几类简单的微分方程

我的mathematica_第6章微分方程的求解

第6章 微分方程的求解 6.1 微分方程解 在Mathematica中使用Dsolove[]可以求解线性和非线性微分方程,以及联立的微分分方程组。在没有给得到的解包括C[1],C[2]是待定系数。求解微分方程就是寻找未知的函数的表达式,在Mathematica中,未稳中有y'[x],y''[x]等表示。 下面给出微分方程(组)的求解函数 Dsolve[eqn,y[x],x] 求解微分方程y[x] Dsolve[eqn,y,x] 求解微分方程函数y Dsolve[{eqn1,eqn2,…},{y1,y2,….},x] 求解微分方程组 1.用Dsolve求解微分方程y[x] 解y[x]仅适合其本身,并不适合于y[x]的其它形式,如y’[x],y[0]等,也就是说y[x]不是函数,例如我们并没有发生变化。

2.解的纯函数形式 使用Dsolve命令可以给出解的纯函数形式,即y,请分析下面的例子 这里y适合y的所有情况下面的例子可以说明这一点 在标准数学表达式中,直接引入亚变量表示函数自变量,用此方法可以生成微分方程的解。如果需要的只是量很方便。然而,如果想在其他的的计算中使用该结果,那么最好使用不带亚变量的纯函数形式的结果。 3.求微分方程组

请分析下面的例子 当然微分方程组也有纯函数形式。 4.带初始条件的微分方程的解 当给定一个微分方程的初始条件可以确定一个待定系数。请看下面的例子 第二个例子由于给出一个初始条件所以只能确定C[1]. 5.进一步讨论 对于简单的微分方程的解比较简单,对一些微分方程它的解就复杂的多。特别是对一些微分方程组或高阶微解,其解中可能含有一些特殊函数。并且很多特殊函数的提出就是为了解这些方程的如:

《常微分方程》期末试卷

《常微分方程》期末试卷(16) 班级 学号 姓名 得分 评卷人 一、填空题(每小题5分,本题共30分) 1.方程x x y x y e sin d d =+的任一解的最大存在区间必定是 . 2.方程04=+''y y 的基本解组是 . 3.向量函数组)(,),(),(21x x x n Y Y Y 在区间I 上线性相关的________________条件是在区间I 上它们的朗斯基行列式0)(=x W . 4.李普希兹条件是保证一阶微分方程初值问题解惟一的 条件. 5.n 阶线性齐次微分方程的所有解构成一个 维线性空间. 6.向量函数组)(,),(),(21x x x n Y Y Y 在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈. 得分 评卷人 二、计算题(每小题8分,本题共40分) 求下列方程的通解 7. x y x y 2e 3d d =+ 8. 0)d (d )(3223=+++y y y x x xy x 9.0e =-'+'x y y 10.求方程x y y 5sin 5='-''的通解. 11.求下列方程组的通解. ???????+=+=y x t y y x t x 4d d d d 得分 评卷人 三、证明题(每小题15分,本题共30分)

12.设)(1x y ?=和)(2x y ?=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式C x W ≡)(,其中C 为常数. 13.设)(x ?在区间),(∞+-∞上连续.试证明方程 y x x y sin )(d d ?= 的所有解的存在区间必为),(∞+-∞.

变系数线性常微分方程的求解

变系数线性常微分方程的求解 张慧敏,数学计算机科学学院 摘要:众所周知,所有的常系数一阶、二阶微分方程都是可解的,而变系数 二阶线性微分方程却很难解,至今还没有一个普遍方法。幂级数解法是一个非常有效的方法,本文重点讨论二阶变系数线性常微分方程的解法,从幂级数解法、降阶法、特殊函数法等方面探究了二阶微分方程的解法,简单的介绍了几种高阶微分方程的解法,并讨论了悬链线方程等历史名题。 关键词:变系数线性常微分方程;特殊函数;悬链线方程;幂级数解法 Solving linear ordinary differential equations with variable coefficients Huimin Zhang , School of Mathematics and Computer Science Abstract:As we know, all of ordinary differential equations of first, second order differential equations with constant coefficients are solvable. However, the linear differential equations of second order with variable coefficients are very difficult to solve. So far there is not a universal method. The method of power-series solution is a very efficient method. This article focuses on solving linear ordinary differential equations of second order with variable coefficients, and exploring the solution of in terms of power-series solution, the method of reducing orders, the method of special functions. Also, this paper applies the above methods to solve several linear differential equations of higher order and especially discusses the famous catenary equation. Key words:Linear ordinary differential equations with variable coefficients; Special Functions; catenary equation; Power Series Solution.

