A 变频器调试永磁同步电机参数设置

A 变频器调试永磁同步电机参数设置
A 变频器调试永磁同步电机参数设置

ABB变频器调试永磁同步电机参数设置

三、日期与时间

四、控制环

五、标记给定

六、传送信息

故障显示

E:变频器故障。联系供应商F:变频器停车

A:变频器不停

发电机调试方案

发电机调试方案标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

发电机试验是检查发电机投运前检验其在制造、运输、安装过程中是否受损的重要手段。根据《电气装置安装工程电气设备交接试验标准》(GB50150-91)的规定,发电机容量在6MW以上的同步发电机应进行以下项目试验,为安全、正确地将各项试验工作顺利完成,特制定本试验方案要求试验人员认真负责地遵守各项试验程序。 发电机部分 一、测量定子线圈的绝缘电阻和吸收比 l、试验接线:被试相短接后与兆欧表端子相连,其绝缘良好,非被试相短路后接发电机外壳。 2、测量方法:兆欧表校正无误后,接通被试相进行绝缘测定,并分别记录15"和60"的兆欧值,R60与R15之比值即为吸收比,1min后停止测量,并对被试相放电后,改接线测量另两相的绝缘电阻。 3、试验标准 各绝缘电阻的不平衡系数应不大于2,吸收比应不小于。 二、测量定子绕阻的直流电阻 l、测量方法 用双臂电桥分别测定发电机定子线圈和转子线圈直流电阻,并同时记录线圈表面温度,直流电阻应在冷状态下测量,测量时线圈表面温度与周围室内空气温度之差应在土3℃范围内。

2、试验标准 各相的流电阻,相互间差别不得大于最小值的2%,与产品出厂时测量得的数值换算至同温度下的数值比较,其相对变化也不应大于2%。 三、定子线圈直流耐压试验和泄漏电流测量。 定子绕阻的绝缘电阻和吸收比合格后,即可进行直流耐压试验。 1、试验所需设备,JGF—80型直流高压发生器1套。 2、直流试验电压确定(V):V=3*VH=3*6300V=18900(V)。 3、试验接线如附图(1):非被试相短路接地于电机外壳上,转子绕阻短路接外壳。 4、试验步骤 试验电路接好后,首先检查各仪表指针是否在零位,量程是否合适,调压器是否在零位。一切无误后,在不接被试品的状态下,先将试验电路进行空试,试验电压按每级倍额定电压分阶段升高,每阶段停留一分钟,读微安表的指示值,然后将电压降至0,断开电流。 试验电路经空试正常后,将电机被试相首尾短接后,接入试验电路,为两相短接后接入电机外壳上。对被试设备加压时,试验电压按每级分阶段升高,每阶段停留1分钟,观察泄漏电流的变化。如无异常,当升到最高试验电压后停留1分钟,读取泄漏电流,一相试完后,降下试验电压断开电源,对被试设备及电容器放电并接地,改试其余两相。若有异常,立即降压查明原因,并消除之,后再试验。

永磁同步电机参数测量试验方法

一、实验目的 1. 测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 二、实验内容 1. 掌握永磁同步电机dq 坐标系下的电气数学模型以及机械模型。 2. 了解三相永磁同步电机内部结构。 3. 确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。 三、拟需实验器件 1. 待测永磁同步电机1台; 2. 示波器1台; 3. 西门子变频器一台; 4. 测功机一台及导线若干; 5. 电压表、电流表各一件; 四、实验原理 1. 定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。I d 为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: 1 ,2a d b c d I I I I I ===- (1) 23d s d U R I = (2)

图1 电路等效模型 2. 直轴电感的测量 在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。测定定子电阻后,关断功率开关管,永磁同步电机处于自由状态。向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如 U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为: d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3) 对于d 轴电压输入时的电流响应为: ()(1)d R t L U i t e R -=- (4) 利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中U /R 为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的倍时,1d R t L - =-,电感与电阻的关系式可以写成: 0.632d L t R =? (5) 其中为电流上升至稳态值倍时所需的时间. 3. 交轴电感的测量 测出L d 之后,在q 轴方向(d 轴加90°)施加一脉冲电压矢量。电压矢量的作用时间一般选取的很短 ,小于电机的机械时间常数,保证电机轴在电压矢量作用期间不会转动。则q 轴电压方

安川变频器的调试及参数设置表(齐全)

第一部分变频器的操作方法 一、操作面板各部的名称: 图1 操作面板布置 二、操作键的功能: LOCAL/REMOTE:用数字操作器运行(COCAL)和用控制回路端子运行(REMOTE)切换时按下,由参数(o2-01)可设定这个键的有效/无效。 MENU:菜单键,按此键可进入参数设置。 ESC:按一下ESC键,则回到前一个状态。 JOG:操作器运行时的点动运行键。

