第三章一阶线性微分方程组第一讲一阶微分方程组与解的存在唯一性定理

第一讲 一阶微分方程组及解的存在惟一性定理(2课时)

一、 目的与要求: 了解高阶微分方程与一阶微分方程组的

等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理.

二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理.

三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质.

四、教学方法:讲练结合法、启发式与提问式相结合教学法.

五、教学手段:传统板书与多媒体课件辅助教学相结合.

六、教学过程:

1 课题引入

在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质.

例如,已知在空间运动的质点(,,)P x y z 的速度与时间t 及该点的坐标的关系为(,,)x y z v v v v

123(,,,)(,,,)

(,,,)x y z

v f t x y z v f t x y z v f t x y z =??=??=?

且质点在时刻0t 经过点000(,,)x y z ,求该质点的运动轨迹。 因为,x y dx dy v v dt dt ==和z dz v dt =, 所以这个问题其实就是求

一阶微分方程组

123(,,,)(,,,)

(,,,)x f t x y z y f t x y z z f t x y z =??=??=?

的满足初始条件

00(),x t x = 00(),y t y = 00()z t z =

的解(),(),()x t y t z t .

另外,在n 阶微分方程

(1.12)

()(1)(,,,,)n n y f x y y y -'= 中,令(1)121,,

,n n y y y y y y --'''===就可以把它化成等价的一阶微分方程组

1

1221111(,,,,)

n n n n dy y dx dy y dx dy y dx dy f x y y y dx

----?=???=?????=???=

? 注意,这是一个含n 个未知函数11,,

,n y y y - 的一阶微分方程组.

含有n 个未知函数12,,

,n y y y 的一阶微分方程组的一般形

式为: 11122112112(,,,,)

(,,,,)(,,,,)n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx

?=???=?????=?

? (3.1)

如果方程组(3.1)右端函数不显含x , 则相应的方程称为是自治的. 方程组(3.1)在[,]a b 上的一个解,是这样的一组函数

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。 1.所选用的差分格式是: 2.计算所求近似值: 四.(12分)试讨论差分方程 ()h a h a r u u r u u k l k l k l k l ττ + - = -+=++++11,111 1 逼近微分方程 0=??+??x u a t u 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

解的存在唯一性定理证明

解的存在唯一性定理 利用逐次逼近法,来证明微分方程的初值问题的解存在与唯一性定理。 一、【存在、唯一性定理叙述】 如果方程的右端函数在闭矩形区域上满足如下条件: (1)、在上连续; (2)、在上关于变量满足利普希茨条件,即存在常数,使对于上任何一点和有以下不等式:。 则初值问题在区间上存在唯一解, 其中

二、【证明】 逐步迫近法: 微分方程等价于积分方程。 取,定义 可证明的满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命 题 1:先证积分方程与微分方程等价: 设是微分方程定义于区间上满足初值条件 的解,则是积分方程定义于区间上的连续解。反之亦然。 证: 因是微分方程的解,有 两边从到取定积分,得: 代入初值条件得: 即是积分方程定义于区间上的连续解。 反之,则有 微分得: 且当时有。即是微分方程定义于区间上满足初值条件的解。 现取,代入积分方程的右端,所得函数用表示,则,再将代入积分方程的右端,所得函数用表示,则,以上称为1次近似, 称为2次近似。以此类推得到次近似。 从而构造逐步迫近函数序列为: 命 题 2:对所有,函数序列在上有定义、连续且满足不等式 证:当时, 。显然在上有定义、连续且有 ,即命题2当时成立。 由数学归纳法,设命题2当时成立,则对有: 知在上有定义、连续且有 命题2当时也成立。 由数学归纳法原理得命题2对所有均成立。 命 题 3:函数序列在上一致收敛。

证:只须考虑级数-----(*) 在上一致收敛。 因其部分和为:,因, 设对成立。 则当时有 即对所有,在成立 。 其右端组成正项收敛级数 由魏氏判别法,级数(*)在上一致收敛。即在上一致收敛。命题3得证。 现设 则在上有定义、连续且 命 题 4: 是积分方程在上的连续解。 证: 由利普希茨条件 及在上一致收敛于,知函数序列在上一致收敛于。 于是即 是积分方程在上的连续解。 命题5:设是积分方程在上的另一连续解。则。 证: 现证也是序列在上的一致收敛极限函数。由, , 得: , 。 设,则 。由数学归纳法,对所有,有 。 因此,对所有,在有成立。但当时。故在上的一致收敛于。由极限的唯一性,得。

