《自动控制原理》 相平面法

自动控制原理例题详解-相平面法例题解析相平面法例题超详细步骤解析

相平面法例题解析: 要求: 1.正确求出对于非线性系统在每个线性区的相轨迹方程,也就是e e - 之间关系的方程(或c c - )。会画相轨迹(模型中是给具体数的)。※※关键是确定开关线方 程。 2. ※※※如果发生自持振荡,计算振幅和周期。 注意相平面法一般应: 1)按照信号流向与传输关系。线性部分产生导数关系,非线性部分形成不同分区。连在一 起就形成了不同线性分区对应的运动方程,即含有c 或者e 的运动方程。 2)※※※根据不同线性分区对应的运动方程的条件方程确定开关线方程。开关线方程确定很关键。 3)※※※根据不同线性分区对应的运动方程,利用解析法(分离变量积分法或者消去t 法) 不同线性分区对应的相轨迹方程,即c c - 和e e - 之间关系。 4)※根据不同分区的初始值绘制出相轨迹,并求出稳态误差和超调、以及自持振荡的周期和振幅等。 例2 问题1. 用相平面法分析系统在输入r (t ) = 4.1(t )时的运动情况。 问题2. 如果发生自持振荡 ,求自持振荡的周期和振幅。 解:问题1:1)设系统结构图,死区特性的表达式: 0,||2 2,22,2x e x e e x e e =≤?? =->??=+<-? 2)线性部分: 2 ()1 ()C s X s s =,则微分方程为:c x = 3)绘制e e - 平面相轨迹图。因为e r c =-,c r e =-,c r e =- ,c r e =- 。代入则 e x r =-+ (1) 当0t >,0r = ,0r = 。代入,则各区的运动方程0,||2I 2,2II 2,2III e e e e e e e e =≤--?? =->---??=--<----? 由于非线性特性有3个分区,相平面e e -分为3个线性区。 注意,当相平面选好后,输入代入后,最后代入非线性特性。 4) 系统开关线:2e =±。 5) 由题意知初始条件(0)(0)(0)4e r c =-=,(0)(0)(0)0e r c =-= 在II 区,则从

《自动控制原理》

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的 MATLAB仿真 一、实验目的 1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G200 , 100 2 ) ( 2 1 1 2 1 2= = - = - = - = 其对应的模拟电路及SIMULINK图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。 ①比例环节1 ) ( 1 = s G和2 ) ( 1 = s G; ②惯性环节 1 1 ) ( 1+ = s s G和 1 5.0 1 ) ( 2+ = s s G ③积分环节 s s G1 ) ( 1 = ④微分环节s s G= ) ( 1 ⑤比例+微分环节(PD)2 ) ( 1 + =s s G和1 ) ( 2 + =s s G ⑥比例+积分环节(PI) s s G1 1 ) ( 1 + =和s s G21 1 ) ( 2 + = 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

8-1已知具有理想继电器的非线性系统如图8-1所示,试用相平面法分析

第八章 习题 8-1已知具有理想继电器的非线性系统如图8-1所示,试用相平面法分析: 图8-1 (1)T d =0时系统的运动; (2)T d =0.5时系统的运动,并说明比例微分控制对改善系统性能的作用; (3)T d =2,并考虑实际继电器有延迟时系统的运动。 8-2 设三个非线性系统的非线性环节一样,其线性部分分别为 (1)1 ();(0.11) G s s s = + (2)2 ();(1)G s s s = + (3)2(1.51) ()(1)(0.11) s G s s s s += ++ 用描述函数法分析时,哪个系统分析的准确度高。 8-3某单位反馈系统,其前向通路中有一描述函数4 ()j e N A A π-=的非线性元件, 线性部分的传递函数为15 ()(0.51) G s s s =+,试用描述函数法确定系统是否存在 自振?若有,参数是多少? 8-4已知非线性系统的结构图如图8-2所示,图中非线性环节的描述函数 6 ()(0),2 A N A A A +=>+试用描述函数法确定: 图8-2 (1)使该非线性系统稳定,不稳定以及产生周期运动时,线性部分的k 值范围; (2)判断周期运动的稳定性,并计算稳定周期运动的振幅和频率。 8-5非线性系统如图8-3所示,试用描述函数法分析周期运动的稳定性,并确定系统输出信号振荡的振幅和频率。