常微分方程期末考试题大全东北师大

证明题: 设()x f 在[)+∞,0上连续,且()b x f x =+∞ →lim ,又0>a ,求证:对于方程 ()x f ay dx dy =+的一切解()x y ,均有()a b x y x =+∞→lim 。 证明 由一阶线性方程通解公式,方程的任一解可表示为 ()()?? ????+=?-x at ax dt e t f C e x y 0, 即 ()()ax x at e dt e t f C x y ?+= 。 由于b x f x =+∞ →)(lim ,则存在X ,当X x >时,M x f >)(。因而 ()dt e M dt e t f dt e t f x X at X at x at ??? +≥0 )( ())(0 aX ax X at e e a M dt e t f -+ = ? , 由0>a ,从而有()∞=?? ????+?+∞→x at x dt e t f C 0lim ,显然+∞=+∞ →ax x e lim 。 应用洛比达法则得 ()()ax x at x x e dt e t f C x y ?+=+∞ →+∞ →0 lim lim ()ax ax x ae e x f +∞→=lim ()a b a x f x ==+∞ →lim 。 证明题:线性齐次微分方程组x A x )(t ='最多有n 个线性无关的解,其中)(t A 是定义在区间b t a ≤≤上的n n ?的连续矩阵函数。 证 要证明方程组x A x )(t ='最多有n 个线性无关的解,首先要证明它有n 个线性无关的解,然后再证明任意1+n 个解都线性相关。

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程过点共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 2 1d d y x y -=)1,2 (πx x y x y +-=d d y x y =d d

二阶微分方程

二阶微分方程 1 可降阶的二阶微分方程 一、 形如 ()y f x ''= (6.7) 型的微分方程 形如(6.7)式的微分方程是最简单的二阶微分方程,可以通过方程两边两次积分求解。 【例题1】 求微分方程21sin 2 x y e x ''=- 的通解. 解 对所给方程接连积分二次, 得 211cos 4 x y e x C '=++, 21211sin 82 x y e x C x C =+++, 这就是方程的通解. 【例题2】 质量为m 的质点受力F 的作用沿Ox 轴作直线运动. 设力F 仅是时间t 函数:F =F (t ). 在开始时刻t =0时F (0)=F 0, 随着时间t 的增大, 此力F 均匀地减小, 直到t =T 时, F (T )=0. 如果开始时质点位于原点, 且初速度为零, 求这质点的运动规律. 解 设x =x (t )表示在时刻t 时质点的位置, 根据牛顿第二定律, 质点运动的微分方程为 )(22t F dt x d m =. 由题设, 力F (t )随t 增大而均匀地减小, 且t =0时, F (0)=F 0, 所以F (t )=F 0-kt ; 又当t =T 时, F (T )=0, 从而 )1()(0T t F t F -=. 于是质点运动的微分方程又写为 )1(022T t m F dt x d -=, 其初始条件为0|0==t x , 0|0 ==t dt dx . 把微分方程两边积分, 得 120)2(C T t t m F dt dx +-=. 再积分一次, 得 21320)621(C t C T t t m F x ++-=. 由初始条件x|t =0=0, 0|0 ==t dt dx , 得

常微分方程考研讲义第三章一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解 的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程

2dy y dx = 过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2y x =或更一般地,函数 2 0 0() c<1 x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2) 上连续。 定理1:如果函数),(y x f 满足以下条件:1)在R 上连续:2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数0L >,使对于R 上任何一对点1(,)x y , 2(,)x y 均有不等式1212(,)(,)f x y f x y L y y -≤-成立,则方程(3.1)存在唯一的解()y x ?=,在区间0||x x h -≤上连续,而且满足初始条件 00()x y ?= (3.3)