存在唯一性定理证明

存在唯一性定理 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程 (,),dy f x y dx =在区间0x x h -≤上存在唯一解00 (),()y x x y ??== ,其中 (,)min ,, max (,) x y R b h a M f x y M ∈? ?== ??? 逐步迫近法 微分方程(,)dy f x y dx =等价于积分方程0 0(,)x x y y f x y dx =+ ? 取00()x y ?= , 定义0 01()(,()), 1,2,x n n x x y f x x dx n ??-=+=? 可证明lim ()() n n x x ??→∞ =的 ()y x ?=满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命题1 先证积分方程与微分方程等价: 设()y x ?=是微分方程 (,)dy f x y dx =定义于区间00x x x h ≤≤+上满足初值条件 00()x y ?=的解,则()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+≤≤+?定义于区 间0 0x x x h ≤≤+上的连续解。反之亦然。

证 因()y x ?=是微分方程 (,)dy f x y dx =的解,有 ()(,())d x f x x dx ??= 两边从0x 到0 x h +取定积分 000()()(,()), x x x x f x x dx x x x h ???-= ≤≤+? 代入初值条件00()x y ?=得 000()(,()),x x x y f x x dx x x x h ??=+ ≤≤+? 即()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+ ≤≤+?定义于区间00x x x h ≤≤+上的连续解。 反之,则有 000()(,()), x x x y f x x dx x x x h ??=+ ≤≤+? 微分之 ()(,())d x f x x dx ??= 且当0x x = 时有00 ()x y ?=。即 () y x ?=是微分方程 (,) dy f x y dx =定义于区间 00x x x h ≤≤+上满足初值条件00()x y ?=的解。 现取00()x y ?=,构造逐步迫近函数序列 000001()1,2,()(,()), x n n x x y x x x h n x y f x x dx ???-=??≤≤+=? =+?? ? 命题2 对所有n ,函数序列()n x ?在0 0x x x h ≤≤+上有定义、连续且满足不等 式 0()n x y b ?-≤ 证 当1n =时0 100()(,)x x x y f x y dx ?=+ ?。显然1()x ?在0 0x x x h ≤≤+上有定义、 连续且有 0000()(,)(,)()x x n x x x y f x y dx f x y dx M x x M h b ?-= ≤ ≤-≤≤?? 命题2当1n =时成立。设命题2当n k =时成立,则对1n k =+

Maab求解微分方程组及偏微分方程组

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t L 上的解,则令tspan 012[,,,]f t t t t =L (要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.

Picard存在和唯一性定理

Picard存在和唯一性定理 本节利用逐次逼近法,来证明微分方程 (2.1) 的初值问题 (2.2) 的解的存在与唯一性定理. 定理 2.2(存在与唯一性定理)如果方程(2.1)的右端函数在闭矩形域 上满足如下条件: (1) 在R上连续; (2) 在R上关于变量y满足李普希兹(Lipschitz)条件,即存在常数N,使对于R上任何一对点和有不等式: 则初值问题(2.2)在区间上存在唯一解 其中 在证明定理之前,我们先对定理的条件与结论作些说明: 1. 在实际应用时,李普希兹条件的检验是比较费事的.然而,我们能够用一个较强的, 但却易于验证的条件来代替它.即如果函数在闭矩形域R上关于y的偏导数 存在并有界,.则李普希兹条件成立,事实上,由拉格朗日中值定理有 其中满足,从而.如果在R上连续,它在R上当然就满足李普希兹条件.(这也是当年Cauchy证明的结果) 2.可以证明,如果偏导数在R上存在但是无界,则Lipschitz条件一定不满足,

但是Lipschitz 条件满足,偏导数不一定存在,如(,)||f x y y 。 3.现对定理中的数h 0做些解释.从几何直观上,初值问题(2.2)可能呈现如图2-5所示的情况. 这 时,过点 的积 图 2-5 分曲线 当 或 时,其中 , ,到 达R 的上边界 或下边界 .于是,当 时,曲线 便可能没有定义.由此可见,初值问题(2.2)的解未必在整个区间 上存在. 由于定理假定 在R 上连续,从而存在 于是,如果从点 引两条斜率分别等于M 和-M 的直线,则积分曲线 (如果存在的话)必被限制在图2-6的带阴影的两个区域内,因此,只要我们取 则过点 的积分曲线 (如果存在的话)当x 在区间上变化时,必位于R 之 中. 图 2-6