FWD/REV:操作器运行时,运转方向切换键。 RESET:设定参数数值时,选择操作位;故障发生时,作为故障复位键。 增加键:选择方式、组、功能、参数的名称、设定值(增加)时按下此键。 减少键:选择方式、组、功能、参数的名称、设定值(减少)时按下此键。 DATA/ENTER:各模式、功能、参数、设定值确认时按下此键。RUN:操作器运行时,按下此键起动变频器。 STOP:操作器运行时,按下此键停止变频器;控制回路端子运行时,由参数(o2-01)可以设定这个键的有效/无效。 三、方式的切换 按(MENU)键,表示驱动方式,然后按、键切换方式。读取、设定各方式中参数时,按(DATA/ENTER)键。从参数的读取、设定状态返回前一状态时,按(ESC)键。具体操作如下图:

图2 方式的切换 四、操作举例 把加速时间从变更为,请按以下顺序设定参数: 五、在驱动方式下的操作 在驱动方式下,可监视频率指令、输出频率、输出电流、输出电

压、输入输出状态等及显示异常内容、异常记录等。常用监视参数:

图3 驱动方式下的操作方法 第二部分变频器的调整 确认电机旋转方向 把电梯的检修开关置于检修位置,按检修上行或检修下行按钮,电梯将以检修速度上行或下行,观察电梯的运行方向是否跟所要求的方向一致,速度是否正常。如有异常,按下表中的方法进行处理:

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

发电机安装与调试方案

张家港保税区热电厂二期工程 锅炉、汽机、电气设备安装工程 发电机安装与调试方 案 中国化学工程第六建设公司 二○○二年三月二十七日

目录 一、编制说明 二、编制依据 三、工程概况 四、施工程序 五、施工方法、技术要求及质量控制 六、主要施工机具及劳动力组织 七、安全措施及注意事项 八、质量保证措施

一、编制说明 应工程投标需要及便于施工准备,特编制本方案。待资料齐备之后,再补充或编制新方案,交施工处(队)执行。 二、编制依据 1、张家港保税区热电厂二期工程锅炉、汽机、电气设备安装工程 2、电气装置安装工程电缆线路施工及验收规范(GB50168-92) 3、电气装置安装工程旋转电机施工及验收规范(GB50170-92) 4、电气装置安装工程电气设备交接试验标准(GB50150-91) 5、本企业标准Q/LJ010503.04-91高压同步电机电气试验 6、本企业部级工法GF、LJ07.08-94,35KV及以下热缩型电缆头制作工法 7、本公司施工过的同类工程施工技术方案 三、工程概况 从招标文件看,本工程设计汽轮发电机2台,额定功率为12000kw,其他数据及资料尚待设计定。 四、施工程序 基础验收→定子和转子安装→集电环和电刷安装→电缆敷设→电缆头制作及电缆试验→电缆接线→电机干燥→底座绝缘试验→电机本体试验→可控硅励磁系统调试→电机控制及保护系统调试→电机系统调试→空载试车→负荷试车 五、施工方法、技术要求及质量控制 1、基础验收 由工艺设备安装专业进行。 2、定子和转子安装。 由工艺设备专业安装,电气专业配合。注意观察埋入式测温元件的引出线和端子板应清洁、绝缘,其屏蔽接地良好。电机的引线及出线的接触面良好、清洁、无油垢,镀银层不应锉磨。引线及出线连接紧固,采用铁质螺栓时,连接后不得构成闭合磁路。 3、集电环和电刷安装 亦由工艺设备专业安装,电气专业配合检查。接至刷架的电缆,

M700驱动菲仕永磁同步电机参数调试

CT Unidrive M700系列驱动器和菲仕永磁同步伺服马达调试案例●调试技术要求: ?菲仕永磁同步伺服电机闭环 ?上位机罗克韦尔PLC以太网通讯 ●驱动器参数调试步骤: 1.确认驱动器和电机型号、规格等参数: CT Unidrive:M700-03400100A10100AB100+KI-Keypad Phase Motor:U30730A15.3 2.驱动器初始化操作: ?断开STO/使能(T22和T31)或者Pr06.015=>OFF(初始化准备); ?Prmm.000=>1253(50Hz交流电源频率); ?Pr00.048=>RFC-S(运行模式设定);

?按下红色复位按键(初始化完成)。 ?接通STO/使能(T22和T31)或者Pr06.015=>ON(驱动器使能待机) 3.更改用户安全级别/访问级别: ?Pr00.049=>1(所有菜单均允许编辑) 4.编码器相关接线和参数设定: ?菲仕电机编码器为绝对型,和CT驱动器完美兼容,接线图如下图所示: ?Pr03.024=>0(RFC反馈模式:Feedback); ?Pr03.026=>0(电机控制反馈选择:P1 Drive); ?Pr03.034=>2500(P1每转旋转脉冲数:2500PPR); ?Pr03.036=>0(P1电源电压:5V); ?Pr03.038=>3(P1设备类型:AB Servo); ?Pr03.039=>1(P1终端选择:AB启用,Z不启用); ?Pr03.118=>1(P1热敏电阻类型:KTY84)。 5.电机参数设定和参数自调谐:

?Pr05.007=>7.4(额定电流:7.4A); ?Pr05.008=>1500(额定转速:1500RPM); ?Pr05.009=>362(额定转速:1500RPM); ?Pr05.011=>8(电机极数:8Poles); ?Pr05.033=>224(每1000转电压:224V/1000RPM); ?Pr05.012=>2(电机自调谐方式:ROTATING,※电机旋转自调谐务必保证电机 光轴,无负载输出); ?Pr01.014=>4(给定选择器:Keypad); ?按下键盘绿色运行按键,键盘显示Auto Tune,电机旋转自调谐,如果自调谐成 功完成,键盘显示Inhibit。 ?Pr06.015=>OFF(驱动器使能关闭); ?Pr06.015=>ON(驱动器使能打开); 观察电机参数变化,反复执行上述操作至少3次,直至Pr03.025保持一个恒定值:?Pr05.017=>?(M1定子阻抗); ?Pr05.024=>?(M1Ld); ?Pr05.072=>?(M1空载Lq); ?Pr03.025=>?(位置反馈相角); 至此,电机参数自调谐成功调试完毕。 ?保存参数:Prmm.000=>1000,按下红色复位键(此步骤驱动器掉电之前务必操 做一次否则重新上电参数未保存驱动器E2PROM)。 6.其他参数: ?Pr01.007=>0(最小给定值:0.0RPM);

变频器如何调试

安伟,致力成为变频器中的“戴尔”变频器行业专用,特价,维修,方案系统,咨询 尽在http;//www.yapuda.com

变频器调试的工作步骤 一、通电前的准备工作 1、先检查变频器的接线和配线。 a、检查进出线主电源连接是否正确、可靠。电源电压的等级是否符合 变频器使用说明的要求,连接是否牢固。绝缘层有无破损。仔细检 查端子排有无松脱,是否存在短路等隐性故障。接地是否良好。 b、检查变频柜内控制回路的进线连接和电压等级是否符合变频柜的应 用要求。各连接线连接是否牢固,绝缘层有无破损,各电路板连接 插头接插是否牢固。 c、清理变频柜内部杂物,再次确认主电源进线、控制回路线路、接地 线、零线的连接有无不当之处.保持变频器周围的环境清洁、干燥, 严禁在变频器附近放置杂物。认真检查有无遗漏的螺丝及导线等, 防止小金属物品造成变频器短路事故。 2、咨询用户的系统控制要求(控制方式)及管网压力设定要求(通俗的说就是 了解用户要求的供水压力是多少),记录下来。 3、如果变频柜控制的是潜水泵,咨询用户明确潜水泵的电机相关参数:额定功 率、额定转速、额定电流等,确认后纪录下来。如果控制的是离心泵或风机就将电动机铭牌上的参数记录下来,以便在进行变频器的程序设定时能将电动机的参数准确输入,从而实现变频器保护的准确和控制的精确。 4、检查用户的管网安装连接是否符合我们的安装图,如果用户未按照我们的图 纸安装施工,特别要注意的是单流阀和检测仪表的安装位置。我们要向用户陈述让其明白不当安装的利害关系。其一,如果控制的是深井潜水泵,不安装单流阀(单向阀)在停泵的时候,管道中的水会往井内倒流(从井中抽出来的水,又回流到了井内)这样不仅造成了电能的白白浪费。又因潜水电泵(其他类型的泵也是如此)是禁止反转运行的(祥见使用说明书)而水在回流的过程中会引起潜水电泵的反向运转,常期会造成潜水电泵内的紧固件松动,发生机械故障。其次,因为我们的供水管道是个全密闭的系统,管道中的水在往井内回流的过程中,会在管道内部形成近似真空的状态,而我们安装在管道上的压力检测仪表会因为管道内的真空负压反吸而造成损坏,进而造成我们的设备因检测仪表的失灵而无法启动。 5、检查压力检测仪表与变频器的接线是否牢固,连接是否正确。我们的压力检 测仪表的接线规则:屏蔽线的红色线接仪表内的红色引出线、屏蔽线的黄色线接仪表内的黄色引出线、屏蔽线的绿色线(兰色)线接仪表内的蓝色引出线。变频器内的端子接线规则:屏蔽线的红色线接变频器内反馈端子的负端、屏蔽线的黄色线接变频器内反馈端子的输入端、屏蔽线的绿色(兰色)线接变频器内反馈端子的电源端。如果是丹佛斯的变频器要在屏蔽线的绿色(兰色)线串接一个300 ~ 500欧姆的电阻然后接到变频器反馈端子的电源上。6、检测水泵电机的电机线绝缘是否良好,有无破损,线径是否达到要求。先检 测水泵电机的三相阻值是否平衡,有条件的情况下用兆欧表摇测一下水泵电机的对地绝缘,在用变频器控制的情况下绝缘阻值必须大于20兆欧以上。检查水泵电机的电源线的线径是否符合使用说明书中的线径要求。如果是离心泵可以用手去盘动水泵的驱动轴,检查转动是否灵活,如果转不动,拆除电