图8-3 8-6试用描述函数法说明图8-4所示系统必然存在自振,并确定c 的自振振幅和频率,画出c,x,y 的稳态波形。 图8-4 8-7某线性系统的结构图如图8-5所示,试分别绘制下列三种情况时,变量e 的相轨迹,并根据相轨迹分别作出相应的e(t)曲线。 图8-5 (1)J=1,K 1=1,K 2=2,初始条件e(0)=3, (0)0;(0)1,(0) 2.5e e e ===- ; (2)J=1,K 1=1,K 2=0.5,初始条件e(0)=3, (0)0;(0)3,(0)0e e e ==-= ; (3)J=1,K 1=1,K 2=0,初始条件e(0)=1, (0)1;(0)0,(0)2e e e === ; 8-8设一阶非线性系统的微分方程为3x x x =-+ 试确定系统有几个平衡状态,分析各平衡状态的稳定性,并作出系统的相轨迹。 8-9试确定下列方程的奇点及类型,并用等倾线法绘制它们的相平面图: (1)||0x x x ++= ; (2)0x x sign x ++= ; (3)0x sin x += ;

总平面布局分析

2.3总平面布置及竖向布置 2.3.1总平面布置及分析 功能分区:该项目厂区呈近似矩形,在厂区西侧设置有两个出入口,分别位于厂区西南侧和西北侧,西北侧为人流出入口、西南侧为货流出入口。整个厂区分为办公区、生产区、仓储区和公用辅助生产区,仓储区集中布置。办公区靠近人流出入口,仓储区靠近物流出入口,总变配电靠近厂区边缘,公用辅助设施靠近负荷中心。厂区功能分区明确,符合《化工企业总图运输设计规范》(GB 50489-2009)、《工业企业总平面设计规范》(GB50187-2012)和《工业企业设计卫生标准》(GBZ 1-2010)的规定。 总平面布局:本项目生产装置位于厂区的东北部,办公、仓储及公用辅助工程依托公司原有设施。该项目所在地全年最小频率风为西南西,夏季最大频率风为东南。 生产设施:生产区位于厂区的东北部,与厂区内其他生产装置集中布置,生产装置露天布置,位于地势开阔、通风良好的地段,易于有毒有害物质的扩散。但是未布置在当地全年最小频率风的上风侧,不符合《工业企业设计卫生标准》(GBZ 1-2010)第5.2.1.4条和《工业企业总平面设计规范》(GB50187-2012)第5.2条的规定。企业应采取职业卫生防护设施以降低职业危害的发生,本报告在第***章提出对策措施和建议。 公用设施:总降压变电所位于厂区*****侧5.3.2;压缩空气站布置在厂区*****侧5.3.4;煤气站和天然气站位于厂区*****侧5.3.6;锅炉房位于厂区*****侧5.3.7,位于厂区全年最小频率风的上风向;循环水系统位于厂区*****侧5.3.9;污水处理站位于厂区*****侧5.3.10,位于厂区全年最小频率风的上风向;化验室位于厂区*****侧5.3.11;控制室位于****,维修车间位于厂区*****侧5.4。综上所述,该项目的公用辅助设施的布局符合或不符合《工业企业总平面设计规范》(GB50187-2012)第5.3条、5.4条的规定。 运输设施:参照以上描述,按照第5.5条的规定判定。 仓储设施:该项目依托的仓储区位于厂区西南侧,位于全年最小

自动控制原理实验1-6

实验一 MATLAB 仿真基础 、实验目的: (1) 熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2) 掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3) 掌握使用MATLAB 命令化简模型基本连接的方法。 (4) 学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1 ?计算机;2. MATLAB 软件 三、实验原理 函数tf ()来建立控制系统的传递函数模型,用函数printsys ()来输出控制系 统的函数,用函数命令zpk ()来建立系统的零极点增益模型,其函数调用格式 为:sys = zpk ( z, p, k 零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用 feedback ()函数求得。 则 feedback ()函数调用格式为: sys = feedback (sysl, sys2, sigh 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign = -1;正反馈时, sig n = 1;单位反馈时,sys2= 1,且不能省略。 四、实验内容: 1. 已知系统传递函数,建立传递函数模型 2 2 5(s 2) (s 6s 7) 3 3 s(s 1) (s 2s 1) 2. 已知系统传递函数,建立零极点增益模型 s 3 飞 2~ s 2s 2s 1 3 ?将多项式模型转化为零极点模型 5(s 2)2(s 2 6s 7) G(s) s 3 s 3 2s 2 2s 1 G(s) G(s)

