随机信号与概率论实验_匹配滤波器

随机信号与概率论实验_匹配滤波器
随机信号与概率论实验_匹配滤波器

《概率论与随机信号分析》实验报告

姓名: 成绩: 学号: 专业:

实验四 匹配滤波器

实验名称:匹配滤波器 学时安排:2学时 实验类别:验证性 实验要求:必做

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

一.实验目的和任务

1. 了解匹配滤波器的原理;

2. 实现LFM 信号的相关接收。

二.实验原理介绍

1.匹配滤波器

匹配滤波器是一种用于检测噪声中某个确定信号是否存在的最佳滤波方法。

()()()X t s t N t =+

()()*()()*()()*()Y t X t h t s t h t N t h t ==+

使Y(t 0)中的信号与噪声比最大化,这样在Y(t 0)大于某个合适的门限时,就有把握地认为Y(t)中包含有s(t)。

202

0()()s out s y t S N E Y t ??

= ???????

2

201()()()2j t s y t S j H j e d ωωωωπ+∞

-∞??=?

???

? 00*

*

()()()j t j t H j c S j e cS j e ωωωωω-??==??

令:

2

2

2

200

1()()2()42out

s

S j d H j d S N N H j d E N ωωωω

πωωπ+∞

+∞

-∞

-∞

+∞

-∞

?? ?????=

????? ???

=

?

?

?

从时域来说,匹配滤波器的冲击响应为:

0()()h t cs t t =-

2.线性调频信号是大时宽带宽积信号,常用在雷达和通信信号中来提高系统的抗干扰能力,采用匹配滤波器,可以在强噪声背景环境中发现信号。

20001()sin(2),222T T s t A f t ut t π??

=+∈-????

其中:0

2B

u T π=

为调频斜率 其时宽带宽积为BT 0>>1

当信号淹没在强噪声背景里时,可以通关相关接收,即匹配滤波的方法检测信号,而降低噪声的影响。

三.实验设备介绍

1.IBM PC 机一台; 2. MATLAB 工具。

四、实验内容和步骤

%信号和噪声经过匹配滤波器 close all clear all

f0=30e+6; %中心频率 b=8e+6; %信号带宽 t0=10e-6; %信号时宽 fs=5*f0; %采样频率 t=0:1/fs:t0; u=pi*b/t0;

s=sin(2*pi*(f0-b/2)*t+u.*t.*t); plot(t,s)

xlabel('LFM Signal,f0=30e+6 B=8e+6 T0=10e-6'); grid on

m=length(s);

f=(0:m-1)/m*fs;

ffs=abs(fft(s));

figure

plot(f,ffs);

xlabel('Signal Spectrum,f0=30e+6');

grid on

figure

h=s;

ys=xcorr(s,h);

m2=length(ys);

t2=((0:m2-1)/m2-0.5)*t0*2;

plot(t2,ys);

xlabel('Signal After Filter');

figure;

n=rand(1,m)*2-1;

[b a]=butter(2,[(f0-b)/(fs/2) (f0+b)/(fs/2)]);

n=filter(b,a,n);

nmean=mean(n);

nc1=std(n);

n=(n-nmean)/nc1*3;

nc1=std(n);

nc2=nc1*nc1;

cc=sprintf('Signal+Noise SN=%5.3f',0.5/nc2);

x=s+n;

plot(t,x)

xlabel(cc);

figure

y=xcorr(x,h);

plot(t2,y)

xlabel('Signal +Noise After Filter');

改变程序中信号参数和噪声功率的大小,观察输出信号最大值和基底噪声的情况。运行上面的程序可得

当标准差=9时,改变信号的频率f1=26e+6

五实验心得和体会

通信原理课程项目报告 匹配滤波器

上海大学2012~2013学年春季学期本科生 课程项目报告 课程名称:《通信原理B(2)》课程编号: 07275129 题目: 匹配滤波器分析 学生姓名: 王子驰(组长)学号: 10124021 学生姓名: 蒋子昂学号: 10124022 学生姓名: 徐璐学号: 10124040 学生姓名: 陈张婳学号: 10123773 学生姓名: 张晨学号: 10123743 评语: 成绩: 任课教师: 评阅日期:

匹配滤波器分析 日期(2013年5月1日) 摘要:在最佳线性滤波器的设计中有一种是使滤波器输出信噪比在某一特定时刻达到最大,由此而导 出的最佳线性滤波器称为匹配滤波器。匹配滤波器对信号做的两种处理:1、去掉信号相频函数中的任 何非线性部分;2、按照信号的幅频特性对输入波形进行加权,即当信号与噪声同时进入滤波器时,它 使信号成分在某一瞬间出现尖峰值,而噪声成分受到抑制。本文介绍了匹配滤波器的原理,利用MATLAB 软件,设计了一种匹配滤波器,并对其在二进制确知信号最佳接收中的应用进行了分析。 1.引言 在数字通信系统中,信道的传输特性和传输过程中噪声的存在是影响通信性能的两个主要因素。人们总是希望在一定的传输条件下,达到最好的传输性能,最佳接收就是在噪声干扰中如何有效地检测出信号。所谓最佳是在某种标准下系统性能达到最佳,最佳接收是个相对的概念,在某种准则下的最佳系统,在另外一种准则下就不一定是最佳的。在某些特定条件下,几种最佳准则也可能是等价的。在数字通信中,最常采用的是输出信噪比最大准则和差错概率最小准则。 在数字信号接收中,滤波器的作用有两个方面,第一是使滤波器输出有用信号成分尽可能强; 第二是抑制信号带外噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号判决的影响。 通常对最佳线性滤波器的设计有两种准则:一种是使滤波器输出的信号波形与发送信号波形之 间的均方误差最小,由此而导出的最佳线性滤波器称为维纳滤波器;另一种是使滤波器输出信噪比 在某一特定时刻达到最大,由此而导出的最佳线性滤波器称为匹配滤波器。在数字通信中,匹配滤 波器具有更广泛的应用。 2.课程项目的目的 (1)掌握匹配滤波器的基本概念、基本原理和基本设计方法; (2)具备对简单通信系统进行建立模型、定性分析、定量计算的能力; (3)对实验过程中存在的问题能够进行分析和排除; (4)对规定任务有一定的创新能力。 3.基本原理介绍 由数字信号的判决原理我们知道,抽样判决器输出数据正确与否,与滤波器输出信号波形和发 送信号波形之间的相似程度无关,也即与滤波器输出信号波形的失真程度无关,而只取决于抽样时 刻信号的瞬时功率与噪声平均功率之比,即信噪比。信噪比越大,错误判决的概率就越小;反之,Array 信噪比越小,错误判决概率就越大。

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: )(m od ,110N ky y y n n -= N y x n n /= 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: 1、10 N 10,k 7==,周期7 510≈?; 2、(IBM 随机数发生器)31 16 N 2,k 23,==+周期8 510≈?; 3、(ran0)31 5 N 21,k 7,=-=周期9 210≈?; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有 )(1R F X x -= 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变

随机信号分析实验报告

一、实验名称 微弱信号的检测提取及分析方法 二、实验目的 1.了解随机信号分析理论如何在实践中应用 2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等 3.掌握随机信号的检测及分析方法 三、实验原理 1.随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。本实验中算法都是一种估算法,条件是N要足够大。 2.微弱随机信号的检测及提取方法 因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。 噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决 ①降低系统的噪声,使被测信号功率大于噪声功率。 ②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。 对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。 对微弱信号检测与提取有很多方法,本实验采用多重自相关法。 多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。即令: 式中,是和的叠加;是和的叠加。对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。多重相关法将 当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

低通滤波器实验报告

(科信学院) 信息与电气工程学院 电子电路仿真及设计CDIO三级项目 设计说明书 (2012/2013学年第二学期) 题目: ____低通滤波器设计____ _____ _____ _ 专业班级:通信工程 学生姓名: 学号: 指导教师: 设计周数:2周 2013年7月5日 题目: ____低通滤波器设计____ _____ _____ _ (1)

第一章、电源的设计 (2) 1.1实验原理: (2) 1.1.1设计原理连接图: (2) 1. 2电路图 (5) 第二章、振荡器的设计 (7) 2.1 实验原理 (7) 2.1.1 (7) 2.1.2定性分析 (7) 2.1.3定量分析 (8) 2.2电路参数确定 (10) 2.2.1确定R、C值 (10) 2.2.2 电路图 (10) 第三章、低通滤波器的设计 (12) 3.1芯片介绍 (12) 3.2巴特沃斯滤波器简介 (13) 3.2.1滤波器简介 (13) 3.2.2巴特沃斯滤波器的产生 (13) 3.2.3常用滤波器的性能指标 (14) 3.2.4实际滤波器的频率特性 (15) 3.3设计方案 (17) 3.3.1系统方案框图 (17) 3.3.2元件参数选择 (18) 3.4结果分析 (20) 3.5误差分析 (23) 第四章、课设总结 (24) 第一章、电源的设计 1.1实验原理: 1.1.1设计原理连接图:

整体电路由以下四部分构成: 电源变压器:将交流电网电压U1变为合适的交流电压U2。 整流电路:将交流电压U2变为脉动的直流电压U3。 滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。 稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。 1)变压器变压 220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。 2)整流电路 桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单项桥式整流电路,具有输出电压高,变压器利用率高,脉动系数小。