简单微分方程的求解

一、一阶微分方程 1. 线性齐次方程 'y ()0p x y += ①分离变量法求解 ②两边同时乘以()p x dx e ? ,积分因子法 通解:()p x dx y Ce -?= 2. 线性非齐次方程 'y ()()p x y g x += ①常数变易法 ②两边同时乘以()p x dx e ? ,积分因子法 通解:()()(())p x dx p x dx y e C g x e dx -??=+? 线性微分方程的解有一些很好的性质,例如(1)齐次方程的解或者恒等于零,或者恒不等于零(2)齐次方程任何解的线性组合仍是它的解(3)齐次方程的任一解与非齐次方程任一解之和仍是非齐次方程的解(4)非齐次方程任意两解之差必是对应齐次方程的解(5)非齐次方程的任一解与对应齐次方程的通解之和是非齐次方程的通解。 3. Bernoulli 方程 '()()y p x y g x y α+= (1)0α=时,该方程为线性非齐次方程 (2)1α=时,该方程为线性齐次方程 (3)0,1α≠时,作变量替换1z y α-=,该方程转化为 (1)()(1)()dz p x z g x dx αα+-=-,这是关于未知函数z 的一阶线性方程 4. Riccati 方程 2()()()dy p x y q x y f x dx =++

Riccati 方程在一般情况下无法用初等积分求出解,只是对一些特殊情况或者事先知道了它的一个特解,才能求出其通解。 (1)当()p x 、()q x 、()f x 都是常数时,是可分离变量方程,用分离变量法求解。 (2)当()0p x ≡时,是线性方程。 (3)当()0f x ≡时,是Bernoulli 方程。 当()f x r ≡,设已有一特解1()y x 命1()()()z x y x y x =-,代得211(2)dz dy dy pz py q z dx dx dx =-=++ 这是一个关于z 的Bernoulli 方程。 (4)当Riccati 方程的形式为 22dy l b ay y dx x x +=+,可利用变量替换z xy =,将方程化为可分离变量方程 2(1)dz x az l z b dx =-+++ 当Riccati 方程的一个特解()y x ?=已知时,我们利用变换()y z x ?=+,代入方程后可得: 22()()(2()())()(())()dz d x p x z z x x q x z x f x dx dx ????+=+++++ 由于()y x ?=是方程的解,从上式消去相关的项后得: 2(2()()())()dz p x x q x z p x z dx ?=++,这是一个Bernoulli 方程。 (5)当Riccati 方程的形式为 2m dy ay bx dx +=,其中a 、b 、m 都是常数,且设0a ≠,又设0x ≠和0y ≠,则当 440,2,,,(1,2,)2121 k k m k k k --=-=+-L 时,方程可通过适当的变换化为变量可分离方程。

几类二阶变系数常微分方程解法论文

几类二阶变系数常微分方程解法论文

二阶变系数常微分方程几种解法的探讨 胡博(111114109) (湖北工程学院数学与统计学院湖北孝感 432000) 摘要:常系数微分方程是我们目前可以完全解决的一类方程,而求变系数常微分方程的通解是比较困难的,一般的变系数常微分方程目前是还没有通用解法的。本文主要对二阶变系数常微分方程求解进行了探究,利用特解、常数变易法、变量变换等方法求出了某些二阶变系数线性微分方程的通解,并初步归纳了二阶变系数线性方程的求解基本方法及步骤。 关键词:二阶变系数线性微分方程;变换;通解;特解 To explore the solution of some ordinary differential equations of two order variable coefficient Zhang jun(111114128) (School of Mathematics and Statistics Hubei Engineering University Hubei Xiaogan 432000) Abstract:Differential equation with constant coefficients is a class of equations we can completely solve the present general solution, and change coefficient differential equations is difficult, the variable coefficient ordinary differential equation is at present there