实验十一:非线性系统的相平面分析

第 1 页 实验十一 非线性系统的相平面分析 一、实验目的 (1)掌握非线性系统的模拟方法。 (2)用相平面分析法分析继电型非线性系统、饱和型非线性系统的瞬态响应和稳态误差。 二、实验设备 序 号 型 号 备 注 1 DJK01 电源控制屏 该控制屏包含“三相电源输出”等几个模块。 2 DJK15控制理论实验挂箱 或DJK16控制理论实验挂 箱 3 慢扫描示波器 4 万用表 三、实验线路及原理 相平面法是分析一阶和二阶非线性系统的有效方法。通过作出的相轨迹,就能直观的知道系统的运动情况。 图11-1 非线性控制系统

第 2 页 图11-2 理想继电器特性的模拟线路图 图11-1为一具有理想继电器特性的非线性系统的框图,图11-2为理想继电器特性的具体接线参考图。由图11-1得 Km C C =+。 。。 ,0, 0m e m m e >?=??=?+e KM C C e KM C C 令 r(t) = R,则 r(t)=0。因为 r –c =e, 所以e = -c 。于是上式改写为 ) ,(),(。。。。。。0000<=?+>=++e KM e e e KM e e

第 3 页 初始条件 e(0)= r(0)- c(0)=R ,用等倾线法作出该系统的相轨迹如图11-3所示。由图可见,系统从初始点A 出发,最后运动到坐标原点。这不仅表明该系统稳定,而且由图还能确定系统的超调量δ%=0F/0A ×100%。和稳定误差为零等性能指标。 图11-3 四、思考题 (1)实验中如何获得c 和c 的信号?如何获得e 和e 的信号? (2)试说明e ?e 相轨迹和c ?c 相轨迹间的关系。 (3)你是如何从相平面图上得到超调量σρ和稳态误差ess 的? 五、实验方法 (1)用相轨迹分析图8-54所示的具有理想继电器特性的非线性系统在阶跃信号作用下的瞬态响应和稳态误差。 ①根据图8-54设计相应的实验线路图,其中M=5V,K=1。 ②在系统的输入分别为3V 和1V 时,用示波器观察系统e ?e

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间 2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

施工平面图的设计合理性分析

施工平面图布置合理性分析——工艺实习调查报告 班级:工程造价0604 姓名:刘晓慧 学号:076102411 日期:2008-6-20 指导老师:张挺拯蔡彬清

施工平面图布置合理性分析 一、理论分析 单位工程施工平面图是对一个建筑物或构筑物施工现场的平面规划和布置图。它是根据工程规模、特点和施工现场的条件,按照一定的设计原则,来正确地解决施工期间所需要的各种暂设工程和其他业务设施等同永久性建筑物和拟建工程之间的合理位置关系。它是单位工程施工组织设计的主要组成部分,是施工准备工作一项重要的内容,是进行施工现场布置的依据,是实现施工现场又组织、有计划进行文明施工的先决条件。贯彻和执行合理的施工平面布置图,会使施工现场井然有序,施工顺利进行,保证进度,提高效率和经济效果。反之,则造成不良后果。单位工程施工平面图的绘制比例一般为1:200~1:500。 (一)、设计内容 施工平面图的设计内容主要包括: 1.建筑物总平面图上已建和拟建的地上地下的一切房屋、构筑物以及道路和各种管线等其他设施的位置和尺寸。 2.测量放线标桩位置、地形等高线和土方取弃点。 3.自行式起重机开行路线,轨道布置和固定式垂直运输设备位置。 4.各种加工厂、搅拌站的位置;材料、半成品、构件及工业设备等的仓库和堆场。 5.生产和生活性福利设施的布置。 6.场内道路的布置和引入的铁路、公路和航道位置。 7.临时给排水管线、供电线路、蒸汽及压缩空气管道等布置。 8.一切安全及防火设施的位置。 (二)、设计依据 设计施工平面图所依据的资料主要有: 1.建筑、结构设计和施工组织设计时所依据的有关拟建工程的当地原始资料(1)自然条件调查资料:气象、地形、水文地质及工程资料。 (2)技术经济调查资料:交通运输、水源、电源、物资资料、生产和生活基地情况。 2.建设工程设计资料 (1)建设工程总平面图。 (2)一切已有和拟建的地下、地上管道位置。 (3)建设工程区域的竖向设计和土方平衡图。 3.施工资料 (1)单位工程施工进度计划。 (2)施工方案。 (3)各种材料、构件、半成品等需要量计划。 (三)、设计原则 1.在保证施工顺利进行的前提下,现场布置尽量紧凑、节约用地。 2.合理布置施工现场的运输道路及各种材料堆场、加工厂、仓库位置、各种机具的位置,尽量使运输距离最短,从而减少或避免为二次搬运。