匹配滤波器原理

数字通信课程设计 匹配滤波器

摘要 ?在通信系统中,滤波器是重要的部件之一,滤波器特征的选择直接影响数字信号的恢复。在数字信号接收中,滤波器的作用有两个方面,使滤波器输出有用信号成分尽可能强;抑制信号带外噪声,使滤波器输出噪声成分尽可能小,减少噪声对信号判决的影响。对最佳线性滤波器的设计有一种准则是使滤波器输出信噪比在特定时刻到达最大,由此导出的最佳线性滤波器称为匹配滤波器。在数字通信中,匹配滤波器具有广泛的应用。因此匹配滤波器是指滤波器的性能与信号的特征取得某种一致,使滤波器输出端的信号瞬时功率与噪声平均功率的比值最大。本文设计并仿真了一种数字基带通信系统接收端的匹配滤波器。 一、课程设计的目的 通过本次对匹配滤波器的设计,让我们对匹配滤波器的原理有更深一步的理 解,掌握具体的匹配滤波器的设计方法与算法。 二、课程设计的原理 设接收滤波器的传输函数为)(f H ,冲击响应为)(t h ,滤波器输入码元)(t s 的持续时间为s T ,信号和噪声之和)(t r 为 )()()(t n t s t r += s T t ≤≤0 式中,)(t s 为信号码元,)(t n 为白噪声。 并设信号码元)(t s 的频谱密度函数为)(f S ,噪声)(t n 的双边功率谱密度为 2/0n P n =,0n 为噪声单边功率谱密度。 假定滤波器是线性的,根据叠加定理,当滤波器输入信号和噪声两部分时,滤波器的输出也包含相应的输出信号和输出噪声两部分,即 )()()(00t n t s t y += 由于:)()()()()()(2 * f P f H f P f H f H f P R R Y == )(f P R 为输出功率谱密度,)(f P R 为输入功率谱密度,2/)(0n f P R = ?这时的输出噪声功率0N 等于 ? ?∞ ∞ -∞ ∞ -=?=df f H n df n f H N 2 02 0)(22)( 在抽样时刻0t 上,输出信号瞬时功率与噪声平均功率之比为

随机信号通过线性和非线性系统后地特性分析报告 实验报告材料

实验三 随机信号通过线性和非线性系统后的特性分析 一、实验目的 1、了解随机信号的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱特性。 2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱有何变化,分析随机信号通过线性系统和非线性系统后的特性 二、实验仪器与软件平台 1、 微计算机 2、 Matlab 软件平台 三、实验步骤 1、 根据本实验内容和要求查阅有关资料,设计并撰写相关程序流程。 2、 选择matlab 仿真软件平台。 3、 测试程序是否达到设计要求。 4、 分析实验结果是否与理论概念相符 四、实验内容 1、 随机信号通过线性系统和非线性系统后的特性分析 (1)实验原理 ①随机信号的分析方法 在信号系统中,可以把信号分成两大类:确定信号和随机信号。确定信号具有一定的变化规律,二随机信号无一定的变化规律,需要用统计特性进行分析。在这里引入了一个随机过程的概念。所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个采样序列。随机过程可以分为平稳的和非平稳的,遍历的和非遍历的。如果随机信号的统计特性不随时间的推移而变化。则随机过程是平稳的。如果一个平稳的随机过程的任意一个样本都具有相同的统计特性。则随机过程是遍历的。下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,可以随机取随机过程的一个样本值来描述随机过程中的统计特性。 随机过程的统计特性一般采用主要的几个平均统计特性函数来描述,包括、均方值、方差、自相关系数、互相关系数、概率密度、频谱及功率谱密度等。 a.随机过程的均值 均值E[x(t)]表示集合平均值或数学期望值。基于过程的各态历经行,可用时间间隔T 内的幅值平均值表示,即 ∑-==1 /)()]([N t N t x t x E 均值表达了信号变化的中心趋势,或称之为直流分量。

低通滤波器设计实验报告

低通滤波器设计实验报 告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

低通滤波器设计 一、设计目的 1、学习对二阶有源RC 滤波器电路的设计与分析; 2、练习使用软件ORCAD (PISPICE )绘制滤波电路; 3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。 二、设计指标 1、设计低通滤波器截止频率为W=2*10^5rad/s; 2、品质因数Q=1/2; 三、设计步骤 1、考虑到原件分散性对整个电路灵敏度的影响,我们选择 R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题; 2、考虑到电容种类比较少,我们先选择电容的值,选择电容 C=1nF; 3、由给定的Wp 值,求出R 12121C C R R Wp ==RC 1=2*10^5 解得:R=5K? 4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1= K -31 解得:K=3-Q 1= 5、根据求出K 值,确定Ra 与Rb 的值

