轧辊强度校核习题详解

轧辊强度校核习题详解
轧辊强度校核习题详解

轧辊强度校核习题详解

验算Φ500×3三辊型钢开坯机第一机座的下轧辊强度。已知:

1)按轧制工艺,该辊K13、K9、K5三个道次同时走钢;

2)各道的轧制力:P13 =1100KN , P9=800KN , P5 =600 KN ;

3)各道的轧制力矩:M13 = 60.0KN .m ,

M9 = 30KN.m , M5= 20KN.m ,忽略摩擦力矩;

4)轧辊有关尺寸见图所示。其中各道次的辊身工作直径为:D13=340 mm , D9=384 mm , D5=425 mm 轧辊辊颈直径:d=300 mm 辊颈长度l =300 mm,轧辊梅花头外径d1=280 mm,其抗扭断面系数W n = 0.07d13 。

5)轧辊右侧为传动端;

6)轧辊材质为铸钢,其强度极限为

σb = 5 00 ~ 600 MPa;

7)轧辊安全系数取n =5;

8)许用应力[τ] = 0.6[σ]。

(要求画出轧辊的弯矩图和扭矩图)

1)由静力学平衡方程求得轧辊辊颈处的支反力:

R1*(286+507+654+353)-P5*(507+654+353)- P9*(654+353)- P13 *(353)=0

即:R1=(600 *1514+ 800 *1007 + 1100*353)/(286+507+654+353)=1167.94 KN

R2= (P5+P9+P13)- R1= (600+800+1100)-1167.94=1332.06KN

2)轧辊各位置点的弯矩值:

Ma = R1*300/2/1000 = 1167.94 *0.15 =175.191KN.m

Mb= R1* 286/1000 = 1167.94 *0.286 =334.03KN.m

Mc= R1*(286+507)/1000- P5*507/1000 = 1167.94*0.793-600*0.507=621.98 KN.m

或(Mc= R2*(353+654)/1000- P13*654/1000 = 1332.06*1.007-1100*0.654=621.98 KN.m)Md = R2*353/1000 = 1332.06 *0.353 = 470.22KN.m

Me = R2*300/2/1000 = 1332.06 *0.15 =

199.81KN.m

3)绘制弯矩图和扭矩图:

4)轧辊各位置点的扭矩值:

忽略摩擦力矩后,传动侧的扭矩为

Mn =M13+M +M5=60+30+20=110.0 KN.m

9

5)辊身强度计算:三个孔型处的弯曲应力分别为:

σD5 = Mb /(0.1D53)= 334.03 / ( 0.1×0.4253) = 43.51 MPa

σD9 = Mc /(0.1D93)= 621.98/ ( 0.1×0.3843) = 109.85 MPa

σD13 = Md /(0.1D133)=470.22 / ( 0.1×0.343) = 119.64MPa

6)辊颈强度计算:由支反力的大小和传动端的位置可判定,辊颈的危险断面在传动侧,其弯曲应力为:

σd = Me /(0.1d3)=199.81/ ( 0.1×0.33) = 74 MPa

危险断面的扭转应力:

τd = Mn /(0.2d3)=110/ ( 0.2×0.33)

= 20.37 MPa

辊颈危险断面的合成应力:

σd p = (σd2 +3τd2 )1/2= (74 2 +3×20.372 )1/2 = 81.98 MPa

7)辊头的强度计算:

τd 1= Mn /(0.07d13)=110/ ( 0.07×0.283 ) = 71.59 MPa

8)轧辊的许用应力:

[σ] = σb / n = (500 ~ 600) / 5 = 100 ~ 120 MPa

[τ] = 0.6[σ] = 0.6×( 100 ~ 120) = 60 ~ 72 MPa

9)结论:辊身、辊径的应力均小于许用值,所以轧辊受力安全,不合符要求。

例题4:在如下图2-3所示的2300二辊热轧板带钢轧机上轧制宽度为1700mm 的钢板,最大轧制力9.6MN ,最大扭矩0.60MN.m 。轧辊辊身直径D=950mm ,辊颈直径d=560mm ,辊颈长度l=560mm 。辊头为梅花头,其梅花头外径d 1 = 510mm ,抗扭断面系数W n = 0.07d 13。轧辊材质为铸钢,许用应力[σ]=100~120MP a ,[τ] = 0.6[σ]。校核其轧辊强度。(要求画出轧辊的弯矩图和扭矩图)