自动控制原理实验报告

自动控制原理 实验报告 实验一典型系统的时域响应和稳定性分析 (2) 一、实验目的 (3) 二、实验原理及内容 (3) 三、实验现象分析 (5) 方法一:matlab程序 (5) 方法二:multism仿真 (12)

方法三:simulink仿真 (17) 实验二线性系统的根轨迹分析 (21) 一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹 (21) 二、根据根轨迹图分析系统的闭环稳定性 (22) 三、如何通过改造根轨迹来改善系统的品质? (25) 实验三线性系统的频率响应分析 (33) 一、绘制图1. 图3系统的奈氏图和伯德图 (33) 二、分别根据奈氏图和伯德图分析系统的稳定性 (37) 三、在图4中,任取一可使系统稳定的R值,通过实验法得到对应的伯德图,并据此导 出系统的传递函数 (38) 实验四、磁盘驱动器的读取控制 (41) 一、实验原理 (41) 二、实验内容及步骤 (41) (一)系统的阶跃响应 (41) (二) 系统动态响应、稳态误差以及扰动能力讨论 (45) 1、动态响应 (46) 2、稳态误差和扰动能力 (48) (三)引入速度传感器 (51) 1. 未加速度传感器时系统性能分析 (51) 2、加入速度传感器后的系统性能分析 (59) 五、实验总结 (64) 实验一典型系统的时域响应和稳定性分 析

一、 实验目的 1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。 二、 实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:见图1 图1 (2) 对应的模拟电路图 图2 (3) 理论分析 导出系统开环传递函数,开环增益0 1 T K K = 。 (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图2), s 1T 0=, s T 2.01=,R 200 K 1= R 200 K =?

教你做总平面效果图分析

教你做总平面效果图 总平面图是投标中的第一张表现图,作用与性质不用说了吧,应该认真点画。 一. 在ps中打开文件! 从cad中导入的是位图文件,但是一般情况下这只是一幅彩色稿。 无论是bmp还是tif文件,我一般习惯用转换格式的方式改变为黑白格式,这样转换可以保持精度,其他的转换方式多多少少都会有点损失。:) 1.先转换为gray模式。 2.在gray模式中调整对比度,调到最大。 3.再转换回RGB模式。 好了,一幅黑白稿出现了!

二. 分离图线。有些人可能喜欢不分。我习惯分离图线层,因为这样好处有如下: 1.所有的物体可以在图线下面来做,一些没有必要做的物体可以少做或不做。节省了很多时间。 2.物体之间的互相遮档可以产生一些独特的效果! 3.图线可以遮挡一些物体因选取不准而产生的错位和模糊,使边缘看起来很整齐,使图看起来很美。

具体步骤是以colour range 选取方式选中白色,删除。现在图线是单独的一层了。把这层命名为图线层。 三. 分离成功。为了观察方便可以在图线后增加一层填充为白色,当然也可直接填充绿色变草地层,白色的好处是画超级大平面图的时候会比较容易了解自己的进度 从现在开始,我每个新增加的图层都会命名。原因:

1.个人习惯。 2. 可以有效防止产生大量无用的废层和无物体层(即空层)。 3. 方便别人,将来别人修改你的图能够很轻松地找到每个物体。 四. 种树。现在开始栽树。 需要说明的是,通常我都习惯最后种树,因为树木通常是位图导入,大量的复制会占用机器的内存。这幅图例外,先种树,是因为这张图既要表现建筑又要表现绿化和景观。先种树可以定下整个图的整体颜色倾向,基调。 先种树,大小植物,再调他们的色彩倾向,你认为应该调什么色调完全凭个人的感觉啦。 这张图定的基调是偏黄绿色调的暖灰。