一阶线性微分方程解的存在唯一性证明

一阶线形微分方程解的存在唯一性定理的证明)()(x q y x p dx dy +=摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一? 首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:上的连续函数.b y y a x x ≤-≤-00,函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式 对于所有的 都成立,L 称 2121),(),(y y L y x f y x f -≤-R y x y x ∈),(),,(21为利普希兹常数下面我们给出一阶线形微分方程(1)解的存在唯一性)()(x q y x p dx dy +=定理:如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹条件,则方程(1)存在唯一的解,定义于区间上,连续)(x y ?=h x x ≤-0且满足初始条件: 这里 00)(y x =?),min(M b a h =),(max y x f M =R y x ∈),(我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见,只 就区间来讨论,对于的讨论完全一样.h x x x +≤≤0000x x h x ≤≤-现在简单叙述一下运用逐步逼近法证明定理的主要思想,首路习题到位。在管路敷对设备进行调整使其在正限度内来确保机组高中

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

一阶线性微分方程解的存在唯一性证明

一阶线形微分方程)()(x q y x p dx dy +=解的存在唯一性定理的证明 摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一? 首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:b y y a x x ≤-≤-00,上的连续函数. 函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式 2121),(),(y y L y x f y x f -≤- 对于所有的R y x y x ∈),(),,(21 都成立,L 称为 利普希兹常数 下面我们给出一阶线形微分方程)()(x q y x p dx dy +=(1)解的存在唯一性定理: 如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹 条件,则方程(1)存在唯一的解)(x y ?=,定义于区间h x x ≤-0上,连续且满足初始条件: 00)(y x =? 这里 ), min(M b a h = ),(max y x f M = R y x ∈),( 我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见, 只就区间h x x x +≤≤00来讨论,对于00x x h x ≤≤-的讨论完全一样. 现在简单叙述一下运用逐步逼近法证明定理的主要思想,首

先证明求微分方程的初值问题的解等价于求积分方程 []?++=x x dx x q y x p y y 0)()(0的连续解这里我们用f(x,y)=p(x)y+q(x)来替 代,因此也就等价于求积分方程 ?+=x x dx y x f y y 0 ),(0 的连续解,然后 去证明积分方程的解的存在唯一性. 任取一个连续函数)(0x ? 代入上面的积分方程右端的y 就得 到函数 dx x x f y x x x ))(,()(0 001?+≡?? 显然)(1x ?也是连续解,如果)(1x ?≡)(0x ?那么)(0x ?就是积分方 程的解.否则,我们又把)(1x ?代入积分方程右端的y 得到 dx x x f y x x x ))(,()(0 102?+≡?? 如果 ≡)(2x ?)(1x ?,那么)(1x ?就是积分方程的解,否则我们继 续这个步骤.一般地做函数 dx x x f y x x x n n ))(,()(0 10?-+≡?? (2) 这样就得到连续函数序列 )(0x ? ,)(1x ?…)(x n ?… 如果≡+)(1x n ?)(x n ?那么)(x n ?就是积分方程的解,如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数)(x ?即 )()(lim x x n n ??=∞ → 存在因此对(2)取极限就得到 dx x x f y x x x n n n n ))(,(lim )(lim 0 10?-∞→∞ →+=?? =dx x x f y x x n n ))(,(lim 0 10?-∞ →+? =dx x x f y x x ))(,(0 0?+? 即 dx x x f y x x x ))(,()(0 0?+≡??

偏微分方程组解法

偏微分方程组解法 某厚度为10cm 平壁原温度为20C ?,现其两侧面分别维持在20C ?和120C ?,试求经过8秒后平壁温度分布,并分析温度分布随时间的变化直至温度分布稳定为止。 22x t a t ??=??τ 式中a 为导温系数,/s m c 2;2=a 。 解: 模型转化为标准形式: 2 21x t t a ??=??τ 初始条件为: ()200,=x t 边界条件为: ()120,0=τt ,()20,1.0=τt 函数: pdefun.m %偏微分方程(一维动态传热) function [c,f,s]=pdefun(x,t,u,dudx) c=1/2e-4;f=dudx;s=0; icbun.m %偏微分方程初始条件(一维动态传热) function u0=icbun(x) u0=20; bcfun.m %偏微分方程边界条件(一维动态传热) function [pl,ql,pr,qr]=bcfun(xl,ul,xr,ur,t) pl=ul-120;ql=0;pr=ur-20;qr=0; 命令: x=linspace(0,10,20)*1e-2; t=linspace(0,15,16); sol=pdepe(0,pdefun,icfun,bcfun,x,t); mesh(x,t,sol(:,:,1)) %温度与时间和空间位置的关系图 %画1、2、4、6、8、15s 时刻温度分布图