图2-3 2300

二辊热轧板

解:

(1)根据静力平衡,由板带轧机受力可得两端轴承座的支反力:

MN P R R 8.42

6.9221==== (2)画出轧辊的弯矩和扭矩图

(3)辊身

轧辊中部的弯矩计算:

从辊身弯矩图可知,辊身中部的弯矩最大值为: m MN b a P M ?=???? ??-+?=??? ??-=824.41000

181700456023006.984max 辊身中部的弯曲应力为: MPa D M D 26.56950

.01.010824.41.036

3max =??==σ (4)辊颈

根据弯矩和扭矩图知,传动侧辊颈受弯矩和扭矩的作用,其

弯矩值为:

m MN C R M d ?=?==344.1280.08.42

对应的弯曲应力为: MPa d M d d 53.76560.01.0344.11.03

3=?==σ 传动侧辊颈所受扭矩:m MN M n ?=60.0

对应的扭转应力为: MPa d M n d 08.17560.02.060.02.03

3=?==τ 由于轧辊材质为铸钢,按第四强度理论计算弯扭合成应力: MPa d d p 41.7808.17353.763222

2=?+=+=τσσ

(5)辊头

轧辊传动侧辊头只承受扭矩,其扭转应力为:

MPa d M n

62.64510

.007.060.007.0331=?=?=τ (6)轧辊许用应力:

[σ]=100∽120MP a ,

[τ] = 0.6[σ]=60∽72 MP a

(7)结论:辊身、辊颈和辊头的应力均小于许用应力值,所以

轧辊受力安全,合符设计要求。 (1分)

例题5:

在2700mm 二辊式热轧机上轧制宽度为2050mm 的钢板,,最大轧制力为15MN ,最大扭矩0.74MN.m 。轧辊直径D=1060mm ,辊颈直径d=600mm,辊颈长度l=580mm ,辊头为梅花头,截面模数W n =0.07d 13,直径d 1=520mm 。轧辊材质为铸钢,许用应力[σ]=120MP a ,[τ] = 0.6[σ]。校核其轧辊强度。(要求画出轧辊的受力图,弯矩和扭矩图。)

例题6:

验算Φ600×3三辊型钢开坯机第一机座的下轧辊强度。已知:

1)按轧制工艺,该辊K13、K9、K5三个道次同时走钢;

2)各道的轧制力:P13 =1000KN , P9=800KN , P5 =600 KN ;

3)各道的轧制力矩:M13 = 65KN .m , M9= 35KN.m , M5= 30KN.m ,忽略摩擦力矩;

4)轧辊有关尺寸见图所示。其中各道次的辊身工作直径为:D13=340 mm , D9=384 mm , D5=425 mm;轧辊辊颈直径:d=300 mm,辊颈长度l =300 mm,轧辊梅花头外径d1=280 mm

5)轧辊右侧为传动端;

6)轧辊材质为铸钢,其强度极限为σb= 500~600 MPa;

7)轧辊安全系数取n =5;

8)[τ] = 0.6[σ]

例题7:

试计算某车间φ90/φ200?200四辊冷轧机的轧辊强度。轧辊尺寸如图2所示,轧制带钢宽度b =150mm ,压下量h ?=0.4mm ,工作辊材质为9Cr ,b σ=833MPa ;支撑辊材质为40Cr ,b σ=686MPa ;轧机采用工作辊传动,轧制压力P=313.6KN ,最大张力T=1.96KN 。(工作辊辊径处张力引起的弯曲力矩按照一侧张力等于零,零一侧为最大的特例来计算。查表得,40Cr 的接触许用应力][σ=2000MPa ,][τ=610MPa )

图2-4 φ90/φ200?200四辊冷轧机轧辊尺

解:(1)计算支撑辊强度 支撑辊辊身中部的弯曲力矩 m KN L a P M ?=-=-=22)8

2.0438.0(6.313)84(22 支撑辊辊身处弯曲应力

MPa D M 5.27)