11KW调速永磁同步电动机电磁设计程序2

11KW变频起动永磁同步电动机电磁设计程序 及电磁仿真 1永磁同步电动机电磁设计程序 1.1额定数据和技术要求 除特殊注明外,电磁计算程序中的单位均按目前电机行业电磁计算时习惯使用的单位,尺寸以cm(厘米)、面积以cm2(平方厘米)、电压以V (伏)、电流以A (安八功率和损耗以(瓦)、电阻和电抗以门(欧姆)、磁通以Wb(韦伯)、磁密以T(特斯拉)、磁场强度以A/cm(安培/厘米)、转矩以N (牛顿)为单位。 1额定功率P n =11kW 2相数叶=3 3额定线电压U N1 =380V 额定相电压丫接法U N =U N1 / 3 = 219.39V 4额定频率f =50HZ 5电动机的极对数P=2 6额定效率N =0.87 7额定功率因数cos N =0.78 8失步转矩倍数T;°N =22 9起动转矩倍数T;N =22 10起动电流倍数I;N =2.2 12 额定转速n N =1000r/min 13额定转矩T N二9.55P N 103二 9.55 11 二105.039N.m n N 11额定相电流I N P N X105 0U N N COS N 11 105 3 219.39 0.87 0.78 A-24.62

14绝缘等级:B级 15绕组形式:双层叠绕Y接法 1.2主要尺寸 16铁心材料DW540-50硅钢片 17转子磁路结构形式:表贴式 18气隙长度:=0.07cm 19定子外径D1 =26cm 20定子内径D i1 =18cm 21 转子外径D2二D H—2、=(18 -2 0.07)cm =17.86 22转子内径D i2 =6cm 23定,转子铁心长度h日2 =15cm 24铁心计算长度l a J =15cm 铁心有效长度l ef =la 2、=(15 2 0.07)cm = 15.14cm 25定子槽数Q1 = 36 26定子每极每相槽数q =Q1 /2gp =36/2 3 3=2 27极距巨p =蔥D i1/2P =3.14 18/2 9.728cm 28定子槽形:梨形槽定子槽尺寸 h01= 0.08cm b01= 0.38cm bi = 0.78cm r1 二 0.53cm h o2 = 1.72cm 巧“18^ 29定子齿距t1卩 1.5708cm Q136

最新新能源汽车电机逆变器Power-HiL测试方案

新能源汽车电机逆变器Power HiL测试方案 新能源汽车电驱动系统的开发对业界来说是一个新的挑战,因为以往在传统的驱动系统开发上积累的测试规范和测试循环的相关经验并不能直接套用,并且需要新的流程。这是因为高电压部件的出现以及其要遵从国内和国际法规(比如ECE-R 100)和标准(比如 IEC 61851)。汽车E/E 系统必须同时具备实用、耐久、安全、紧凑、轻量化以及高效的功率和低成本这些特点。这些要求施加了高复杂性,尤其在系统级别上。 随着测试技术的进步,Power-HiL的出现电子部件的LV-HiL及网络测试的之间的空缺。Power-HiL方法能够进行控制接口的仿真,和高电压、高电流、高功率的仿真,这些是与实际应用情况精确吻合的,并且是可以复现的。任何现实中缺失的部件都可以使用各种高电压的模拟器代替。它们能够按照特定模型、系统特定硬件和实际工作点,来生成相应的电压和电流。特别地,这种Power-HiL 的方法能够使得部件在不影响其他部件的情况下一直工作在特定工作点下。 德国Scienlab能够实现对电驱动系统从各模块到整个系统的递进式测试,而且是全电气化的功率级仿真测试。在过去的几年中,Scienlab的Power-HiL 测试环境成为了测试电力电子车辆部件系统的非常成功的产品。典型的应用领域包括能量存储、逆变器、充电技术以及车载电气系统和动力传动系统。 系统组成: 针对新能源汽车电机逆变器的实际特点和工作需求,Scienlab逆变器提供一个优化的测试方案,通过高品质的电机模拟器及电池模拟器仿真逆变器实际的交流和直流工作环境,对逆变器的软件和硬件进行功率级的测试,同时作为一个开放的平台,支持汽车行业主流的HiL系统(如dSPACE、ETAS、MicroNova等),支持主流的环境温仓。为了保护被测的逆变器、测试台架以及人员安全,Scienlab 还有专门的独立的安全保护系统来确保安全。

永磁同步电机学习笔记

1.内功率因数角:定子相电流与空载反电势的夹角,定子相电流超前时为正。 2.功率角(转矩角):外施相电压超前空载反电势的角度,是表征负载大小的象征。 3.功率因数角:外施相电压与定子相电流的夹角。 4.内功率因数角决定直轴电枢反应是出于增磁还是去磁状态的因素。 5.实际的空载反电势由磁钢产生的空载气隙磁通在电枢绕组中感应产生,当实际反电势大于临界反电势时,电动机将处于去磁工作状态。空载损耗与空载电流是永磁电机出厂试验的两个重要指标,而空载反电势对这两个指标的影响尤其重大。空载反电势变动时空载损耗和空载电流也有一个最小值,空载反电势设计得过大或过小都会导致空载损耗和空载电流的上升,这是因为过大或过小都会导致空载电流中直轴电流分量急剧增大的缘故。还对电动机的动、稳态性能均影响较大。永磁机的尺寸和性能改变时,曲线定子电流I=f(E)是一条V形曲线。(类似于电励磁同步机定子电流和励磁电流的关系曲线) 6.由于永磁同步电动机的直轴同步电抗一般小于交轴同步电抗,磁阻转矩为一负正弦函数,因而矩角特性曲线上最大值所对应的转矩角大于90度,而不像电励磁同步电机那样小于90度。这是一个特点。 7.工作特性曲线: 知道了空载反电势、直轴同步电抗、交轴同步电抗和定子电阻后,给出一系列不同的转矩角,便可以求出相应的输入功率,定子相电