plot(x,sol(2,:,1)) 1s时刻,(因为本题sol第一行为0时刻) hold on plot(x,sol(3,:,1)) plot(x,sol(5,:,1)) plot(x,sol(7,:,1)) plot(x,sol(9,:,1)) plot(x,sol(16,:,1)) 计算结果: %第8秒时温度分布 x sol(9,:,1) 经过8秒时的温度分布为: x/cm 0 0.5263 1.0526 1.5789 2.1053 2.6316 3.1579 t/C ?120.0000 112.5520 105.1653 97.8994 90.8100 83.9477 77.3562 x/cm 3.6842 4.2105 4.7368 5.2632 5.7895 6.3158 6.8421 t/C ?71.0714 65.1202 59.5200 54.2784 49.3930 44.8518 40.6338 x/cm 7.3684 7.8947 8.4211 8.9474 9.4737 10.0000 t/C ?36.7095 33.0419 29.5877 26.2982 23.1207 20.0000 或者求第8秒时,x=0,2,4,,6,8,10cm处的温度 [uout,duoutdx]=pdeval(0,x,sol(9,:,:),[0,2,4,6,8,10]*1e-2) 120.0000 92.2279 67.5007 47.5765 32.3511 20.0000

唯一性定理

唯一性定理 蒋文佼(080320124)宋宝璋(080320125)夏世宇 (080320126) 李宝平 (080320127) 章文显 (080320129) 常 悦 (080320130) 1、试用唯一性定理证明:封闭导体壳内部的电场不受壳外电荷(包括壳外表面)的影响。 证:导体壳无论是用电势还是用总电量给定,壳的内外一般存在着四部分电荷。 如图所示,壳内外的电荷分布分别为 ρ 和 ρe ,壳内、外表面 1 S 、2S 上各自的面电荷分布为 σ 和 σe 。壳内外的场是这四 部分电荷共同激发的。 根据定理,首先写出壳内空间电势应满足的条件: (一) 2 ρ?ε ?=- ,ρ 为壳内电荷分布。 (二)壳内表面1S 上的边界条件是:2S 上的总电量 1 s dS q σ=-? (1) 其中 V q dV ρ=? 是壳内的总电量,V 是壳内区域的体积。在壳层 内作一高斯面 0S 后(如图中虚线所示),用高斯定理很容易证明(1) 成立。 因此在给定 ρ 布后, 1S 上边界条件也已经给定为 q - , 和导体壳本身是有电势还是用总电量给定无关。 根据唯一性定理,满足(一)、(二)的 ? 就是解。由于(一) e

和(二)与壳外的 ρe 和 σρ 的电势并不唯一,可以差一个常数。当然当壳用电势 0φ 给定时,1S 上的边界条件就是 1 0|S ?φ= 。所以壳内不但电场唯一,而且电势也是唯一。 2.如图,有一电势为0φ的导体球壳,球心有一点电荷q ,球壳内外半径分别为2R 和1R 。试用唯一性定理: (一)判断0 R φ是否球壳外空间的电势分布。 (二)求球壳内空间的电势分布 解:(一)首先必须找出球内外电势应满足的条件,他们是: (a )2 0??= (b )球壳外表面1S 上的边界条件,1 0s ?=φ (c )无穷远边界条件,0R →∞?→ 若R φ 是解,根据唯一性定理,它必须满足以上三个条件。下面来 检验: 2 2 0010R R φ? =φ?= (0),R ≠ 方程已满足。 0,0,R R φ→∞→ 满足(c )。 S1的半径是R1代入 0R φ 后, 00 R φ≠φ 所以它不满足1S 上的边界条 件,它不是球壳外空间的界,下面求正确的解。由上述可知,函数 A R 同时满足方程和无穷远边界条件。A 为待定常数,可由(b )定出。在面1S 上 0,A R φ=