2.0(1.010221.033

3222=??==-σ 辊身的安全系数

255

.276862===σσb n 支撑辊辊颈处弯曲力矩

m KN C P M j ?=?=?=1.1409.02

6.31322 支撑辊辊径处弯曲正应力

MPa d M j j 164)

095.0(1.0101.141.033

32=??==-σ 支撑辊辊颈处的安全系数

2.4164

686===j b n σσ 从计算结果看,支撑辊辊身处安全,辊颈处安全系数偏低。

(1) 计算工作辊强度

作用在传动端工作辊辊颈上的扭矩

m kN h R P M n ?=?=?=67.00004.0045.02

6.31321 工作辊辊径处的扭转剪切应力

m kN d M n n ?=??==-8.36)

045.0(2.01067.02.033

31τ m kN C S M j ?=?=?=03.006.04

96.141 MPa d M j

j 3.3)045.0(1.01003.01.033

31=??==-σ

MPa n j p 8.63)8.36(33.33

2222=?+=+=τσσ 工作辊辊径的安全系数

138

.63833===

p b n σσ 故工作辊安全 辊头处扭转剪切应力

MPa d M n 53)04.0(2.01067.02.033

3''

=??==-τ MPa 905233''=?==τσ 辊头处安全系数

3.990833'===σ

σb n 故辊头处安全。 (2) 计算接触应力

MPa r r r r q 1700045.01.0045.01.010263.02.03136.05.1318.0318.052121max max =??? ???+??=???? ??+=-θσ 根据][304.0max max τστ≤= MPa 5171700304.0max =?=τ 综上,max σ=1700MPa<][σ,m ax τ=517MPa<][τ,故强度校核通过。

轴强度校核

1?轴I的强度校合 (1)求作用在齿轮上的力 F ri F t1tan20 3381.3 tan 20 1230.69N (2)求轴承上的支反力 (1)画受力简图与弯矩图 V 根据第四强度理论且忽略键槽影响 M 70MPa F ti 2T i d i 2 138633 82 3381.30N 垂直面内:F NV1 917N F NV2314N 水平面内:F NH1 2518N F NH2 863N 1

9.2 10 6 F a F t tan 9967 tan 14 2485N (2)求轴承上的支反力 水平面内: F NV 1 (85 118 97) F r3 97 F 「2 (118 97) F a3 号 求得 F NV 1 162N F NV2 (85 118 97) F r3 (118 85) F a F r2 85 W 3 旦) 32 (M M 2 °.7叮 2 , (1)求作用在齿轮上的力 F t2 F t1 3381.30N F r2 F r1 1230.69N F t3 2T n 2 588023 9967N d 3 118 F r3 F tan a . cos 9967 tan 20 cos14.6 所以轴的强度足够 2.校合轴II 的强度 3739N cal 1.93 105 10 3 9.2 10 6 25.69Mpa 1 70MPa ca2 2.34 105 10 3 3 0.1 0.045 20.69Mpa 1 70MPa

32 F NHI (85 118 97) F t2 (118 97) F t3 97 求得 F NH 1 =5646N F NH 2 (85 118 97) F t3 (85 118) F t 2 85 求得 F NH 2 =7700N (2) 画受力简图与弯矩图 I MV I (4)按弯扭合成应力校核轴的强度 在两个轴承处弯矩有最大值,所以校核这两处的强度 求得F N V2 垂直面内: -2670N 51 % t ------------------------- 1 t3 「r~3 J “ r ■皂 F L : f TT*r I H I 1 N “ iHt .................... mu R t ^r-TrrrnTfH iE ■mi F t3 [irnrrmTrnrr ^ f 卜 NHff NHi? F" NV1 M 2 ( T)2 ca 70MP a 3

塔设备设计说明书

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录

前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm;