自动控制原理实验(全面)

自动控制原理实验 实验一 典型环节的电模拟及其阶跃响应分析 一、实验目的 ⑴ 熟悉典型环节的电模拟方法。 ⑵ 掌握参数变化对动态性能的影响。 二、实验设备 ⑴ CAE2000系统(主要使用模拟机,模/数转换,微机,打印机等)。 ⑵ 数字万用表。 三、实验内容 1.比例环节的模拟及其阶跃响应 微分方程 )()(t Kr t c -= 传递函数 = )(s G ) () (s R s C K -= 负号表示比例器的反相作用。模拟机排题图如图9-1所示,分别求取K=1,K=2时的阶跃响应曲线,并打印曲线。 图9-1 比例环节排题图 图9-2 积分环节排题图 2.积分环节的模拟及其阶跃响应 微分方程 )() (t r dt t dc T = 传递函数 s K Ts s G ==1)( 模拟机排题图如图9-2所示,分别求取K=1,K=0.5时的阶跃响应曲线,并打印曲线。 3.一阶惯性环节的模拟及其阶跃响应 微分方程 )()() (t Kr t c dt t dc T =+ 传递函数 1 )(+=TS K S G 模拟机排题图如图3所示,分别求取K=1, T=1; K=1, T=2; K=2, T=2 时的阶跃

响应曲线,并打印曲线。 4.二阶系统的模拟及其阶跃响应 微分方程 )()() (2)(2 22 t r t c dt t dc T dt t c d T =++ξ 传递函数 121 )(22++=Ts s T s G ξ2 2 2 2n n n s s ωξωω++= 画出二阶环节模拟机排题图,并分别求取打印: ⑴ T=1,ξ=0.1、0.5、1时的阶跃响应曲线。 ⑵ T=2,ξ=0.5 时的阶跃响应曲线。 四、实验步骤 ⑴ 接通电源,用万用表将输入阶跃信号调整为2V 。 ⑵ 调整相应系数器;按排题图接线,不用的放大器切勿断开反馈回路(接线时,阶跃开关处于关断状态);将输出信号接至数/模转换通道。 ⑶ 检查接线无误后,开启微机、打印机电源;进入CAE2000软件,组态A/D ,运行实时仿真;开启阶跃输入信号开关,显示、打印曲线。 五.实验预习 ⑴ 一、二阶系统的瞬态响应分析;模拟机的原理及使用方法(见本章附录)。 ⑵ 写出预习报告;画出二阶系统的模拟机排题图;在理论上估计各响应曲线。 六.实验报告 ⑴ 将每个环节的实验曲线分别整理在一个坐标系上,曲线起点在坐标原点上。分析各参数变化对其阶跃响应的影响,与估计的理论曲线进行比较,不符请分析原因。 ⑵ 由二阶环节的实验曲线求得σ﹪、t s 、t p ,与理论值进行比较,并分析σ﹪、t s 、t p 等和T 、ξ的关系。 实验二 随动系统的开环控制、闭环控制及稳定性 一.实验目的 了解开环控制系统、闭环控制系统的实际结构及工作状态;控制系统稳定的概念以及系统开环比例系数与系统稳定性的关系。 二.实验要求 能按实验内容正确连接实验线路,正确使用实验所用测试仪器,在教师指导下独立

自动控制原理实验报告 (2)

实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 惯性环节传递函数为: i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=1 TS K )s (R )s (C +-=

K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较 为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大 K 理论值为2,实验值4.30/2.28, 相对误差为(2-4.30/2.28)/2=5.7% 与理论值较为接近。

自动控制原理-实验二PID完美经典

2013-2014 学年第1 学期 院别: 控制工程学院 课程名称: 自动控制原理 实验名称: PID控制特性的实验研究实验教室: 6111 指导教师: 小组成员(姓名,学号): 实验日期:2013 年12 月12 日评分:

三、实验方案设计(含实验参数选择、控制器选择、仿真程序等) 1、比例控制 (1)过阻力 a、取k为3和2 b、控制器选择 c,仿真的程序 k1=14; k2=15; num1=k1; num2=k2; den1=[1 8 k1]; den2=[1 8 k2]; sys1=tf(num1, den1); sys2=tf(num2, den2); t=[0:0.1:10]; step(sys1,t); hold on; step(sys2,t); xlabel('Time(s)') ylabel('step reponse y(t)') 2、临界阻力 a、取k为4 b、控制器选择 c、仿真的程序

k1=16; num1=k1; den1=[1 8 k1]; sys1=tf(num1, den1); t=[0:0.1:10]; step(sys1,t); hold on; xlabel('Time(s)') ylabel('step reponse y(t)') 3、欠阻力 a、k取168和138 b、控制系统选择 c、 仿真的程序 k1=180; k2=150; num1=k1; num2=k2; den1=[1 8 k1]; den2=[1 8 k2]; sys1=tf(num1, den1); sys2=tf(num2, den2); t=[0:0.1:10]; step(sys1,t); hold on; step(sys2,t); xlabel('Time(s)') ylabel('step reponse y(t)') 2、比例积分控制 (1)引入开环零点在被控对象两个极点的左侧 a、取KP为2,KI为16 b、控制器选择

相平面分析法

1.含有死区继电器特性的非线性系统框图如图2-1所示。 图2-1 系统框图 系统中非线性部分的输入输出关系为: 非线性部分的输入与输出关系可用下式表示: 试用等倾线法绘制其相轨迹。 解:

首先在图2-2中设q为不同值时画出一系列等倾线。在每条等倾线上按q值求出α=arctan q,并按该倾角画出短线短。相轨迹应以该斜率穿过等倾线。如果系统外部输入为r=0,在初始状态x1(0)=3情况下,其相轨迹如图2-2所示。由图可见,在给定条件下,x是单调衰减的。由于存在死区非线性特性,x1不能衰减到0,存在稳态误差。 图2-2 用等倾线法绘制图2-1所示系统的相轨迹 2.如图2-3所示,非线性控制系统,在t=0时,加上一个幅度为6的阶跃输入, 图2-3 继电控制系统

系统的初始状态为e(0)=6,e(0)=0,问系统经过多长时间可到达原点。 图2-4 继电控制系统的相轨迹 3.试分析图2-5所示具有摩擦阻力的系统。图中F f表示摩擦阻力,它包括 图2-5 系统框图

或 在图2-6中画出了当系统参量为K=1.25,f c=0.25,f v=0.25时的相轨迹。 图2-6 图2-5系统的相轨迹

图2-5所示系统的稳定性没有问题,但稳态误差可能比较大,也就是要求系统总是最终收敛到状态平面的原点是难于做到的。在实际中,对于具有干摩擦非线性的系统,为提高稳态精度,可用反复加入微小的正、负输入信号,以克服由于干摩擦带来的稳态精度不高的缺点。 4.非线性控制系统如图2-7所示,令K=1。讨论下面情况下的e-e相轨迹:当输入信号为阶跃信号r(t)=R,系统的初始状态为0。 图2-7 系统框图 解:首先根据控制系统框图,设法得到各分区的线性方程。由 得到:;将代入方程,有:

相平面法

7-4 相 轨 迹 一、相轨迹的概念 设二阶系统可以用下列常微分方程描述 ),(x x f x = 或 ),(x x f dt x d = 式中),(x x f 一般是x 和x 的非线性函数。该系统的时域解,可以用x 与t 的关系曲线来表示。也可把时间t 作为参 变量,用x 与x 之间的关系曲线来表示。下面以线性二阶系统为例加以说明。 设线性二阶系统如图7-34(a)所示,其单位阶跃响应及其导数如图7-34(b)所示。即可把系统的阶跃响应 用图7-34(c)所示的x 与x 之间的关系曲线来描述,由图可见,x x -曲线同样很直观地表示了系统的运动特性。从某种意义上来说,甚至比)(t x 曲线更形象,可获得更多的信息。 显然,如果把方程),(x x f x =看作是一个质点运动方程,用x 表示质点的位置,那么x 就表示质点的运动速度。用x 和x 描述方程的解,也就是用质点的“状态”(位置和速 度)来表示该质点的运动。在物理学中,这种不直接用时间变量而用状态变量来描述运 动的方法称为相空间方法,也称为状态空间法。在自动控制理论中,把具有直角坐标x x -的平面称为相平面。相平面是二维的状态空间(平面),相平面上的每个点对应着系统的 一个运动状态,这个点就称为相点。相点随时间t 的变化在x x -平面上描绘出的轨迹线,表征了系统运动状态(相)的演变过程,这种轨迹称为相轨迹。对于二阶系统,它的状态变量只有两个,所以二阶系统的运动可在相平面上表示出来。对于三阶系统,它有三个状态变量,必须用三维空间来描述其相迹,这就比较困难了。对于三阶以上的系统,要作其相轨迹就更加困难;然而原则上可以将二维空间中表示点运动的概念扩展到n 维空间去。 相平面法是一种用图解求下列两个联立一阶微分方程组的方法。首先把二阶常微分运动方程 ),(x x f x = 改写成两个联立一阶微分方程,令1x x =,21x x =? 则有

