纯氧克劳斯硫回收装置试运行过程中的问题分析与探讨

纯氧克劳斯硫回收装置试运行过程中的问题分析与探讨
纯氧克劳斯硫回收装置试运行过程中的问题分析与探讨

超级克劳斯硫磺回收系统动态模拟仿真

Modeling and Simulation 建模与仿真, 2015, 4(3), 80-86 Published Online August 2015 in Hans. https://www.360docs.net/doc/586002911.html,/journal/mos https://www.360docs.net/doc/586002911.html,/10.12677/mos.2015.43010 Dynamic Simulation of the Super Claus Sulfur Recovery System Wenfeng Ge, Jiang Wei, Xiaoqing Zheng, Song Zheng, Ming Ge Automatization College, Hangzhou Dianzi University, Hangzhou Zhejiang Email: wenfengge@https://www.360docs.net/doc/586002911.html, Received: Jul. 29th, 2015; accepted: Aug. 14th, 2015; published: Aug. 20th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/586002911.html,/licenses/by/4.0/ Abstract Coal chemical, oil refining industry and natural gas industry provided the main sulfur production in China. China is a country with coal as the main energy source, high sulfur coal is used for many factory productions and needs to recover sulfur from sulfur containing medium such as high sul-fur gas which is produced from desulfurization unit, generally in the form of simple substance sulfur as the final product. This paper from the sulfur recovery unit process principle and equip-ment principle starting, the general chemical process dynamic modeling software, OmniSim, is adopted to establish a set of dynamic mathematics of the super Claus sulfur recovery unit, which is treated with sulfuric acid gas in coal chemical industry. According to the actual operating condi-tion data, the reaction kinetic parameters of the sulfur recovery reaction device were corrected. The results show that the model of the main burner is successfully modeled by the Gibbs free energy minimization, and the average relative error of the simulation results and the actual oper-ating conditions is about 5%, which can meet the industrial application. According to this, this pa-per provides a scheme of dynamic model of sulfur recovery system using chemical process dy-namic modeling software. Based on the dynamic model, the dynamic response of the production operation and the test of the automatic control scheme can be simulated. Keywords Dynamic, Simulation, Modeling, Super Claus, Sulfur Recovery 超级克劳斯硫磺回收系统动态模拟仿真 葛文锋,魏江,郑小青,郑松,葛铭 杭州电子科技大学自动化学院,浙江杭州

硫回收岗位操作规程(2020年)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 硫回收岗位操作规程(2020年) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

硫回收岗位操作规程(2020年) 一、岗位任务、职责及范围 1、岗位任务 本岗位负责将系统来的酸气通过克劳斯炉还原为元素硫磺,并将尾气进行冷却处理后,并入吸煤气系统。 2、职责及范围 2.1在值班长或主操的领导下,负责本岗位的生产操作、设备维护、保养、清洁文明、环保、定置管理等工作。 2.2认真执行各项规章制度,杜绝违章作业,保证安全生产,执行中控室指令,及时调控好工艺指标。 2.3做好设备检修前的工艺处理和检修后的验收工作。 2.4按时巡检,按时做好各项原始记录,书写仿宋化。 2.5负责本岗位的正常开、停车及事故处理。

2.6负责本岗位环境因素和危险源的控制,确保本岗位安全生产、环保、消防、卫生等各项工作符合规定要求。 2.7贯彻执行岗位《操作技术规程》《工艺技术规程》《安全规程》有关规章制度。 2.8搞好巡检工作,及时发现、处理和汇报安全隐患,保证各设备、换热器、反应器、管道、阀门畅通。 2.9控制好本岗位“三废”排放,搞好环保工作。 二、巡回检查路线及检查内容 1、巡回检查路线 操作室→空气风机→克劳斯炉→废热锅炉→锅炉供水处理槽→硫反应器→硫分离器→硫封→硫池→煤气增压机→硫磺结片机→操作室 2、检查内容 巡检时间定为整点前十五分钟开始,整点结束;检查锅炉汽包液位、各温度、压力点变化情况,各润滑部位油位,润滑情况,各泵、增压机、空鼓有无异常声音,是否处于正常运行状态,进出口

克劳斯硫磺回收主要设备及操作条件(标准版)

克劳斯硫磺回收主要设备及操作条件(标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0542

克劳斯硫磺回收主要设备及操作条件(标 准版) 现以直流法为例,这类硫磺回收装置的主要设备有反应炉、余热锅炉、转化器、硫冷凝器和再热器等,其作用和特点如下。 1.反应炉 反应炉又称燃烧炉,是克劳斯装置中最重要的设备。反应炉的主要作用是:①使原料气中1/3体积的H2 S氧化为SO2 ;②使原料气中烃类、硫醇氧化为CO2 等惰性组分。 燃烧在还原状态下进行,压力为20~100kPa,其值主要取决于催化转化器级数和是否在下游需要尾气处理装置。 反应炉既可是外置式(与余热锅炉分开设置),也可是内置式(与