Ra=2 K=1+ Rb Ra=Rb 这里取 Ra=Rb=10K?; 四、电路仿真 1、电路仿真图: 2、低通滤波器幅频特性曲线 3、低通滤波器相频特性曲线 注:改变电容的值:当C1=C2=C=10nF时 低通滤波器幅频特性曲线 低通滤波器相频特性曲线 五、参数分析 1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz, 而我们指标要求设计截止频率 f= Wp/2?= 存在明显误差; 2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性; 3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。 4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。 六、设计心得:

信号检测实验报告

Harbin Institute of Technology 匹配滤波器实验报告 课程名称:信号检测理论 院系:电子与信息工程学院 姓名:高亚豪 学号:14SD05003 授课教师:郑薇 哈尔滨工业大学

1. 实验目的 通过Matlab 编程实现对白噪声条件下的匹配滤波器的仿真,从而加深对匹配滤波器及其实现过程的理解。通过观察输入输出信号波形及频谱图,对匹配处理有一个更加直观的理解,同时验证匹配滤波器具有时间上的适应性。 2. 实验原理 对于一个观测信号()r t ,已知它或是干扰与噪声之和,或是单纯的干扰, 即 0()()()()a u t n t r t n t +?=?? 这里()r t ,()u t ,()n t 都是复包络,其中0a 是信号的复幅度,()u t 是确知的归一化信号的复包络,它们满足如下条件。 2|()|d 1u t t +∞ -∞=? 201||2 a E = 其中E 为信号的能量。()n t 是干扰的均值为0,方差为0N 的白噪声干扰。 使该信号通过一个线性滤波系统,有效地滤除干扰,使输出信号的信噪比在某一时刻0t 达到最大,以便判断信号的有无。该线性系统即为匹配滤波器。 以()h t 代表系统的脉冲响应,则在信号存在的条件下,滤波器的输出为 0000()()()d ()()d ()()d y t r t h a u t h n t h τττττττττ+∞+∞+∞ =-=-+-???

右边的第一项和第二项分别为滤波器输出的信号成分和噪声成分,即 00()()()d x t a u t h τττ+∞ =-? 0 ()()()d t n t h ?τττ+∞ =-? 则输出噪声成分的平均功率(统计平均)为 2 20E[|()|]=E[|()()d |]t n t h ?τττ+∞ -? **00*000200 =E[()(')]()(')d d '=2()(')(')d d ' 2|()|d n t n t h h N h h N h ττττττδττττττττ+∞+∞+∞+∞+∞ ---=?? ?? ? 而信号成分在0t 时刻的峰值功率为 22 20000|()||||()()d |x t a u t h τττ+∞ =-? 输出信号在0t 时刻的总功率为 22000E[|()|]E[|()()|]y t x t t ?=+ 22**0000002200E[|()||()|()()()()] |()|E[|()|] x t t x t t t x t x t t ????=+++=+ 上式中输出噪声成分的期望值为0,即0E[()]0t ?=,因此输出信号的功率 成分中只包含信号功率和噪声功率。 则该滤波器的输出信噪比为 222000022000|||()()d ||()|E[|()|]2|()|d a u t h x t t N h τττρ?ττ+∞ +∞-==?? 根据Schwartz 不等式有

随机信号实验报告

随机信号分析 实验报告 目录 随机信号分析 (1) 实验报告 (1) 理想白噪声和带限白噪声的产生与测试 (2) 一、摘要 (2) 二、实验的背景与目的 (2) 背景: (2) 实验目的: (2) 三、实验原理 (3) 四、实验的设计与结果 (4) 实验设计: (4) 实验结果: (5) 五、实验结论 (12) 六、参考文献 (13) 七、附件 (13) 1

理想白噪声和带限白噪声的产生与测试一、摘要 本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。 关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度 二、实验的背景与目的 背景: 在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。定义2:不同频率、不同强度无规则地组合在一起的声音。如电噪声、机械噪声,可引伸为任何不希望有的干扰。第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。而第二种定义则相对抽象一些,大部分应用于机械工程当中。在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。 实验目的: 了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。

滤波器实验

实验三滤波器实验 一,实验目的 1,通过实验了解滤波器的工作原理。 2,通过实验学习有源滤波器的特点。 3,学习滤波器在工程技术中的应用。 二,实验仪器及器材 1,通用线路接插板 2,电容、电阻、电位器、运算放大器等电子元器件 3,晶体管毫伏表 4,低频信号发生器 5,直流稳压电源 三,实验步骤及实验结果 1,计算上截止频率为440Hz的RC低通滤波器的R、C数值。 实验电路如上图,其中电容,根据上截止频率点处 解得:。 2,将选好的元件在线路插板上按上图接插成低通滤波器,测出其幅频特性。 采用两种方法测量,一种是通过示波器测量不同频率的响应幅值,从而得到幅频特性曲线。另一种是直接测量幅频特性伯德图。 实验中直接测得幅频特性曲线:

手动调整输入信号频率,测得输出放大倍率如下 通过示波器测量频率为0~2k时的幅值响应数据如下: 得到的幅频特性曲线如下: 可以看出通过测量各频率放大倍率绘制的幅频曲线图和实验中仪器绘制的波特图基本一致,截止频率440Hz左右。 3,在此低通滤波器的输出端并联一个1kΩ的负载电阻,再测其幅频特性,并与无负

载情况下的幅频特性相比较。 分析可得上截止频率满足: 实验中36kΩ,,代入上式求得: 实验测出幅频特性曲线如下: 分析数据: Freq (Hz) Gain (dB) Phase (deg) 100.000 -30.235 -0.438 14677.993 -33.457 -51.451 17782.794 -34.382 -57.910 从初始下降-3dB即为截止频率,可看出与理论计算基本相符。 比较两种情况可看出: 原本的截止频率为440Hz处于低频段,并联负载后截止频率变为16.4kHz处于高频段,无法起到低通滤波器的作用。 另外原本的静态放大倍率为1(0dB),在接负载后静态放大倍率降为,即实际输出电压很小,影响滤波器性能。 4,接成如下图所示的有源滤波低通滤波器,测出其幅频特性。

匹配滤波器检测

1.1 匹配滤波器检测 基于第三章对频谱滤波器检测的简要描述,本节就对此进行详细的解说。前面提到了当认知用户知道主用户的先验信息时,匹配滤波器检测就是频谱检测的最优算法,早期的研究表明,匹配滤波器需要(1/SNR )个采样数,检测时间相比较而言较短,就可以与预期的误差概率相吻合。 这种滤波器在数字通信信号和雷达信号的检测中具有特别重要的意义。匹配滤波器频谱检测算法在加性高斯白噪声信道中是一种最优的频谱感知方法,主要通过对授权信号进行解调或者导频检测实现。前者实现比较复杂,通过采用匹配滤波器对授权用户信号解调,要求认知用户为每类授权用户提供一套接收解码设备;后者实现相对简单,不再需要复杂的接收解码设备,而且目前大部分无线通信系统都存在导频、前导码、时间同步信号和扩频码等确知信号, 这样就使得匹配滤波器检测大大简化,但它的缺点就是为了获得匹配滤波器而必须具备授权用户信号的先验知识,除此之外,计算量也比较大。因此如果先验知识不准确,那么匹配滤波器的性能就会大大下降。 1.1.1 匹配滤波器检测框图 检测统计量Y 为: *)()(∑= N n x n y Y 假设x(n)发射信号已知,将检测统计量与预先设定的门限值λ进行比较,大于门限值时就表明关心的频谱存在授权用户,如果小于门限值,就说明该信道中只有噪声,也就是说,出现了频谱空洞,感知用户可以占用该信道。 匹配滤波器检测框图1

对于现实中的信道,信号可能是M 进制的,这就需要同时进行几路信号同时进行匹配,将每一路频谱的结果进行比较,得到的判决结果后,再根据一定的判决根据,判决得到经过不同信道的接受信号。其工作原理图如下: 匹配滤波器工作原理图2 1.1.2 匹配滤波器检测原理 在第三章中曾提到,匹配滤波器检测的设计准则就是使信号的输出信噪比SNR 在某一时刻达到最大值。信噪比SNR 表达式如下: N 2Es SNR = 式子中Es 为观测时间段中检测信号的能量,N 0为噪声功率。 信道在传输信号时还叠加有高斯白噪声n(t),其均值为零,双边功率谱密度为N 0//2,因此接收信号波形为: t t n t s t r ≤ ≤+=0),()()( 设最大输出信噪比准则下的最佳线性滤波器H(ω),输出为 )()()(y 0t n t s t o += 在t=tm 时候,输出信噪比为: ()()m m t n t s 2 o 2 o =ρ 设()()[]t s S F =ωj ,那么经过匹配滤波器后的输出信号为 ()()()? ∞ ∞ -=ωωωπ ωd 21o m t j m e j S j H t s

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告 ——基于MATLAB语言 姓名: _ 班级: _ 学号: 专业:

目录 实验一随机序列的产生及数字特征估计 (2) 实验目的 (2) 实验原理 (2) 实验内容及实验结果 (3) 实验小结 (6) 实验二随机过程的模拟与数字特征 (7) 实验目的 (7) 实验原理 (7) 实验内容及实验结果 (8) 实验小结 (11) 实验三随机过程通过线性系统的分析 (12) 实验目的 (12) 实验原理 (12) 实验内容及实验结果 (13) 实验小结 (17) 实验四窄带随机过程的产生及其性能测试 (18) 实验目的 (18) 实验原理 (18) 实验内容及实验结果 (18) 实验小结 (23) 实验总结 (23)