机械设计-键考试复习与练习题

考试复习与练习题 一、单项选择题(从给出的A、B、C、D中选一个答案) 1 为了不过于严重削弱轴和轮毂的强度,两个切向键最好布置成。 A.在轴的同一母线上 B. 180° C. 120°~ 130° D. 90° 2 平键B20×80 GB/T1096—1979中,20×80是表示。 A. 键宽×轴径 B. 键高×轴径 C. 键宽×键长 D. 键宽×键高 3 能构成紧连接的两种键是。 A. 楔键和半圆键 B. 半圆键和切向键 C. 楔键和切向键 D. 平键和楔键 4 一般采用加工B型普通平键的键槽。 A. 指状铣刀 B. 盘形铣刀 C. 插刀 D. 车刀 5 设计键连接时,键的截面尺寸b×h通常根据由标准中选择。 A. 传递转矩的大小 B. 传递功率的大小 C. 轴的直径 D. 轴的长度 6 平键连接能传递的最大扭矩T,现要传递的扭矩为1.5T,则应。 A. 安装一对平键 B. 键宽b增大到1.5倍 C. 键长L增大到1.5倍 D. 键高h增大到1.5倍 7 如需在轴上安装一对半圆键,则应将它们布置在。 A. 相隔90° B. 相隔120°位置 C.轴的同一母线上 D. 相隔180° 8 花键连接的主要缺点是。 A. 应力集中 B. 成本高 C. 对中性与导向性差 D. 对轴削弱 二、填空题 9 在平键联接中,静联接应校核强度;动联接应校核强度。 10 在平键联接工作时,是靠和侧面的挤压传递转矩的。 11 花键联接的主要失效形式,对静联接是,对动联接是。 12 键联接,既可传递转矩,又可承受单向轴向载荷,但容易破坏轴与轮毂的对中性。 13 平键联接中的静联接的主要失效形式为,动联接的主要失效形式为;所以通常只进行键联接的强度或计算。 14 半圆键的为工作面,当需要用两个半圆键时,一般布置在轴的。 三、简答题 15 试述普通平键的类型、特点和应用。 16 平键连接有哪些失效形式? 17 试述平键联接和楔键联接的工作原理及特点。 18 试按顺序叙述设计键联接的主要步骤。 四、设计题 19 一齿轮装在轴上,采用A型普通平键连接。齿轮、轴、键均用45钢,轴径d=80mm,轮毂

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3 =[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

塔设备机械计算

第四章塔设备机械设计 塔设备设计包括工艺设计和机械设计两方面。机械设计是把工艺参数、尺寸作为已知条件,在满足工艺条件的前提下,对塔设备进行强度、刚度和稳定性计算,并从制造、安装、检修、使用等方面出发进行机构设计。 4.1设计条件 由塔设备工艺设计设计结果,并查相关资料[1],[9]知设计条件如下表。 表4-1 设计条件表

4.2设计计算 4.2.1全塔计算的分段

图4-1 全塔分段示意图 塔的计算截面应包括所有危险截面,将全塔分成5段,其计算截面分别为:0-0、1-1、2-2、3-3、4-4。分段示意图如图4-1。

4.2.2 塔体和封头厚度 塔内液柱高度:34.23.15.004.05.0=+++=h (m ) 液柱静压力:018.034.281.992.783101066=???==--gh p H ρ(MPa ) 计算压力:1=+=H c p p p MPa (液柱压力可忽略) 圆筒计算厚度:[]94.60 .185.017022000 0.12=-???=-= c i c p D p φσδ(mm ) 圆筒设计厚度:94.8294.6=+=+=C c δδ(mm ) 圆筒名义厚度:108.094.81=?++=?++=C c n δδ(mm ) 圆筒有效厚度:8210=-==-=C n e δδ(mm ) 封头计算厚度:[]93.60 .15.085.017022000 0.15.02=?-???=-= c i c h p D p φσδ(mm ) 封头设计厚度:93.8293.6=+=+=C h hc δδ(mm ) 封头名义厚度:108.093.81=?++=?++=C hc hn δδ(mm ) 封头有效厚度:8210=-==-=C hn he δδ(mm ) 4.2.3 塔设备质量载荷 1. 塔体质量 查资料[1],[8]得内径为2000mm ,厚度为10mm 时,单位筒体质量为495kg/m ,单个封头质量为364kg 。 通体质量:5.121275.244951=?=m (kg ) 封头质量:72823642=?=m (kg ) 裙座质量:14850.34953=?=m (kg ) 塔体质量:5.1434014857285.1212732101=++=++=m m m m (kg ) 0-1段:49514951-0,01=?=m (kg )