一维偏微分方程的pdepe(matlab)函数 解法

本文根据matlab帮助进行加工,根据matlab帮助上的例子,帮助更好的理解一维偏微分方程的pdepe函数解法,主要加工在于程序的注释上。 Examples Example 1.This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE. This equation holds on an interval for times . The PDE satisfies the initial condition and boundary conditions It is convenient to use subfunctions to place all the functions required by pdepe in a single function. function pdex1 m = 0; x = linspace(0,1,20); %linspace(x1,x2,N)linspace是Matlab中的一个指令,用于产生x1,x2之间的N点行矢量。 %其中x1、x2、N分别为起始值、终止值、元素个数。若缺省N,默认点数为100 t = linspace(0,2,5); sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);

% Extract the first solution component as u. u = sol(:,:,1); % A surface plot is often a good way to study a solution. surf(x,t,u) title('Numerical solution computed with 20 mesh points.') xlabel('Distance x') ylabel('Time t') % A solution profile can also be illuminating. figure plot(x,u(end,:)) title('Solution at t = 2') xlabel('Distance x') ylabel('u(x,2)') % -------------------------------------------------------------- function [c,f,s] = pdex1pde(x,t,u,DuDx) c = pi^2; f = DuDx; s = 0; % -------------------------------------------------------------- function u0 = pdex1ic(x) u0 = sin(pi*x); % -------------------------------------------------------------- function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) pl = ul; ql = 0; pr = pi * exp(-t); qr = 1;

常系数线性微分方程的解法

常系数线性微分方程的解法 摘 要:本文主要介绍了常系数线性微分方程的解法.着重讨论利用代数运算和微分运算来求常系数齐次线性微分方程和非齐次线性微分方程的通解. 关键词:复值函数与复值解;欧拉方程;比较系数法;拉普拉斯变换法 The Solution of Linear Differential Equation with Constant Coefficients Abstract :The solutions of linear differential equation with constant coefficients are introduced in this article. And using the algebraic operation and differential operation to solv the general solution of homogeneous linear differential equation and nonhomogeneous linear differential equation are discussed emphatically. Key Words :complex flnction and complex answer; euler equation;the method of coefficients comparison; the method of laplace transformation. 前言 为了让我们更多的认识和计算常系数线性微分方程,本文通过对复值函数和复值解以及常系数线性微分方程和欧拉函数的简单介绍,进而简单讨论了常系数线性微分方程的解法,以此来帮助我们解决常系数线性微分方程的解. 1. 预备知识 1.1复值函数与复值解 如果对于区间a t b ≤≤中的每一个实数t ,有复数()()()z t t i t ?ψ=+与它对应,其中 ()t ?和()t ψ是在区间a t b ≤≤上定义的实函数,i =是虚数单位,我们就说在区间 a t b ≤≤上给定了一个复值函数()z t .如果实函数()t ?,()t ψ当t 趋于0t 时有极限,我们 就称复值函数()z t 当t 趋于0t 时有极限,并且定义 lim ()lim ()lim ()t t t t t t z t t t ?ψ→→→=+. 如果0 0lim ()()t t z t z t →=,我们就称()z t 在0t 连续.显然,()z t 在0t 连续相当于()t ?,()t ψ在0 t 连续.当()z t 在区间a t b ≤≤上每点都连续时,就称()z t 在区间a t b ≤≤上连续.如果极

偏微分方程的数值解法

《偏微分方程数值解法》试题 (专业:凝聚态物理学号:2013201260 姓名:鄢建军) 1.考虑定解问题 (1)用迎风格式(P、45)求解 1,0 (,0) 0,0 t x u u x u x x += ? ? ≤ ? ? =? ?> ? ? 。 利用迎风格式编写Fortran程序语言,运行结果如下: Fig 1、迎风格式求解结果 (2)用Beam-Warming格式(P、51)求解。 利用Beam—Warming格式编写Fortran程序语言,运行结果如下 :