流和功率因数,然后求出电动机在此时的损耗,便可以得到电动机出去功率和效率,从而得到电动机稳态运行性能与输出功率之间的关系曲线,即为电动机工作曲线。 8.铁心损耗: 电动机温度和负载变化导致磁钢工作点改变,定子齿、轭部磁密也随之变化。温度越高,负载越大,定子齿、轭部的磁密越小,铁耗越小。工程上采用与感应电机铁耗类似的公式,然后进行经验修正。 9.计算极弧系数: 气隙磁密平均值与最大值的比值。它的大小决定气隙磁密分布曲线的形状,因而决定励磁磁势分布的形状、空气隙的均匀程度以及磁路的饱和程度。其大小还影响气隙基波磁通与气隙总磁通比值,即磁钢利用率,和气隙中谐波的大小。 10.永磁电机气隙长度: 是非常关键的尺寸。尽管他对于永磁机的无功电流影响不如感应电机敏感,但对于交直轴电抗影响很大,继而影响电动机的其他性能。还对电动机的装配工艺和杂散损耗影响较大。 11.空载漏磁系数: 是很重要的参数,是空载时总磁通与主磁通之比,是个大于1 的数,反映空载时永磁体向外磁路提供的总磁通的有效利用程度。空载漏磁系数以磁导表示的表达式又正好是负载时外磁路应用戴维宁定理进行等效转换的变换系数,同时由于负载情况的不同,电枢磁动势大小不同,磁路的饱和程度也随之改变,气隙磁导、漏磁导

安川 G7变频器调试说明

安川 G7变频器调试说明 一、变频器参数的设定方法: 1、变频器操作器上共有11个按键: 1)LOCAL/REMOTE本地与远程控制转换键; 2)MENU 选择菜单键,用来选择个模式; 3)ESC 返回键,按下此键则返回到前一个状态; 4)JOG 点动键,操作器运行时的点动运行键; 5)FWD/REV 正转/反转键,操作器运行时,切换旋转方向; 6)〉/RESET移位/复位键,选择设定参数数值的位数键,故障发生时 作为故障复位键使用; 7)∧增加键,选择模式,参数编号,设定值(增加)等等; 8)∨减少键,选择模式,参数编号,设定值(减少)等等; 9)DATA/ENTER数据/输入键,决定各模式,参数的编号,设定值; 10)RUN运行键,用操作器运行时,按此键启动变频器; 11)STOP 停止键,用操作器运行时,按此键停止变频器; 2、变频器参数的设定方法: (1)在监视界面下按下MENU键,界面显示“Operation”,连续按下MENU 键会在如下5个菜单之间来回转换: 1)Operation 驱动模式,在此模式下按下DATA/ENTER键,变频器 会回到监视界面; 2)Quick Setting QUICK程序模式,初始设定; 3)Programming ADVANCED程序模式,变频器全部参数设定; 4)Modified Consts 校验模式,已设定过的与出厂值不同的参数; 5)Auto Tuning 字学习模式,对电机参数进行自学习; (2)Quick Setting初始设定举例(设定A1-02=3 带PG矢量控制):在监视界面下按下MENU键,直至显示“Quick Setting”界面,再 按“DATA/ENTER”键,显示“A1-00=0”,再按“〉/RESET”键,此 时“00”闪动,再按“∧”键,将“00”改为“02”,再按“DATA/ENTER” 键后,将数值改为“03”,再按“DATA/ENTER”键,A1-02就被设 置成“03”即带PG矢量控制模式; (3)P rogramming参数设定举例:(设定F1-01=1024 编码器脉冲数)在监视界面下按下MENU键,直至显示“Programming”界面,再按 “DATA/ENTER”键,显示“A1-00=0”,此时“A1”闪动,再按“∧” 键,直至出现“F1-01=0”,此时“F1”闪动,再按再按“〉/RESET”