材料力学习题与答案

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等

外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

轴的强度计算

轴的强度计算 一、按扭转强度初步设计阶梯轴外伸端直径 由实心圆轴扭转强度条件 τ= 33102.09550?=n d P W T ρ≤[τ] 式中,τ为轴的剪应力,MPa ;T 为扭矩,N ·mm ;ρW 为抗扭截面系数,mm 3;对圆截面,ρW =π3d /16≈0.23d ;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴的直径,mm ;[τ]为许用切应力,MPa 。 对于转轴,初始设计时考虑弯矩对轴强度的影响,可将[τ]适当降低。将上式改写为设计公式 d ≥ []3 33 32.0109550n P A n P =?τ (16.1) 式中,A 是由轴的材料和承载情况确定的常数。见表16.7;P 为轴传递的功率,KW ; n 为轴的转速,r/min ;d 为轴径,mm 。 注:1.轴上所受弯矩较小或只受转矩时,A 取较小值;否则取较大值。 2.用Q235、3SiMn 时,取较大的A 值。 3.轴上有一个键槽时,A 值增大4%~5%;有两个键槽时,A 值增大7%~10%。 可结合整体设计将由式(16.1)所得直径圆整为按优先数系制定的标准尺寸或与相配合零件(如联轴器、带轮等)的孔径相吻合,作为转轴的最小直径。 二、按弯扭组合强度计算 轴系结构拟定以后,外载荷和轴的支点位置就可确定,此时可用弯扭组合强度校核。如图16.39(a),装有齿轮的传动轴,切向力P 作用在齿轮的节圆上,通过齿轮的受力分析(图16.39(b)),可知齿轮作用于轴上的是一个通过轴线并与之轴线垂直的力P 和一个作用面垂直于轴线的力偶PR m = (图16.39(c))。力P 使轴产生弯曲变形(图16.39(d)),力偶PR m =则产生扭转变形(图16.39(e)),所以此轴是弯扭组合变形。 分别考虑力P 与力偶m 的作用,画出弯矩图(图16.39(f))和扭矩图(图16.39(g)),其危险截面上的弯矩和扭矩值分别为 l Pab M = T =PR m = 危险截面上的弯曲正应力和扭转剪应力的分布情况如图(16.40(a)),由于C 、D 两点是危险截面边缘上的点,扭转剪应力和弯曲正应力绝对值最大,故为危险点,其正应力和剪应力分别为 σ=W M τ= ρ W T

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

轴的强度校核方法

轴的强度校核方法 摘要 轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。轴的设计时应考虑多方面因素和要求,其中主要问题是轴的选材、结构、强度和刚度。其中对于轴的强度校核尤为重要,通过校核来确定轴的设计是否能达到使用要求,最终实现产品的完整设计。 本文根据轴的受载及应力情况采取相应的计算方法,对于1、仅受扭矩的轴2、仅受弯矩的轴3、既承受弯矩又承受扭矩的轴三种受载情况的轴的强度校核进行了具体分析,并对如何精确计算轴的安全系数做了具体的简绍。 校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。 轴的强度校核方法可分为四种: 1)按扭矩估算 2)按弯矩估算 3)按弯扭合成力矩近视计算 4)精确计算(安全系数校核) 关键词:安全系数;弯矩;扭矩

目录 第一章引言--------------------------------------- 1 1.1轴的特点---------------------------------------------1 1.2轴的种类---------------------------------------------1 1.3轴的设计重点-----------------------------------------1 第二章轴的强度校核方法----------------------------4 2.1强度校核的定义-------------------------------------4 2.2轴的强度校核计算-----------------------------------4 2.3几种常用的计算方-----------------------------------5 2. 3.1按扭转强度条件计算-------------------------------5 2.3.2按弯曲强度条件计算-------------------------------6 2.3.3按弯扭合成强度条件计算---------------------------7 2.3.4精确计算(安全系数校核计算)----------------------9 2.4 提高轴的疲劳强度和刚度的措施---------------------12 第三章总结------------------------------------------13参考文献--------------------------------------------14