余热锅炉组合为一体)。在正常炉温(980~1370℃)时,外置式需用耐火材料衬里来保护金属表面,而内置式则因钢质火管外围有低温介质不需耐火材料。对于规模超过30t/d硫磺回收装置,外置式反应炉更为经济。 无论从热力学和动力学角度来讲,较高的温度有利于提高转化率,但受反应炉内耐火材料的限制。当原料气组成一定及确定了合适的风气比后,炉膛温度应是一个定值,并无多少调节余地。 反应炉内温度和原料气中H2 S含量密切有关,当H2 S含量小于30%时就需采用分流法、硫循环法和直接氧化法等才能保持火焰稳定。但是,由于这些方法的酸气有部分或全部烃类不经燃烧而直接进入一级转化器,将导致重烃裂解生成炭沉积物,使催化剂失活和堵塞设备。因此,在保持燃烧稳定的同时,可以采用预热酸气和空气的方法来避免。蒸汽、热油、热气加热的换热器以及直接燃烧加热器等预热方式均可使用。酸气和空气通常加热到230~260℃。其他提高火焰稳定性的方法包括使用高强度燃烧器,

克劳斯硫回收工艺事故整理

克劳斯硫回收工艺事故整理 1.硫磺开工烧坏人孔 1999年8月15日16:30,某炼油厂硫磺回收装置操作员在巡检时发现炉人孔烧坏。 事故经过: 1999年7月10日,硫磺回收装置按计划点炉开工,7月10日点焚烧炉F-202,11日23:25时点燃烧炉F-101,14日点尾气炉F-201,转化器、炉开始烘烤,7月23日烘炉完毕;7月29日至30日R-101、R-102、R-201装催化剂,8月6日重新点火开工,8月13日引酸气入燃烧炉,系统继续升温,8月15日加大酸气入炉量,到16:30发现燃烧炉人孔烧坏而紧急停工。 事故分析: 造成主燃烧炉人孔烧坏的主要原因是: 1、燃烧炉F-101衬里材料选材错误。 2、风量表偏小,酸气量偏小,造成配风过大,主燃烧炉超温。 3、主要仪表存在不少问题:酸气超声波流量计无指示,H2S/SO2比值分析仪无法投用,SO2、O2分析仪不准,火焰检测仪无法投用等问题。 4、整个人孔被错误用保温材料包得严严实实。) 5、操作人员经验不足。 采取措施:

8月20日至9月20日修复衬里,校验风量流量表,更换超声波流量计。 经验教训: “三查四定”时要认真仔细,对各关键设备内衬里选材要严格确认,避免开工后出现衬里不能经受操作温度的纰漏。 2. 开工过程中造成燃烧炉外壁超温 1999年10月1日,某炼油厂硫磺回收装置燃烧炉外壁超温。 事故经过: 1999年9月20日燃烧炉人孔烧坏处理完毕后,24日重新点火升温,29日产出合格硫磺,10月1日发现主燃烧炉外壁超温而紧急停工。事故分析: 1、燃烧炉衬里问题 2、开工引酸气量较大,酸气量波动大,造成炉膛温度过高。 采取措施: 紧急停工,修复燃烧炉衬里 经验教训: 在烘炉完毕后,打开燃烧炉人孔检查衬里时,要严格按照裂缝的条数和尺寸进行审核,不合格就要返工,别把缺陷带到开工后。 3. 停工过程废热锅炉露点腐蚀报废 事故经过: 2000年3月27日,硫磺回收装置停工,28日发现烟道法兰处漏出铵盐,4月3日拆开F-202人孔,E-202头盖试漏发现废锅E-202内管程

硫回收岗位操作规程

硫回收岗位操作规程 一、岗位任务、职责及范围 1、岗位任务 本岗位负责将系统来的酸气通过克劳斯炉还原为元素硫磺,并将尾气进行冷却处理后,并入吸煤气系统。 2、职责及范围 2.1 在值班长或主操的领导下,负责本岗位的生产操作、设备维护、保养、清洁文明、环保、定置管理等工作。 2.2 认真执行各项规章制度,杜绝违章作业,保证安全生产,执行中控室指令,及时调控好工艺指标。 2.3 做好设备检修前的工艺处理和检修后的验收工作。 2.4 按时巡检,按时做好各项原始记录,书写仿宋化。 2.5 负责本岗位的正常开、停车及事故处理。 2.6 负责本岗位环境因素和危险源的控制,确保本岗位安全生产、环保、消防、卫生等各项工作符合规定要求。 2.7 贯彻执行岗位《操作技术规程》《工艺技术规程》《安全规程》有关规章制度。 2.8 搞好巡检工作,及时发现、处理和汇报安全隐患,保证各设备、换热器、反应器、管道、阀门畅通。 2.9 控制好本岗位“三废”排放,搞好环保工作。 二、巡回检查路线及检查内容 1、巡回检查路线