实验一随机序列的产生及数字特征估计 实验目的 1.学习和掌握随机数的产生方法。 2.实现随机序列的数字特征估计。 实验原理 1.随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: y0=1,y n=ky n(mod N) ? x n=y n N 序列{x n}为产生的(0,1)均匀分布随机数。 定理1.1若随机变量X 具有连续分布函数F x(x),而R 为(0,1)均匀分布随机变量,则有 X=F x?1(R) 2.MATLAB中产生随机序列的函数 (1)(0,1)均匀分布的随机序列函数:rand 用法:x = rand(m,n) 功能:产生m×n 的均匀分布随机数矩阵。 (2)正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m×n 的标准正态分布随机数矩阵。 如果要产生服从N(μ,σ2)分布的随机序列,则可以由标准正态随机序列产生。 (3)其他分布的随机序列 分布函数分布函数 二项分布binornd 指数分布exprnd 泊松分布poissrnd 正态分布normrnd 离散均匀分布unidrnd 瑞利分布raylrnd 均匀分布unifrnd X2分布chi2rnd 3.随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特征。这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,……N-1。那么,

随机信号分析实验报告二 2

《随机信号分析》实验报告二 班级: 学号: 姓名:

实验二高斯噪声的产生和性能测试 1.实验目的 (1)掌握加入高斯噪声的随机混合信号的分析方法。 (2)研究随机过程的均值、相关函数、协方差函数和方差。 ⒉实验原理 (1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。 (2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。 ⒊实验报告要求 (1)简述实验目的及实验原理。 (2)采用幅度为1,频率为25HZ的正弦信号错误!未找到引用源。为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。 试求随机过程 的均值、相关函数、协方差函数和方差。用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。 (3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。 (4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。 (5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。 4、源程序及功能注释 (2)源程序: clear all; clc; t=0:320; %t=0:320 x=sin(2*pi*t/25); %x=sin(2*p1*t/25) x1=wgn(1,321,0); %产生一个一行32列的高斯白噪声矩阵,输出的噪声强度为0dbw

数字信号处理-低通滤波器设计实验

实验报告 课程名称:数字信号处理 实验名称:低通滤波器设计实验 院(系): 专业班级: 姓名: 学号: 指导教师: 一、实验目的: 掌握IIR数字低通滤波器的设计方法。 二、实验原理: 2.1设计巴特沃斯IIR滤波器 在MATLAB下,设计巴特沃斯IIR滤波器可使用butter 函数。 Butter函数可设计低通、高通、带通和带阻的数字和模拟IIR滤波器,其特性为使通带内的幅度响应最大限度地平坦,但同时损失截止频率处的下降斜度。在期望通带平滑的情况下,可使用butter函数。butter函数的用法为:

[b,a]=butter(n,Wn)其中n代表滤波器阶数,W n代表滤波器的截止频率,这两个参数可使用buttord函数来确定。buttord函数可在给定滤波器性能的情况下,求出巴特沃斯滤波器的最小阶数n,同时给出对应的截止频率Wn。buttord函数的用法为:[n,Wn]= buttord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。 2.2契比雪夫I型IIR滤波器。 在MATLAB下可使用cheby1函数设计出契比雪夫I 型IIR滤波器。 cheby1函数可设计低通、高通、带通和带阻契比雪夫I 型滤IIR波器,其通带内为等波纹,阻带内为单调。契比雪夫I型的下降斜度比II型大,但其代价是通带内波纹较大。cheby1函数的用法为:[b,a]=cheby1(n,Rp,Wn,/ftype/)在使用cheby1函数设计IIR滤波器之前,可使用cheblord 函数求出滤波器阶数n和截止频率Wn。cheblord函数可在给定滤波器性能的情况下,选择契比雪夫I型滤波器的最小阶和截止频率Wn。cheblord函数的用法为: [n,Wn]=cheblord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。 三、实验要求: 利用Matlab设计一个数字低通滤波器,指标要求如下:

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1理论分析 (3) 1.2电路组成 (4) 1.3一阶无源RC低通滤波电路性能测试 (5) 1.3.1正弦信号源仿真与实测 (5) 1.3.2三角信号源仿真与实测 (10) 1.3.3方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2电路组成 (22) 2.3二阶无源LC带通滤波电路性能测试 (23) 2.3.1正弦信号源仿真与实测 (23) 2.3.2三角信号源仿真与实测 (28)

2.3.3方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1结论 (39) 3.2误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