主轴的强度校核

主轴的强度校核 根据通风机的轴向尺寸和带轮的大小以及结构上的要求,确定主轴的形状和尺寸如图所示 图5-5 主轴 由参考文献[7]图5-57得本设计中离心通风机的传动方式为C 式传动。主轴在运转过程中,同时承受弯矩和转矩,所以在设计过程中要分别计算出主轴的最大弯矩和转矩,然后计算出合成应力。 主轴承受的负荷 如图5-5所示,主轴承受的负荷如下 由于悬臂端轴的直径是节段式的,为了简化起见,视为等直径轴。 估算叶轮质量kg m 4501= 带轮直径m D 56.0=,估算带轮质量kg m 502=。 两支承间轴的重量 )(36.59381.91085.7]036.011.04 6.0125.04[32244N g m G =?????+??==ππ 叶轮端悬臂轴的重量 )(37.22181.91085.7366.01.043255N g m G =?????==π 叶轮重量与不平衡力之和由参考文献[7]式(5-30)得

)(60.4503450])2135 950(81.9[])2135([2121N m n g G =?+=+= 带轮重量与带拉力之和由参考文献[7]式(5-32)得 )(08.248310950 56.037865.281.950865.2422N Dn N g m G =???+?=+= 带轮端悬臂轴的重力 )(28.9881.91085.71625.01.043266N g m G =?????==π 计算弯矩和扭矩 支撑A 的反作用力为 )(19.7081636 .01625.0)28.9808.2483(318.036.593)366.0636.0()37.22160.4503()())((2 6244151N l l G G l G l l G G F A =?+-?++?+=+-+++= 支撑B 的反作用力为 ) (50.81819.708128.9837.22136.59308.248360.450365421N F G G G G G F A B =-++++=-++++= 截面A 上的弯矩 )(34.1729366.0)37.2216.4503()(151m N l G G M A ?=?+=+= 截面B 上的弯矩 )(47.4191625.0)28.9808.2483()(262m N l G G M B ?=?+=+= AB 段轴的扭矩由参考文献[7]式(5-18)得 )(99.371950 3795519551m N n P M t ?=?== 计算轴的最大应力和材料选用 最大弯矩值为 m N M ?=89.1842max 最大弯矩发生在A 截面,故最大合成应力也发生在A 截面。合成应力值由参考文献[7]式(5-33)得 W M n n =σ 式中,n M 由参考文献[1]式(9-6)得 )(70.176899.37134.17292222max m N M M M t n ?=+=+=

轴强度校核

. . . 1.轴I 的强度校合 (1)求作用在齿轮上的力 111221386333381.3082 t T F N d ?=== 11tan 203381.3tan 201230.69r t F F N =?=??= (2)求轴承上的支反力 垂直面:NV1F 917=N NV2F 314=N 水平面:12518NH F N = NH2F 863N = (1) 画受力简图与弯矩图 根据第四强度理论且忽略键槽影响 []170M MPa W σσ-==?=

(M =3 32W d π=) 69.210W -=? []531161.93101025.69709.210ca M Mpa MPa W σσ---??===?=? ()[]53132 2.34101020.69700.10.045ca M Mpa MPa W σσ--??===?=? 所以轴的强度足够 2.校合轴II 的强度 (1)求作用在齿轮上的力 21t t F F == 3381.30N 21r r F F ==1230.69N 33225880239967118 t T F N d ?===Ⅱ 3tan tan 2099673739cos cos14.6n r t a F F N β?==?=? tan 9967tan142485a t F F N β==??= (2)求轴承上的支反力 水平面: 31323(8511897)97(11897)2NV r r a d F F F F ?+++?=?++? 求得1NV F =162N 3232(8511897)(11885)852NV r a r d F F F F ?+++?++?=?