建筑总平面分析

建 筑 总 平 面 分 析 指导老师:蔡家伟 组员:贾镔培张超慧常丽萧 时泳王倩

建筑总平面分析 建筑面图主要表示整个建筑基地的总体布局,具体表达新建房屋的位置、朝向以及周围环境(原有建筑、交通道路、绿化、地形)基本情况的图样。 一,建筑总平面的组成元素。 建筑总平面它包括场地分区,实体布局,交通安排,绿地布置,从宏观上进行大块安排,是总平面设计的核心工作,它确定了各构成元素的各自形态以及元素之间的相互关联,确定了整个场地的基本形态。这是我们作为建筑师所必须了解的,这样我们才能去处理好各个元素之间的关系,从各个方面来权衡建筑的可

行性。而我们从细节来说总平面时:.1、表明新建区的总体布局:用地范围、各建筑物及构筑物的位置(原有建筑、拆除建筑、新建建筑、拟建建筑)、道路、交通等的总体布局。 2、确定新建建筑物的平面位置:(1)根据原有房屋和道路定位若新建房屋周围存在原有建筑、道路,此时新建房屋定位是以新建房屋的外墙到原有房屋的外墙或到道路中心线的距离。二,建筑总平面 1,建筑总平面与环境的关系: 过去的总平面设计是以功能为主的设计,整个设计区内就是单调的房屋排列和必要的交通条件,即使在民用项目中考虑到人们的居住条件和服务设施,也都是停留在低层次的生活标准,随着人民生活水平的逐步提高,人们对生活质量的要求也越来越高,因此我们在设计中除了考虑房屋排列满足地方规定的间距,保证房屋的日照、通风条件外,还要考虑对环境的要求及良好的服务功能,例如:漫步、休憩、晒太阳、遮阴、聊天等户外活动场所。1.工业建筑是以生产功能为主进行设计,过去只讲生产要素,现代己不能满足了,因此设计时也要注意环境设计,建设无污染、环境优美的园林化的工厂。特别在厂前区和生活区,也与民用建筑一样要求绿化,美化。致于公共建筑,更要从人性化出发,针对各种不同的公共建筑创造设计出注重城市趣味性,与城市景观相呼应,建筑艺术与环境的协调的建筑作品。对住宅区的环境设计则更有很多文章可作,主要可根据小区的地形地貌进

自动控制原理实验报告3

自动控制原理 实验报告 学生: 学号: 班级: 专业:电气工程与自动化 学院:自动化学院

线性系统的频率响应分析 一、实验目的 1.掌握波特图的绘制方法及由波特图来确定系统开环传函。 2.掌握实验方法测量系统的波特图。 二、实验设备 PC机一台,TD-ACC+系列教学实验系统一套。 三、实验原理及内容 (一)实验原理 1.频率特性 当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。 2.线性系统的频率特性 系统的正弦稳态响应具有和正弦输入信号的幅值比Φ(jω)和相位差∠Φ(j ω)随角频率(ω由0变到∞)变化的特性。而幅值比Φ(jω)和相位差∠Φ(j ω)恰好是函数Φ(jω)的模和幅角。所以只要把系统的传递函数Φ(s),令 s = jω,即可得到Φ(jω)。我们把Φ(jω)称为系统的频率特性或频率传递函数。当ω由0到∞变化时,Φ(jω)随频率ω的变化特性成为幅频特性,∠Φ(jω)随频率ω的变化特性称为相频特性。幅频特性和相频特性结合在一起时称为频率特性。 3.频率特性的表达式 (1) 对数频率特性:又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。这两组曲线连同它们的坐标组成了对数坐标图。对数频率特性图的优点: ①它把各串联环节幅值的乘除化为加减运算,简化了开环频率特性的计算与作图。 ②利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇

相平面法

7.2 相平面法 相平面法是Poincare. H 于1885年首先提出来的,它是求解一、二阶线性或非线性系统的一种图解法,可以用来分析系统的稳定性、平衡位置、时间响应、稳态精度以及初始条件和参数对系统运动的影响。 7.2.1 相平面的基本概念 1.相平面、相轨迹 设一个二阶系统可以用常微分方程 0),(=+x x f x &&& (7-5) 来描述。其中是),(x x f &x 和的线性或非线性函数。在非全零初始条件(,)或输入作用下,系统的运动可以用解析解和描述。 x &0x 0x &)(t x )(t x &取x 和构成坐标平面,称为相平面,系统的每一个状态均对应于该平面上的一点。当变化时,这一点在x &t x -平面上描绘出的轨迹,表征系统状态的演变过程,该轨迹就叫做相轨迹,如图7.8(a) 所示。 x & 图7-8 相轨迹 2.相平面图 相平面和相轨迹曲线簇构成相平面图。相平面图清楚地表示了系统在各种初始条件或输入作用下的运动过程,可以用来对系统进行分析和研究。 7.2.2 相轨迹的性质 1.相轨迹的斜率 相轨迹在相平面上任意一点处的斜率为 ),(x x &

d d d (,d d d )?== &&&&x x t f x x x x t x (7-6) 只要在点处不同时满足和),(x x &0=x &0),(=x x f &,则相轨迹的斜率就是一个确定的值。这样,通过该点的相轨迹不可能多于一条,相轨迹不会在该点相交。这些点是相平面上的普通点。 2.相轨迹的奇点 相平面上同时满足和0=x &0),(=x x f &的点处,相轨迹的斜率 d (,)d 00?==&&&x f x x x x 即相轨迹的斜率不确定,通过该点的相轨迹有一条以上。这些点是相轨迹的交点,称为奇点。 显然,奇点只分布在相平面的x 轴上。由于在奇点处,0==x x &&& ,故奇点也称为平衡点。 3.相轨迹的运动方向 相平面的上半平面中,,相迹点沿相轨迹向0>x &x 轴正方向移动,所以上半部分相轨迹箭头向右;同理,下半相平面0

自动控制原理实验

自动控制原理实验

实验一 控制系统的数学模型 一、 实验目的 1. 熟悉Matlab 的实验环境,掌握Matlab 建立系统数学模型的方法。 2. 学习构成典型环节的模拟电路并掌握典型环节的软件仿真方法。 3. 学习由阶跃响应计算典型环节的传递函数。 二、 实验内容 1. 已知图1.1中()G s 和()H s 两方框相对应的微分方程分别是: ()610 ()20()()205()10()dc t c t e t dt db t b t c t dt +=+= 且满足零初始条件,用Matlab 求传递函数()()C s R s 和()() E s R s 。 图1.1 系统结构图 2. 构成比例环节、惯性环节、积分环节、比例-积分环节、比例-微分环节和比例-积分-微分环节的模拟电路并用Matlab 仿真; 3. 求以上各个环节的单位阶跃响应。 三、 实验原理 1. 构成比例环节的模拟电路如图1.2所示,该电路的传递函数为:

21().R G s R =- 图1.2 比例环节的模拟电路原理图 2. 构成惯性环节的模拟电路如图1.3所示,该电路的传递函数为: 221 (),,.1R K G s K T R C Ts R =-==+ 图1.2 惯性环节的模拟电路原理图 3. 构成积分环节的模拟电路如图1.3所示,该电路的传递函数为: 1(),.G s T RC Ts ==

图1.3 积分环节的模拟电路原理图 4.构成比例-积分环节的模拟电路如图1.4所示,该电路的传递函数 为: 2 2 1 1 ()1,,. R G s K K T R C Ts R ?? =-+== ? ?? 图1.4 比例-积分环节的模拟电路原理图 5.构成比例-微分环节的模拟电路如图1.5所示,该电路的传递函数 为: 2 2 1 ()(1),,. R G s K Ts K T R C R =-+==

相关文档
最新文档