(精品)概率实验四--匹配滤波器

《概率论与随机信号分析》实验报告 一、实验目的与任务 1. 了解匹配滤波器的原理; 2. 实现LFM 信号的相关接收。 二、实验原理 1.匹配滤波器 匹配滤波器是一种用于检测噪声中某个确定信号是否存在的最佳滤波方法。 ()()()X t s t N t =+ ()()*()()*()()*()Y t X t h t s t h t N t h t ==+ 使Y(t 0)中的信号与噪声比最大化,这样在Y(t 0)大于某个合适的门限时,就有把握地认为Y(t)中包含有s(t)。 2020()()s out s y t S N E Y t ??= ??????? 02201()()()2j t s y t S j H j e d ωωωωπ+∞-∞??=???? ? 00**()()()j t j t H j c S j e cS j e ωωωωω-??==??令: 2222001()()2()42out s S j d H j d S N N H j d E N ωωωωπωωπ+∞+∞-∞-∞+∞-∞?? ?????= ????? ???= ??? 从时域来说,匹配滤波器的冲击响应为: 0()()h t cs t t =- 2.线性调频信号是大时宽带宽积信号,常用在雷达和通信信号中来提高系统的抗干扰能力,采用匹配滤波器,可以在强噪声背景环境中发现信号。 20001()sin(2),222T T s t A f t ut t π??=+∈-????

其中:0 2B u T π=为调频斜率 其时宽带宽积为BT 0>>1 当信号淹没在强噪声背景里时,可以通关相关接收,即匹配滤波的方法检测信号,而降低噪声的影响。 三、实验内容与结果 %信号和噪声经过匹配滤波器 close all clear all f01=30e+6; %中心频率 b1=8e+6; %信号带宽 t0=10e-6; %信号时宽 fs=150e+6; %采样频率 %系统带宽和中心频率 b2=8e+6; f02=30e+6; c2=30; subplot(2,1,1) [bl al]=butter(4,b2/2/(fs/2));%滤波器归一化带宽1对应于fs/2 [hfl f2]=freqz(bl,al,100,fs); plot(f2,abs(hfl)); title('系统低通频率响应'); grid on subplot(2,1,2); [bb ab]=butter(4,[(f02-b2/2)/(fs/2) (f02+b2/2)/(fs/2)]); [hf f2]=freqz(bb,ab,100,fs); plot(f2,abs(hf)); title('系统带通频率响应'); grid on figure; t=0:1/fs:t0; u=pi*b1/t0; subplot(2,2,1); s=sin(2*pi*(f01-b1/2)*t+u.*t.*t); plot(t,s); title('LFM 信号'); grid on subplot(2,2,3); n=length(s); n1=n/2; f1=(0:n1-1)/n*fs;

随机信号分析实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 实验报告 课程名称:随机信号分析 院系:电子与信息工程学院班级: 姓名: 学号: 指导教师: 实验时间: 实验一、各种分布随机数的产生

(一)实验原理 1.均匀分布随机数的产生原理 产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。最简单的方法是加同余法 )(mod 1M c y y n n +=+ M y x n n 1 1++= 为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。加同余法虽然简单,但产生的伪随机数效果不好。另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数 )(mod 1M ay y n n =+ M y x n n 1 1++= 式中,a 为正整数。用加法和乘法完成递推运算的称为混合同余法,即 )(mod 1M c ay y n n +=+ M y x n n 1 1++= 用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。 常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。 Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数, rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。 2.随机变量的仿真 根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。 若X 是分布函数为F(x)的随机变量,且分布函数F(x)为严格单调升函数,令Y=F(X),则Y 必为在[0,1]上均匀分布的随机变量。反之,若Y 是在[0,1]上 均匀分布的随机变量,那么)(1 Y F X X -= 即是分布函数为FX(x)的随机变量。式中F X -?1 ()为F X ()?的反函数。这样,欲求某个分布的随机变量,先产生在[0,1]区间上的均匀分布随机数,再经上式变 换,便可求得所需分布的随机数。 3.高斯分布随机数的仿真 广泛应用的有两种产生高斯随机数的方法,一种是变换法,一种是近似法。 如果X1,X2是两个互相独立的均匀分布随机数,那么下式给出的Y1,Y2

电子信息工程综合实验_匹配滤波器

实验二匹配滤波器 一、 实验目的 1、了解匹配滤波器的工作原理。 2、掌握二相编码脉压信号的压缩比、主旁瓣比、码元宽度的测量方法。 3、加深和巩固课堂所学有关距离分辨力、横向滤波器和匹配滤波方面的知识。 二、 实验仪器 示波器、直流稳压电源、万用表 三、 实验原理 二相编码信号的匹配滤波器为: 1 2 ()()()H f f f μμ=? 式中,1()f μ为子脉冲匹配滤波器,为横向滤波器(即抽头加权延时线求和网络)。二相编码信号的匹配滤波器结构如图一所示。 图一 二相编码信号的匹配滤波器结构 子脉冲匹配滤波器频率特性为: 1 ()()j fT f c fT e πμ= 为横向滤波器频率特性为: 1 2() (1)2 ()P j f kT P k k f c e πμ ----==∑ 式中,P 为码长,T 为码元宽度,k c 为二相编码信号。 在此,采用数字信号处理省略了子脉冲匹配滤波器,所以脉压输出不再是三角波而是方波。横向滤波器(即抽头加权延时线求和网络)在此采用超大规模集成电路完成。 四、 实验电路 该实验箱能够产生矩形脉冲、m 序列、PN 截断码、巴克码、互补码等多种信号以及其对应的匹配滤波输出。通过按键的选择,可以观察各种信号形式以及对应的匹配滤波输出结果,测量各种信号的脉压参数。 试验箱OUT1端口为原始波形信号输出,OUT2端口为信号匹配滤波输出。数码管用以显示当前信号波形以及频率指示,K1~K8用来选择波形以及当前信号