机电系统综合调试方案

第1节机电系统综合调试 7.13.1、机电系统调试计划 机电系统单项调试开始时间表

7.13.2、电气系统调试 (1) 调试方案 电气系统送电试运行应在高、低压供配电调试正常后进行。在正式送电前应编制详细的送电方案,成立相应的送电运行小组,做好送电安全防护等工作。 (2)、配电柜试运行 ①、配电柜试运行前,检查配电柜内有无杂物,安装是否符合质量评定标准。相色、铭牌号是否齐全。 ②、在未闭合主开关时,直投柜要校相。 ③、将开关柜内各分开关处于断开位置。当主开关闭合后,逐个合上分开关。 ④、摘掉电动机接线端子,联动控制设备,看接触器动作逻辑是否按设计要求及动作是否可靠。 ⑤、在空载情况下,检查各保护装置的手动、自动是否灵活可靠。 ⑥、在负载运行时,切断弱电系统中的线路,测弱电端子,感应电是否符合厂家要求。 ⑦、送电空载运行24 小时,无异常现象,经监理工程师及甲方检查确认后,向监理公司及甲方各报一份存档。 (3)、电机试运行 ①、电机试运行前,用1000V 兆欧表测量电机绕组的绝缘电阻,在常温下绝缘电阻值不低于0.5MΩ。 ②、电动机的第一次启动在空载下运行,首先点动,无问题时,空载运行时间 2 小时。开始运行及每隔1 小时要测量并记录其电源电压和空载电流、温升、转速等。 ③、电动机在运行时进行电机的转向、换向器、滑环及电刷工作情况、电机温升等到的检查。 ④、交流电动机在空载状态下可启动次数及时间间隔应符合产品技术条件的要求;无要求时,连续两次启动时间不应小于5 分钟,再次启动应在电动机冷却至常温后。 ⑤、交流电动机的带负荷连续起动次数,如生产厂家无规定时,可按下列规定: A、在冷态时,可连续起动二次;

永磁同步电机使用与维护手册

永磁同步电机使用与维护手册 一、特点与用途 本公司TYBZ系列三相稀土永磁同步电动机采用高性能稀土永磁励磁,因此各项性能都较先进,是现代各工业部门高精度转速使用场合理想的驱动电动机。该电机可与变频调速装置配套使用,具有调速性能优异,节能效果明显,应用范围广泛等优点,现已广泛应用于纺织、化纤、造纸、玻璃、塑料、印刷、冶金、军工等行业。 二、工作条件 主要技术数据参见铭牌 环境温度:-15℃~+40℃ 海拔:不超过1000m 湿度:环境相对湿度不超过90% 防护等级:IP54或IP44 绝缘等级:F级 接法:Y或△ 工作制:连续(S1) 注:如电机在海拔超过1000m或最高环境空气温度高于40℃或低于-15℃的条件下使用时,应按GB/T755的规定。 三、使用注意事项 1开箱前请先检查包装是否完整、有无受潮现象,在搬运和安装时,必须小心轻放,不得随意倾斜、倒置。有吊环的电机应将吊环拧紧,

并尽量使用吊环吊装。 2仔细检查电机在运输过程中有否损坏,各零配件是否完整,紧固件有否松动或脱落。 3详细核对电机铭牌数据,是否符合选用要求。 4电机安装应符合有关规定,与主机或基础的安装必须可靠。 5电机使用场所应保持良好的通风和冷却条件。 四、电机的接线 1用500V兆欧表测量电机绝缘电阻,其值不应低于1MΩ,在工作温度下不低于0.38MΩ。 2电机使用时必须可靠接地。(接地端子在接线盒内) 3电机接线盒内有6个带标志的出线,分别用6个接线柱连接,并按照铭牌上规定的接法接成Y或△,U1、V1、W1三端与电源连接。 五、电机的调试 1电机按规定接线后,应先进行空载运转,经检查无异常情况后,方可进行负载运行。 2变频电机需配变频器运行,参数设置请按照电机铭牌数据,例如:使用V/F控制时,TYBZ-300-100L-4,10-100HZ,38-380V其压频比为3.8,即电机的额定频率(基本频率)为100HZ,额定电压为380V,负载较大时或者频率较低时适当加一些转矩提升和IR补偿。电机的压频曲线如图: U、T(%)

西威变频器调试资料

西威变频器调试资料 一.变频器线路说明 1.同步变频器选型方法 2.与常见微机板匹配注意事项(蓝光、新时达、中秀、奔克、里霸) 3.与常用曳引机匹配注意事项(蓝光、欣达、孚信、阿尔法、蒙特纳利、威特) 4.端子与接线说明 二.外部部件说明与选配 1.制动电阻选型 2.滤波器选型 3.编码器与分频卡 海德汉 hipeface 内密控 4.旋转变压器与RES卡 三.操作说明 1.面板操作说明 2.参数修改步骤 3.参数保存方法 4.参数初始化方法 四.参数设置表及简要说明 五.变频器自学习调试 1.电流自学习 2.无齿定位自学习 六.速度曲线与时序的说明 七.舒适感调试说明 1.PI调节

2.预转矩调试 八.常见显示错误与处理方法 1.报警清除方法 2.软件报错的说明 3.硬件故障处理方法 九.与新增、改变内容对照表 十.附录1 版本说明 十一.反馈表 一.变频器线路说明 1.同步变频器选型方法 当永磁同步无齿曳引机选配变频器型号时,除了要符合曳引机的铭牌参数外,一般还需要满足I b>,的电流公式。I b:变频器的额定电流。I j:曳引机的额定电流。 2.与常见微机板匹配注意事项(蓝光、新时达、中秀、奔克、里霸)(未完善) 因西威变频器软件系统比较强大,启动时比一般变频器要慢。在电梯系统上电后,变频器正常信号给的比较慢,新时达微机板等会不断的断合变频器电源,从而无法正常