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

常微分方程讲义和作业

第四章 常微分方程与数学模型 微积分最主要的应用可能就是微分方程了,在物理学、力学、工程技术、经济学和管理科学等实际问题中具有广泛的应用。 一、什么是微分方程 例1:含有未知函数的导数或微分的方程称为微分方程,例如 ()dy u x dx =,其中()y f x =为未知函数,()u x 为已知函数。满足上述方程的函数()y f x =称为微分方程的 解。求下列微分方程满足所给条件的解: (1) 2(2)dy x dx =-,20x y ==; (2)2232d x dt t =, 11t dx dt ==,11t x ==。 二、分离变量法 ※例2:求微分方程y xy '=的通解。 解: 变形为: dy xy dx =, 分离变量:1 dy xdx y =(此时漏掉解0y =), 两边同时积分: 1 dy xdx y =??, 得:211ln 2 y x C =+, 2 2111122 x C x C y e e e +==, 从而221 112 2 2x x C y e e C e =±=,其中12C C e =±,为任意非零常数, 但0y =亦是方程的解,统一起来,方程的通解为:

212 x y Ce =,C 为任意常数。 上述求解过程比较繁琐,由于经常出现,为方便计,从分离变量后开始将求解过程简写为: 两边同时积分: 1 dy xdx y =??, 得:21ln ln 2 y x C =+, 从而 2 211ln 2 2 x x C y e e Ce == 这个过程严格说是有问题的,但比较简洁,又能得到正确的结果,所以常被采用。 例3:(1)牛顿冷却定律指出:如果物体和周围环境之间的温度相差不是很大的话,物体冷 却速度与温差成正比(同样可用于加热的情况)。命()T t 表示在时刻t 物体的温度,c T 表示周围环境的温度(假定是常数),建立微分方程并求解,得出()T t 的变化规律。 (2)清晨,警察局接到报案,街头发现一具死尸,6:30时测量体温为18℃,7:30时再测一次为16℃,室外温度为10℃(假定不变),人正常体温为37℃,请估计被害人何时死亡?(死亡时刻记为0t ,则0()37T t =,时刻6:30计算时看成6.5) 例4:人口预测 记时刻t 的人口为()P t ,当考察一个国家或一个较大地区的人口时,()P t 是一个很大的整数,为了利用微积分这一数学工具,将()P t 视为连续、可微函数.记初始时刻(0)t =的人口为0P ,假设人口增长的速度(即增长率)与t 时刻的人口数量()P t 成正比,利用下表中数据为20世纪世界人口建模,增长率是多少,建立的模型与数据相符合吗? 解:设比例系数为μ(即增长率),则()P t 满足的微分方程为: 0,(0)dP P P P dt μ==. 解出 0()t P t P e μ= , 表明人口将按指数规律随时间无限增长(0μ>).上式称为人口指数增长模型,也称为马尔

第二节 几类简单微分方程及其解法

第二节 几类简单微分方程及其解法 本节将介绍可分离变量的微分方程、齐次方程以及一阶线性微分方程等一阶微分方程的解法. 一阶微分方程是微分方程中最基本的、最常见的一类方程.它的一般形式可表示为: 0)',,(=y y x F 或),('y x F y =, 其中)',,(y y x F 为,,'x y y 的已知函数,),(y x F 为,x y 的已知函数. 一、可分离变量的微分方程 如果一阶微分方程),('y x F y =的等式右端能分解为: )()(),(y g x f y x F =, 即)()('y g x f y = (7.2.1) 则称方程(7.2.1)为可分离变量的微分方程. 设)(y g ≠0,则方程(6.2.1)改写为: dx x f dy y g )() (1=, 上式两边积分,可得 ??=dx x f dy y g )()(1. 上述将微分方程化成分离变量形式求解的方法,称为分离变量法. 注:在分离变量时,未知函数y 的函数和微分要写在等式的左边. 例1 求微分方程)3(2'+=y x y 的通解. 解1: 原方程可改写为)3(2+=y x dx dy . 分离变量,两边积分,得,23 1??=+xdx dy y ,3ln 12c x y +=+即.312-±=+c x e y 记1c e c ±=,则微分方程的通解为 32 -=x ce y (c 为任意常数). 解2:

原方程可改写为)3(2+=y x dx dy . 分离变量,两边积分,得,23 1??=+xdx dy y ,ln )3ln(2c x y +=+即,3ln 2x c y =+23x ce y =+ 则微分方程的通解为 32 -=x ce y (c 为任意常数). 注:为了简化运算,规定: (1) 微分方程中出现形为 ?u du 的积分时,可不按不定积分基本积分公式表写成 ln du u c u =+?,而是写成ln du u u =?; (2) 不定积分等式中至少有一个形为?u du 的积分时,任意常数不写成c ,而写成c ln 并放在等式右侧. 例2 求微分方程y xy ='的通解. 解: 分离变量,两边积分, 得 ,dy dx y x =?? c x y ln ln ln += cx ln = 则微分方程的通解为cx y = (c 为任意常数). 例3 求微分方程dx e x dy x e y y )1(2)1(2+=+的通解. 解: 分离变量,两边积分, 得 dx x x dy e e y y ??+=+2121, c x e y ln )1ln()1ln(2++=+ )1(ln 2x c +=, ).1(12x c e y +=+ 则微分方程的通解为 ]1)1(ln[2-+=x c y (c 为任意常数). 例4 求微分方程)'('2 y y a xy y +=-的通解.

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

常微分方程期末历年考试(B)

广西师范大学漓江学院试卷 课程名称:常微分方程课程序号:开课院系:理学系 任课教师: 年级、专业:07数学考试时间:120分钟 考核方式:闭卷 ■ 开卷 □试卷类型:A 卷□B 卷■ 一、填空题(本大题共10小题,每小题3分,共30分) (请在每小题地空格中填上正确答案,错填、不填均无分). 1、当_______________时,方程(,)(,)0M x y dx N x y dy +=称为恰当方程. 2、求(,)dy f x y dx =满足00()y x y =地解等价于求积分方程地连续解. 3、函数组t t t e e e 2,,-地朗斯基行列式值为. 4、二阶齐次线性微分方程地两个解)(),(21x y x y 为方程地基本解组充分必要条件是. 5、若矩阵A 具有n 个线性无关地特征向量n v v v ,,,21Λ,它们对应地特征值分别为n λλλΛ,,21,那么常系数线性方程组Ax x ='地一个基解矩阵)(t Φ=. 6、方程tan dy x y dx =地所有常数解是. 7、如果存在常数0L >,使得不等式对于所有12,),(,)x y x y R ∈(都成立,称函数),(y x f 在R 上关于y 满足利普希茨条件,其中L 为利普希茨常数. 8、)()(x Q y x P dx dy += 称为一阶线性方程,它有积分因子 ?-dx x P e )( ,其通解为 _________ . 9、方程22y x dx dy +=定义在矩形域R:-222,2≤≤-≤≤y x 上,则经过点(0,0)地解地存在区间是. 10、若(),()t t Φψ是齐次线性方程组()X A t X '=地基解矩阵,则()t Φ与()t ψ具有关系. 年 级 : 专 业: 装订密封线 考 生 答 题 不 得 出 现 红 色字 迹 , 除 画 图 外 , 不 能 使用 铅笔答 题;答题 留 空 不 足 时 , 可 写到 试卷 背面 ;请 注意 保 持试 卷完 整.

(整理)常微分方程(含解答)

第八章 常微分方程 【教学要求】 一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。 二、熟练掌握一阶可分离变量微分方程的解法。 三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+' 的解法——常数变易法和公式法。 四、理解线性微分方程解的性质和解的结构。 五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。 会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。 六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'' )(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。 所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数 或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。 关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。 【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。 【典型例题】 。的阶数是微分方程例)(e )(12x y y y =-'+'' 2.1.B A 4. 3.D C 解:B 。的特解形式是微分方程例)( e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++ x x c b ax D cx b ax C e ).(e ).(++++ 解:C 是一阶线性微分方程。下列方程中例)( ,3 x x y y x B y A y x cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0 . 解:B ???=='++1)1(0)1(4y y x y y 求解初值问题例 ??-=+x x y y y d )1(d 解:由变量可分离法得 c x y y ln ln 1ln +-=+∴ 代入上式得通解为由21ln ln 1)1(=?=c y x y y 211=+ 的特解。满足求解微分方程例1)0(e 252==-'y x y y x 解:由公式法得 ]d e e 2[e d 12d 1c x x y x x x +???=---?

常微分方程期末试题B答案

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

相关文档
最新文档