基: ①POD:过氧化物酶 ②SOD:超氧化物歧化酶 ③CAT:;过氧化氢酶 5.过氧化氢酶的作用: 植物体内活性氧代谢加强而使过氧化氢发生积累。过氧化氢可进行一步生成氢氧自由基。氢氧自由基是化学性质最活泼的活性氧,可以直接或间接地氧化细胞内核酸、蛋白质等生物大分子,并且有非常高的速度常数,破坏性极强,可使细胞膜遭受损害,加速细胞的衰老和解体。过氧化氢酶(catalase,CAT)可以清除过氧化氢、分解氢氧自由基,保护机体细胞稳定的内环境及细胞的正常生活,因此CAT是植物体内重要的酶促防御系统之一,其活性高低与植物的抗逆性密切相关。 6.过氧化氢酶活力的测定方法:

过氧化氢酶及过氧化物酶的作用

生物化学实验指导 一、内容简介 生物化学是一门课堂理论与实验技术相结合的专业基础课。实验主要以生物大分子制备的一般过程以及电泳和层析等生物化学技术为主,采用经典和现代分析技术相结合的实验方法和手段进行设计,实验内容既包含生物化学研究技术的基本方法,又反映生物化学研究技术的发展水平。 开设实验为30学时,共有13 个实验可供选择,其中验证性实验4个,综合设计实验9个。由三部分所组成: 1.酶的性质及活力测定等; 2.蛋白质的分离、纯化、鉴定及含量测定; 3.DNA的提取、分离及含量测定 二、实验教学目标与基本要求 通过本课程学习,使学生掌握常用的生物化学分析与制备技术,理解其基础理论,从而使学生增强对生物化学理论的感性认识,掌握有关生物科学研究的基本技术,并提高学生的动手能力。 四、实验内容 实验1 脂肪含量及其碘值的测定 (一)、脂肪的定量测定 原理