运行运行。具体处理方法:将变频4060号参数置1(反),微机板中Drive OK输入端设为常闭有效。 3.与常用曳引机匹配注意事项(蓝光、欣达、孚信、阿尔法、蒙特纳利、威特) (未完善) 进口曳引机参数不详,,具体参数要向曳引机销售方咨询。 4.端子与接线说明(详细参见说明书P50) a、主线路注意事项 制动电阻应接在BR1和C之间,不能接在C和D或者D和BR1之间,如 果接错会损坏变频器 主线路端子在接线时要拧紧,不然会影响变频器和电机性能,容易产生故 障 b、控制线路注意事项 采用变频器内部24V时,需要将变频器18、19端子接入回路。 在使用41、42端子时,需要与46形成回路详细参见说明P43页电位说明 当曳引机在安装与设计相反时,如果要调换方向需要将13,14调换的同时, 微机板上A+与A-、B+与B-也要调换。 c、接线端子定义可以参考下面几个图

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell软件中的RMxprt模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 T。本例所永磁同步电动机的效率η、功率因数cos?、起动转矩st T和最大转矩max 设计永磁同步电动机的额定数据及其性能指标如下: 计算额定数据:

(1) 额定相电压:N 220V U U == (2) 额定相电流:3 N N N N N 1050.9A cos P I mU η??== (3) 同步转速:160=1000r /min f n p = (4) 额定转矩:3 N N 1 9.5510286.5N m P T n ?==g 2.2 主要尺寸和气隙长度的确定 永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式 估算得到: 2 i11P D L C n '= N N N cos E K P P η?'=, 6.1p Nm dp C K K AB δ α=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。 E K 为额定负载时感应电势与端电压的比值,本例取0.96;p α'为计算极弧系数, 初选0.8;Nm K 为气隙磁场的波形系数,当气隙磁场为正弦分布时等于1.11;dp K 为电枢的绕组系数,初选0.92。A 为电机的线负荷,B δ为气隙磁密,A 和B δ的 选择非常重要,直接影响电机的参数和性能,应从电机的综合技术经济指标出发 来选取最合适的A 和B δ值,本例初选为200A/cm,0.7T A B δ==。 由上式可初步确定电机的2i1D L ,但要想进一步确定i1D 和L 各自的值,还应选择主要尺寸比i1i122L L pL D D p λπτπ===,其中τ为极距。通常,中小型同步电动机的0.6~2.5λ=,一般级数越多,λ也越大,本例初选1.4。 永磁同步电动机的气隙长度δ一般要比同规格的感应电动机的气隙大,主要 是因为适当的增加气隙长度可以在一定的程度上减小永磁同步电动机过大的杂 散损耗,减低电动机的振动与噪声和便于电动机的装配。所以设计永磁同步电动 机的气隙长度时,可以参照相近的感应电动机的气隙长度并加以适当的修改。本 例取=0.7mm δ。 确定电动机定子外径时,一般是在保证电动机足够散热能力的前提下,视具 体情况为提高电动机效率而加大定子外径还是为降低成本而减小定子外径。

发电机调试方案

发电机试验是检查发电机投运前检验其在制造、运输、安装过程中是否受损的重要手段。根据《电气装置安装工程电气设备交接试验标准》(GB50150-91)的规定,发电机容量在6MW以上的同步发电机应进行以下项目试验,为安全、正确地将各项试验工作顺利完成,特制定本试验方案要求试验人员认真负责地遵守各项试验程序。 发电机部分 一、测量定子线圈的绝缘电阻和吸收比 l、试验接线:被试相短接后与兆欧表端子相连,其绝缘良好,非被试相短路后接发电机外壳。 2、测量方法:兆欧表校正无误后,接通被试相进行绝缘测定,并分别记录15"和60"的兆欧值,R60与R15之比值即为吸收比,1min后停止测量,并对被试相放电后,改接线测量另两相的绝缘电阻。 3、试验标准 各绝缘电阻的不平衡系数应不大于2,吸收比应不小于1.3。 二、测量定子绕阻的直流电阻 l、测量方法 用双臂电桥分别测定发电机定子线圈和转子线圈直流电阻,并同时记录线圈表面温度,直流电阻应在冷状态下测量,测量时线圈表面温度与周围室内空气温度之差应在土3℃范围内。 2、试验标准 各相的流电阻,相互间差别不得大于最小值的2%,与产品出厂时测量得的数值换算至同温度下的数值比较,其相对变化也不应大于2%。 三、定子线圈直流耐压试验和泄漏电流测量。 定子绕阻的绝缘电阻和吸收比合格后,即可进行直流耐压试验。 1、试验所需设备,JGF—80型直流高压发生器1套。 2、直流试验电压确定(V):V=3*VH=3*6300V=18900(V)。 3、试验接线如附图(1):非被试相短路接地于电机外壳上,转子绕阻短路接外壳。