轴的强度计算与设计A

§11—4-1 轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条 : Mpa (11-1) 件 设计公式:mm (11-2) 轴上有键槽需要按一定比例修正:一个键槽轴径加大3~5%;二个键槽轴径加大7~11%。 ——许用扭转剪应力(N/mm2) C——轴的材料系数,与轴的材料和载荷情况有关。 对于空心轴:(mm)(11-3) ,d1—空心轴的内径(mm) 二、按弯扭合成强度条件计算: 条件:已知支点、扭距,弯距可求时 步骤: 1、作轴的空间受力简图(将分布力看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力; 2、求水平面支反力R H1、R H2作水平内弯矩图; 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图; 4、作合成弯矩图;

5、作扭矩图; 6、作当量弯矩图; ——为将扭矩折算为等效弯矩的折算系数。 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴与扭矩变化情况有关: ——扭矩对称循环变化 ——扭矩脉动循环变化 ——不变的扭矩 ,,分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。 7、校核轴的强度——M emax处;M e较大,轴径d较小处。 Mpa (11-4) W——抗弯截面模量mm3,见附表11不同截面的W。 设计公式:(mm)(11-5) 如果计算所得d大于轴的结构设计d结构,则应重新设计轴的结构。 对于心轴:T=0,Me=M:转动心轴,许用应力用; 固定心轴,许用应力用——弯曲应力为脉动循环。 三、轴的安全系数校核计算 1、疲劳强度校核——精确计算(比较重要的轴) 要考虑载荷性质、应力集中、尺寸因素和表面质量及强化等因素的影响。根据结构设计选择Me较大,并有应力集中的几个截面,计算疲劳强度安全系数

《材料力学》期末复习题

1、解释:形变(应变)强化、弹性变形、刚度、弹性不完整性、弹性后效、弹性滞后、Bauschinger效应、应变时效、韧性、脆性断裂、韧性断裂、平面应力状态、平面应变状态、低温脆性、高周疲劳、低周疲劳、疲劳极限、等强温度、弹性极限、疲劳极限、应力腐蚀开裂、氢脆、腐蚀疲劳、蠕变极限、持久强度、松弛稳定性、磨损。 2.弹性滞后环是由于什么原因产生的。材料的弹性滞后环的大小对不同零件有不同的要求? 弹性滞后环是由于材料的加载线和卸载线不重合而产生的。对机床的底座等构件,为保证机器的平稳运转,材料的弹性滞后环越大越好;而对弹簧片、钟表等材料,要求材料的弹性滞后环越小越好。3.断口的三个特征区?微孔聚集型断裂、解理断裂和沿晶断裂的微观特征分别为? 断口的三要素是纤维区、放射区和剪切唇。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花样;沿晶断裂的微观特征为石状断口和冰糖块状断口。 4.应力状态系数α值大小和应力状态的软硬关系。为测量脆性材料的塑性,常选用应力状态系数α值(大)的实验方法,如(压缩)等。 5. 在扭转实验中,塑性材料的断口方向及形貌,产生的原因?脆性材料的断口的断口方向及形貌,产生的原因? 在扭转试验中,塑性材料的断裂面与试样轴线垂直;脆性材料的断裂面与试样轴线成450。 6. 材料截面上缺口的存在,使得缺口根部产生(应力集中)和(双(三)向应力),试样的屈服强度(升高),塑性(降低)。 7. 低温脆性常发生在具有什么结构的金属及合金中,在什么结构的金属及合金中很少发现。 低温脆性常发生在具有体心立方结构的金属及合金 中,而在面心立方结构的金属及合金中很少发现。 8. 按断裂寿命和应力水平,疲劳可分为?疲劳断口的典型特征是? 9.材料的磨损按机理可分为哪些磨损形式。 10. 不同加载试验下的应力状态系数分别为多少? 11. 材料的断裂按断裂机理可分为?按断裂前塑性变形大小可分为? 答:材料的断裂按断裂机理分可分为微孔聚集型断裂,解理断裂和沿晶断裂;按断裂前塑性变形大小分可分为延性断裂和脆性断裂。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花

轴的强度计算.

轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条件:][2.01055.936T T T d n P W T ττ≤?== Mpa (11-1) 设计公式: 3036][1055.95n P A n P d T =??≥τ(mm )?轴上有键槽 放大:3~5%一个键槽;7~10%二个键槽。?取标准植 ][T τ——许用扭转剪应力(N/mm 2) ,表11-3 T ][τ——考虑了弯矩的影响 A 0——轴的材料系数,与轴的材料和载荷情况有关。注意表11-3下面的说明 对于空心轴:340) 1(β-≥n P A d (mm )? 6.0~5.01≈=d d β, d 1—空心轴的内径(mm ) 注意:如轴上有键槽,则d ?放大:3~5%1个;7~10%2个?取整。 二、按弯扭合成强度条件计算 条件:已知支点、距距,M 可求时 步骤:如图11-17以斜齿轮轴为例 1、作轴的空间受力简图(将分布看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力(图11-17a ) 2、求水平面支反力R H1、R H2作水平内弯矩图(图11-17b ) 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图(图11-17c ) 4、作合成弯矩图22V H M M M +=(图11-17d ) 5、作扭矩图T α(图11-17e ) 6、作当量弯矩图22)(T M M ca α+= α——为将扭矩折算为等效弯矩的折算系数 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴α与扭矩变化情况有关 1][][11=--b b σσ ——扭矩对称循环变化 α= 6.0][][01≈-b b σσ——扭矩脉动循环变化 3.0][][11≈+-b b σσ——不变的扭矩 b ][1-σ,b ][0σ,b ][1+σ分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。

材料力学性能试题集

判断 1.由内力引起的内力集度称为应力。(×) 2.当应变为一个单位时,弹性模量即等于弹性应力,即弹性模量是产生100%弹性变形所需的应力。(√) 3.工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同应力条件下产生的弹性变形就越大。(×) 4.弹性比功表示金属材料吸收弹性变形功的能力。(√) 5.滑移面和滑移方向的组合称为滑移系,滑移系越少金属的塑性越好。(×) 6.高的屈服强度有利于材料冷成型加工和改善焊接性能。(×) 7.固溶强化的效果是溶质原子与位错交互作用及溶质浓度的函数,因而它不受单相固溶合金(或多项合金中的基体相)中溶质量所限制。(×) 8.随着绕过质点的位错数量增加,留下的位错环增多,相当于质点的间距减小,流变应力就增大。(√) 9.层错能低的材料应变硬度程度小。(×) 10.磨损、腐蚀和断裂是机件的三种主要失效形式,其中以腐蚀的危害最大。(×) 11.韧性断裂用肉眼或放大镜观察时断口呈氧化色,颗粒状。(×) 12.脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,长呈放射状或结晶状。(√) 13.决定材料强度的最基本因素是原子间接合力,原子间结合力越高,则弹性模量、熔点就越小。(×) 14.脆性金属材料在拉伸时产生垂直于载荷轴线的正断,塑性变形量几乎为零。(√) 15.脆性金属材料在压缩时除产生一定的压缩变形外,常沿与轴线呈45°方向产生断裂具有切断特征。(√) 16.弯曲试验主要测定非脆性或低塑性材料的抗弯强度。(×) 17.可根据断口宏观特征,来判断承受扭矩而断裂的机件性能。(√) 18.缺口截面上的应力分布是均匀的。(×) 19.硬度是表征金属材料软硬程度的一种性能。(√) 20.于降低温度不同,提高应变速率将使金属材料的变脆倾向增大。(×) 21.低温脆性是材料屈服强度随温度降低急剧下降的结果。(×) 22.体心立方金属及其合金存在低温脆性。(√) 23.无论第二相分布于晶界上还是独立在基体中,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。(√) 24.细化晶粒的合金元素因提高强度和塑性使断裂韧度K IC下降。(×) 25.残余奥氏体是一种韧性第二相,分布于马氏体中,可以松弛裂纹尖端的应力峰,增大裂纹扩展的阻力,提高断裂韧度K IC。(√) 26.一般大多数结构钢的断裂韧度K IC都随温度降低而升高。(×) 27.金属材料的抗拉强度越大,其疲劳极限也越大。(√) 28.宏观疲劳裂纹是由微观裂纹的形成、长大及连接而成的。(√) 29.材料的疲劳强度仅与材料成分、组织结构及夹杂物有关,而不受载荷条件、工作环境及表面处理条件的影响。(×) 30.应力腐蚀断裂并是金属在应力作用下的机械破坏与在化学介质作用下的腐蚀性破坏的叠加所造成的。(×) 31.氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。(√) 32.含碳量较低且硫、磷含量较高的钢,氢脆敏感性低。(×)

相关文档
最新文档