脂肪类化合物一般都溶于有机溶剂(如乙醚、石油醚)而不溶于水或微溶于水,利用此特性,可以用索氏脂肪提取器抽提出样品中的脂肪。索氏脂肪提取器索氏(Soxhlet)脂肪提取器为一回馏装置,由浸提管,小烧瓶及冷凝管三者联接而成,浸提管两侧分别有虹吸管及通气管。盛有样品的滤纸包放在浸提管内,溶剂乙醚(或石油醚)盛于小烧瓶中,加热后,溶剂蒸汽经通气管至冷凝管,冷凝的溶剂滴入浸提管,浸提样品。浸提管内溶剂愈积愈多,当液面达到一定高度,溶剂及溶于溶剂中脂肪类物质经虹吸管流入小烧瓶。 小烧瓶的溶剂由于受热而汽化,气体至冷凝管而滴入浸提管内,如此反复提取回馏,将样品中脂肪类物质提尽并带到小烧瓶中。最后将小烧瓶中的溶剂蒸去,烘干,小烧瓶的增重,就是样品中所含脂肪的量。 因本法提取的物质,除中性脂肪外,还会有游离脂肪酸、蜡、磷脂、固醇及色素等脂溶性物质,固提出的物质只能称粗脂肪。 器材与试剂 器材:天平,索氏脂肪提取管,恒温水浴锅,滤纸。试剂:乙醚(不含有过氧化物,乙醇及水分)沸点36℃。 去过氧化物的处理:将乙醚装入分液漏斗,加入乙醚量1/5的10%硫酸亚铁(100克硫酸亚铁溶于600ml 水中,再加30ml浓硫酸酸化,并稀释至1000ml),充分混合后,澄清分层,放出水液。 过氧化物鉴定法:6ml乙醚于试管中,加 2ml10%碘化钾溶液,猛烈混合,放置1分钟,下层碘化钾呈黄色,即表示有过氧化物存在。 去乙醇的处理:加乙醚量1/5的10%氢氧化钾溶液洗涤,洗后放出水溶液,重复2-3次。去水分的处理:在乙醚瓶中加入适量细粒无水氯化钙,放置一昼夜,时加摇荡,将上层清液移入蒸馏瓶蒸馏。 方法与步骤 1.将洗净的索氏提取器小烧瓶用铅笔在磨口处编号,103-105℃烘2小时至恒重,冷却后准确称重,并记录瓶重。 2.用分析天平称取干样(需研碎过40目筛孔)约2克,用滤纸包好,放入浸提管内,纸包长度不能超过虹吸管高度。 3.于已称重的小烧瓶内倒入1/2-1/3体积的无水乙醚(其量应略大于浸提管内体积),联接索氏提取器各部分(不能涂凡士林)。置约70℃恒温水浴锅内(水必须是蒸馏水或置于电热板上)控制加热温度,使每小时回馏3-5次较宜,一般提取10小时左右。 4.提取完毕,待乙醚完全流入小烧瓶时取滤纸包,再回馏一次以洗涤浸提管。继续加热,待浸提管内乙醚面接近虹吸管上端而末流小烧瓶前,倒出浸提管中的乙醚,如果小烧瓶中尚留乙醚,则继续加热蒸发,直至小烧瓶中溶剂基本蒸完。停止加热,取下小烧瓶,用吹风机在通风橱中将瓶中残留乙醚吹尽。再置103-105℃烘箱中烘半小时,取出冷却后立即称重。 5.计算:粗脂肪含量(%)=提取瓶的增重(g)/样品重量(g)×100 注意事项乙醚为易燃品,切忌明火加热,同时要注意提取器各联接处有否漏气以及冷凝管效果是否良好,以免大量乙醚气外逸,使人麻醉。 (二)、碘值的测定 [原理] 脂肪中的不饱和脂肪酸碳链上有不饱和键,可以吸收卤素(Cl2、Br2或I2)。不饱和键数目越多,吸收的卤素量也越多。每100克脂肪,在一定条件下,所吸收的碘的克数,设为该脂肪的碘值,即碘值愈高,不饱和脂肪酸的含量愈高。 碘值是检定和鉴别油脂的一个重要常数,可以用来推算油、脂的定量组成。由于碘和脂肪的加成作用很慢,本实验采用汉诺斯(Hanus)溶液,它由碘与溴相混合产生IBr,溴化碘更易与脂肪起加成作用,该溶液中加入冰醋酸,可使溶液更加稳定,反应过程如下:

过氧化氢酶产生菌的研究

过氧化氢酶产生菌的研究 摘要:过氧化氢酶一类以过氧化氢为专一底物,通过催化一对电子的转移而最终将其降解为水和氧气的酶。 关键字:过氧化氢酶发酵调控 过氧化氢酶简介 过氧化氢酶(Hydrogen peroxide oxidoreductase,catalase EC 1.11.1.6.) 是一类以过氧化氢为专一底物,通过催化一对电子的转移而最终将其降解为水和氧气的酶。研究表明几乎所有的需氧微生物中都存在过氧化氢酶,只有少数好氧菌如过氧化醋杆菌Acetobacter peroxydas 不存在过氧化氢酶。除谢氏丙酸杆菌Propionibacterium shermanji 和巨大脱硫弧菌Desulfovibrio gigas 等微生物外,绝大多数厌氧微生物体内不存在过氧化氢酶。根据过氧化氢酶在结构和序列水平上的异同将其划分为 3 个亚群,即单功能过氧化氢酶(Monofunctional catalase or Typicalcatalase)、双功能过氧化氢酶(Catalase-peroxidase) 和假过氧化氢酶(Pseudocatalase or Mn-catalasee)。大多数的过氧化氢酶由4 个相同的亚单位组成,分子量在240 kDa 左右,在亚基的活性部位各含一个血红素基团。来自哺乳动物以及某些真菌和细菌的过氧化氢酶还含有 4 个紧密结合的NADPH 分子。过氧化氢酶可被氰化合物、苯酚类、叠氮化物、过氧化氢、尿素及碱等物质所阻抑。过氧化氢酶主要集中存在于细胞的过氧化物酶体中,另外线粒体和细胞质中也含有少量的过氧化氢酶。过氧化氢酶能及时分解细胞内产生(主要为SOD 歧化产物) 或由胞外进入细胞的过氧化氢。避免了过氧化氢通过Fenton 和Harber-weiss 反应产生·OH。同时过氧化氢酶还能对血红蛋白及其他含巯基蛋白质起到保护作用,使它们不被氧化。人们研究过氧化氢酶的历史可追溯到100 多年前,早在1811 年就已发现动植物组织可以分解过氧化氢产生氧气,到1892 年Jacobson 证明了在动植物组织内有专一分解过氧化氢的酶,即过氧化氢酶的存在。1901 年Loew 第一次报道了过氧化氢酶的生物化学特性。到1937 年,Sumner 和Dounce 首次从牛的肝脏中分离得到过氧化氢酶的结晶,这是最早分离得到的高纯度酶之一。随后相继报道了哺乳动物的肝脏、红细胞及大多数微生物体内均含有此酶,其中哺乳动物组织中过氧化氢酶的含量差异很大,肝脏中含量最高,