4、试验步骤 试验电路接好后,首先检查各仪表指针是否在零位,量程是否合适,调压器是否在零位。一切无误后,在不接被试品的状态下,先将试验电路进行空试,试验电压按每级o.5倍额定电压分阶段升高,每阶段停留一分钟,读微安表的指示值,然后将电压降至0,断开电流。 试验电路经空试正常后,将电机被试相首尾短接后,接入试验电路,为两相短接后接入电机外壳上。对被试设备加压时,试验电压按每级0.5VH分阶段升高,每阶段停留1分钟,观察泄漏电流的变化。如无异常,当升到最高试验电压后停留1分钟,读取泄漏电流,一相试完后,降下试验电压断开电源,对被试设备及电容器放电并接地,改试其余两相。若有异常,立即降压查明原因,并消除之,后再试验。 5、试验结果分析: (1)各相泄漏电流的差别应不大于最小值的50%,当最大泄漏电流在20μA以下,各相间差值与出厂试验值比较不应有明显差别。 (2)泄漏电流应不随时间延长而增大。 (3)泄漏电流随电压不成比例地显著增长时应注意分析。 四、交流耐压试验 直流泄漏试验合格之后,可立即进行交流耐压试验。 l、试验设备与仪器 交流试验压器 25KVA 20KV 1台

西门子变频器的调试方法跟步骤

西门子变频器的调试方法跟步骤 西门子变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因数、过流/过压/过载保护等功能。 西门子变频器主要应用在风机、水泵的应用上。为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。 变频器调试的基本方法和步骤: 一、变频器的空载通电验 1、将变频器的接地端子接地。 2、将变频器的电源输入端子经过漏电保护开关接到电源上。 3、检查变频器显示窗出厂显示是否正常,如果不正确,应复位,否则要求退换。

4、熟悉变频器的操作键。一般的变频器均有运行(RUN)、停止(STOP)、编程(PROG)、数据P确认(DATAPENTER)、增加(UP、▲)、减少(DOWN、“)等6个键,不同变频器操作键的定义基本相同。此外有的变频器还有监视(MONITORPDISPLAY)、复位(RESET)、寸动(JOG)、移位(SHIFT)等功能键。 二、带载试运行 1、手动操作变频器面板的运行停止键,观察电机运行停止过程及变频器的显示窗,看是否有异常现象。 2、如果启动P停止电机过程中变频器出现过流保护动作,应重新设定加速P减速时间。电机在加、减速时的加速度取决于加速转矩,而变频器在启、制动过程中的频率变化率是用户设定的。若电机转动惯量或电机负载变化,按预先设定的频率变化率升速或减速时,有可能出现加速转矩不够,从而造成电机失速,即电机转速与变频器输出频率不协调,从而造成过电流或过电压。因此,需要根据电机转动惯量和负载合理设定加、减速时间,使变频器的频率变化率能与电机转速变化率相协调。 三、变频器带电机空载运行

永磁同步电机控制方法以及常见问题

永磁同步电机控制方法以及常见问题永磁同步电机控制方法以及常见问题。永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 1.掌握永磁同步电机的成熟控制方法和开发内容后如何转型 (1)仿真:连续simulink+线性电机模型仿真,离散模型+线性电机+线性电机模型,q 格式离散模型+线性电机模型,simplorer+ansoft+无位置开环和闭环q格式仿真,模拟实际电机的线性电机模型建立,matlabgui+simulink仿真。都是无位置开环切闭环模式,各种仿真变着花样玩,ekf,hfi,pll,atan,磁连观测,扩展反电视等各种无位置仿真。仿真和实际跑板子其实只要电流采样底层做得好,过调制出得来都可以和仿真对的上。 (2)电机参数识别,通过变频器激励与响应实现,其余的表示不靠谱,可以在电机启动前10s内辨识出来。没啥用。 (3) 控制性能优化,6次谐波自适应陷波滤波,sogi等手段。 (4) 压缩机驱动自动力矩补偿。

(5) svpwm简单快速实现与单电阻采样结合研究。 (6) 各种各样电机调试与性能测试,我调试的电机型号应该有上千款了,仅限于 10w-20kw永磁同步电机,都快调试吐了,测试电机单体性能,带变频器运行极限测试 2.永磁同步电机初始角设置的问题 电机控制的调试里除却方波驱动,基本都会有一个类似于超前角的变量,该变量非常重要,直接影响速度,效率和抖动性。改变该角可以降低输出转矩,但可能会带来其他问题。 旋转转子使d轴指向A+与A-的中心线,就找到了初始角!但是对模型的初始角修改一下之后,在同样Thet角下,转矩下降好多!现在问题是在在修改初始角之后输出转矩能够稳定吗?这个输出转矩应该是与负载大小有关! 修改后的初始角与原来A相反电势为0对应的初始角,他们对应的输出转矩一定会变化的,且修改后的初始角中设定的功率角不是真正的模型功率角;至于设定负载我还没尝试过,不过我觉得你说的应该是对的。 其实我刚开始主要是对修改初始角后模型输出转矩稳定性有疑问,按照你的说法现在转矩应该是稳定的!那么对于一个永磁同步电机模型,峰值转矩可以达到,但是要求的额定转矩却过大,当修改模型之后达到要求的额定转矩时,峰值转矩却达不到,敢问你觉得应该从方面修改模型??或是我修改模型的思路有问题 3.永磁同步电机控制的建模问题讨论,如模型仿真慢、联合仿真问题、PI控制问题等 两种控制方式不一样的所有输出量不一样。 永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 无刷电机是电压源控制模式,而且计算出来都是开环的。性能由空载转速,电阻,电感

相关文档
最新文档