频率。其含义如下: 1、按键K1:数码管显示P。单脉冲。周期1ms;脉冲宽度30us。 2、按键K2:数码管显示SP。脉冲串。周期1ms;脉冲宽度10us。一个周期有7个单脉冲。 3、按键K3:数码管显示31。31位m序列。无限长;码元宽度1us。 4、按键K4:数码管显示P31。31位PN截断码。周期1ms;码元宽度1us。 5、按键K5:数码管显示b13。13位巴克码。周期1ms;脉冲宽度30us。 6、按键K6:数码管显示cb47。4位/7位组合巴克码。周期1ms;码元宽度1us。 7、按键K7:数码管显示Pc32。双路32位互补码。周期1ms;码元宽度1us。 8、按键K8:数码管显示c321。输出其中一路32位互补码。周期1ms;码元宽度1us。 注:(1)每次按键,实验箱OUT1输出码元信号,OUT2相对应的匹配输出。 (2)同一按键再按一次,码元宽度增加,数码管显示带小数点。 五、实验内容和步骤 1、检查实验箱电源以及信号输出的连接方式。 2、打开实验箱电源以及示波器,调整示波器使观察信号最佳。 3、按键K1,数码管显示P,观察OUT1输出的单脉冲信号以及OUT2输出的匹配滤波信号,记录输出波形。 4、用示波器测量压缩比、主旁瓣比、码元宽度等参数。 5、再次按键K1,改变单脉冲信号码元宽度,LED4显示带小数点。观察信号及匹配滤波器输出的改变,测量各项参数。 6、依次按键K2~KK7,选择不同的输入信号,重复步骤2~4,观察波形,记录数据。 7、关闭实验电源,总结实验数据。 8、将实验数据记录填入表一,进行分析。 表一测试数据 六、实验结果 压缩比=匹配滤波器输入信号宽度/匹配滤波器输出信号主峰宽度 主旁瓣比=输出信号主瓣高度/输出信号最高旁瓣高度

低通滤波器 实验报告

1.概述 低通滤波器LPF是滤除噪声用得最多的滤波器。由于高阶有源低通滤波器的每个滤波节皆由二阶滤波器和一阶滤波器组成。我们设计一个巴特沃兹二阶有源低通滤波器。并使用电子电路仿真软件进行性能仿真。 (2)巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 211)(??? ? ??+=ωωω . . . . . . (1) 其中Auo 为通带内的电压放大倍数,ωC 为截止角频率,n 称为滤波器的阶。从(1)式中可知,当ω=0时,(1)式有最大值1;ω=ωC 时,(1)式等于0.707,即Au 衰减了 3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性 越接近于理想特性。 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1)( . . . . . . (2) 两边取对数,得: lg 20c uo u n A j A ωωωlg 20)(-≈ . . . . . . (3) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为计算公式。 2.工作原理图 图2-1低通滤波器原理图

2-2低通滤波器原理图 工作原理:(1)滤波器是具有频率选择作用的电路或运算处理系统。滤波处理可以利用模拟电路实现,也可以利用数字运算处理系统实现。滤波器的工作原理是当信号与噪声分布在不同频带中时,可以在频率与域中实现信号分离。在实际测量系统中,噪声与信号的频率往往有一定的重叠,如果重叠不严重,仍可利用滤波器有效地抑制噪声功率,提高测量精度。 任何复杂地滤波网络,可由若干简单地、相互隔离地一阶与二阶滤波电路级联等效构成。一阶滤波电路只能构成低通和高通滤波器,而不能构成带通和带阻。可先设计一个一阶滤波电路来熟悉电路设计思路以及器件使用要求和软件地进一步学习。 有源滤波器地设计,主要包括确定传递函数,选择电路结构,选择有源器件与计算无源元件参数四个过程。 巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。 一阶巴特沃斯滤波器的衰减率为每倍频6分贝,每十倍频20分贝。二阶巴特沃斯滤波器的衰减率为每倍频12分贝、三阶巴特沃斯滤波器的衰减率为每倍频18分贝、如此类推。巴特沃斯滤波器的振幅对角频率单调下降,并且也是唯一的无论阶数,振幅对角频率曲线都保持同样的形状的滤

相关文档
最新文档