Fig 2、 Beam —Warming 格式求解结果 (3) 比较两种方法结果的异同。 将两种格式运行的结果绘制在一起,要求时间步长与空间步长在两种格式中都相同,运行结果如下图所示: Fig 3、 迎风格式与Beam-Warming 格式求解结果比较 从两种格式的运行结果来瞧,都存在边缘的误差现象,相比而言,Beam-Warming 格式的运行结果差一些。但就是理论上分析,迎风格式的截断误差为()h οτ+,而Beam-Warming 格式的截断误差为22()h h οττ++。稳定性上来分析,迎风格式的稳定性较好,要求1(/)a h λλτ≤=,Beam-Warming 格式的稳定性条件为2(/)a h λλτ≤=。 2. 考虑定解问题212 1110,04(,0)sin ,0(0,)(,)0u u a x l t t u x x x l l u t u l t π???-=<

阶线性微分方程组第一讲一阶微分方程组及解的存在唯一性定理

第一讲 一阶微分方程组及解的存在惟一性定理(2课时) 一、 目的与要求: 了解高阶微分方程与一阶微分方程组的 等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理. 二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理. 三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 课题引入 在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质. 例如,已知在空间运动的质点(,,)P x y z 的速度与时间t 及该点的坐标的关系为(,,)x y z v v v v

123(,,,)(,,,) (,,,)x y z v f t x y z v f t x y z v f t x y z =??=??=? 且质点在时刻0t 经过点000(,,)x y z ,求该质点的运动轨迹。 因为,x y dx dy v v dt dt ==和z dz v dt =, 所以这个问题其实就是 求一阶微分方程组 123(,,,)(,,,) (,,,)x f t x y z y f t x y z z f t x y z =??=??=? 的满足初始条件 00(),x t x = 00(),y t y = 00()z t z = 的解(),(),()x t y t z t . 另外,在n 阶微分方程 (1.12) ()(1)(,,,,)n n y f x y y y -'= 中,令(1)121,,,n n y y y y y y --'''===就可以把它化成等价的一阶微分方程组

高阶线性微分方程常用解法简介

高阶线性微分方程常用解法简介 摘要:本文主要介绍高阶线性微分方程求解方法,主要的内容有高阶线性微分方程求解的常 用方法如。 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3, ,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++= 其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++ 其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ 是特征方程111()0n n n n F a a a λλλλ--≡++++= 的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ (5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ= 均为实数,则(5)是方程(3)的n 个线性无关的实值解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++ 其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.

matlab偏微分方程组求解

MATLAB学习(序列1)偏微分方程组的求解 ode23 解非刚性微分方程,低精度,使用Runge-Kutta法的二三阶算法。 ode45 解非刚性微分方程,中等精度,使用Runge-Kutta法的四五阶算法。 ode113 解非刚性微分方程,变精度变阶次Adams-Bashforth-Moulton PECE算法。 ode23t 解中等刚性微分方程,使用自由内插法的梯形法则。 ode15s 解刚性微分方程,使用可变阶次的数值微分(NDFs)算法。 ode23s 解刚性微分方程,低阶方法,使用修正的Rosenbrock公式。 ode23tb 解刚性微分方程,低阶方法,使用TR-BDF2方法,即Runger-Kutta公式的第一级采用梯形法则,第二级采用Gear法。 [t,YY]=solver('F',tspan,Yo 解算ODE初值问题的最简调用格式。 solver指上面的指令。 tspan=[0,30]; %时域t的范围 y0=[1;0]; %y(1)y(2的初始值 [tt,yy]=ode45(@DyDt,tspan,y0; plot(tt,yy(:,1,title('x(t' function ydot=DyDt(t,y ydot=[y(2; 2*(1-y(1^2*y(2-y(1] 刚性方程:刚性是指其Jacobian矩阵的特征值相差十分悬殊。在解的性态上表现为,其中一些解变化缓慢,另一些变化快,且相差较悬殊,这类方程常常称为刚性方程,又称为Stiff方程。 刚性方程和非刚性方程对解法中步长选择的要求不同。 刚性方程一般不适合由ode45这类函数求解,而应该采用ode15s等。 如果不能分辨是否是刚性方程,先试用ode45,再用ode15s。 [t,YY,Te,Ye,Ie] = solver('F',tspan,Yo,options,p1,p2,… 解算ODE初值问题的最完整调用格式。 为了能够解出方程,要用指令odeset确定求解的条件和要求。在MATLAB中,求解方程组的指令都有默认的求解的条件和要求(由结构数组options表示),但可以用odeset修改或重新建立,也可以用odeget去获取已有的“优化选项”的信息。指令odeset和odeget用法介绍如下: 语句格式如下: options=odeset(‘name1’,value1,’name2’,value2,…

相关文档
最新文档