实验二 过氧化氢酶高效性实验

实验二过氧化氢酶高效性实验 一、实验目的: 比较过氧化氢在不同催化剂下的分解速度。 二、实验原理: 酶是生物体产生的具有催化作用的物质,大多为蛋白质,少量为RNA。酶是生物体内生化反应不可缺少的物质。 酶催化作用具有高效性。如生物体内的过氧化氢酶能够高效的分解对生物体有害的物质——H2O2,方程式为2 H2 H2O→催化剂→2 H2O+ O2↑。在密闭容器内,根据氧气浓度的变化,可判断氧气产生的多少,从而推断出催化剂的催化效率。 三、实验器材及试剂: 数据采集器、氧气传感器、自制实验瓶、水槽、热水、3%过氧化氢溶液、3.5% FeCl3溶液、20%新鲜肝脏研磨液。 四、实验过程: 1.实验瓶的制作:选用内径与氧气传感器探头外径紧密插拔的饮料瓶2个(约300ml左右),1ml注射器2支,微量移液吸嘴4支,笔芯堵头2个,502速干胶制作实验瓶。将吸嘴倒沾到瓶盖上,头部插上笔芯堵头,制成实验瓶。 2.连接计算机、数据采集器及氧气传感器,打开计算机,进入V6.5实验软件系统。点击“通用软件”,系统自动识别所接入的传感器,并显示当前环境的氧气浓度值。 3.将氧气传感器分别置于两瓶内,待示数稳定后测得瓶中氧气浓度的初始数据。

4.将2个实验瓶编号、贴上标签:1号瓶注射器吸入1ml 3.5% FeCl3溶液,接插在微量移液吸嘴上;2号瓶注射器吸入1ml 20%新鲜肝脏研磨液,接插在微量移液吸嘴上。 5.分别向1、2号瓶加入50ml新配制的体积分数为3%的过氧化氢溶液,将2个实验瓶置于37℃的温水中,推动注射器活塞将注射器内试剂注入实验瓶内。 6.10min后将氧气传感器分别置于两瓶内,待示数稳定后测得氧气浓度终结数据,进行数据分析。 五、实验数据分析: 1号实验瓶氧气终结数据为21.9%,差值3.0%;2号实验瓶氧气终结数据为44.2%,差值25.3%.说明过氧化氢酶催化过氧化氢的效率远远大于FeCl3。(经计算,质量分数为3.5% FeCl3溶液和质量分数为20%的肝脏研磨液相比每滴FeCl3溶液中的Fe+是每滴肝脏研磨液中过氧化氢酶分子数的25万倍。) 六、实验结论: 酶催化作用具有高效性的特点。

相关文档
最新文档