操作室→空气风机→克劳斯炉→废热锅炉→锅炉供水处理槽→硫反应器→硫分离器→硫封→硫池→煤气增压机→硫磺结片机→操作室 2、检查内容 巡检时间定为整点前十五分钟开始,整点结束;检查锅炉汽包液位、各温度、压力点变化情况,各润滑部位油位,润滑情况,各泵、增压机、空鼓有无异常声音,是否处于正常运行状态,进出口压力是否在指标范围内,有无漏点;硫封出硫是否正常,有无堵塞现象,夹套蒸汽是否畅通,有无漏点。看地沟盖板是否完好,是否畅通,有无杂物淤积。 三、工艺流程、生产原理简述及主要设备工作原理 1、工艺流程 从再生塔顶来的约66—72℃含H2S约20﹪的酸汽酸汽(含有H2S、HCN和少量的NH3及CO2)送入一个带特殊燃烧器的克劳斯炉,在克劳斯炉燃烧室内加入主空气,使约1/3的H2S燃烧生成SO2,SO2再与2/3的H2S反应生成元素硫,反应热可使过程气维持在1100℃左右,当酸汽中H2S含量较低时,尚需补充少量煤气。在燃烧室和催化床中同时发生HCN和NH3的分解反应。为达到尽可能高的H2S转化率,通过在催化床后部加入辅空气来调整H2S/SO2。 克劳斯炉内发生以下反应: H2S + 3/2 O2 = SO2 + H2O 2H2S + SO2 = 3S + 2H2O 2NH3 = N2 + 3H2 2HCN + 2H2O = N2 + 2CO + 3H2 由克劳斯炉排出的高温过程气,经废热锅炉冷却,安装在废热锅炉出口处的迷宫式分离器将冷凝出来的液态硫磺分离,回收的热量生产120℃、0.15MPa的低压蒸汽。由废热锅炉排出的过程气

硫磺回收工艺介绍

目录 第一章总论 (3) 1.1项目背景 (3) 1.2硫磺性质及用途 (4) 第二章工艺技术选择 (4) 2.1克劳斯工艺 (4) 2.1.1MCRC工艺 (4) 2.1.2CPS硫横回收工艺 (5) 2.1.3超级克劳斯工艺 (6) 2.1.4三级克劳斯工艺 (9) 2.2尾气处理工艺 (9) 2.2.1碱洗尾气处理工艺 (9) 2.2.2加氢还原吸收工艺 (13) 2.3尾气焚烧部分 (13) 2.4液硫脱气 (14) 第三章超级克劳斯硫磺回收工艺 (15) 3.1工艺方案 (15) 3.2工艺技术特点 (15) 3.3工艺流程叙述 (15) 3.3.1制硫部分 (15) 3.3.2催化反应段 (15) 3.3.3部分氧化反应段 (16) 3.3.4碱洗尾气处理工艺 (17) 3.3.5工艺流程图 (17) 3.4反应原理 (18) 3.4.2制硫部分一、二级转化器内发生的反应: (18) 3.4.3尾气处理系统中 (18) 3.5物料平衡 (19)

3.6克劳斯催化剂 (19) 3.6.1催化剂的发展 (19) 3.6.2催化剂的选择 (21) 3.7主要设备 (21) 3.7.1反应器 (21) 3.7.2硫冷凝器 (21) 3.7.3主火嘴及反应炉 (22) 3.7.4焚烧炉 (22) 3.7.5废热锅炉 (22) 3.7.6酸性气分液罐 (22) 3.8影响Claus硫磺回收装置操作的主要因素 (23) 3.9影响克劳斯反应的因素 (24) 第四章工艺过程中出现的故障及措施 (26) 4.1酸性气含烃超标 (26) 4.2系统压降升高 (27) 4.3阀门易坏 (28) 4.4设备腐蚀严重 (28)

二氧化碳回收操作规程完整

双多化工 3万吨/年二氧化碳回收装置工艺技术操作规程

双多化工 二O一二年八月 目录 第一章项目简介........................................................................................................ 1 第一节项目名称:......................................................... 1第二节项目地址:......................................................... 1 第二章装置简介........................................................................................................ 1 第一节装置规模........................................................... 1第二节工艺技术........................................................... 1第三节主要设备........................................................... 2第四节二氧化碳的性质..................................................... 3 第三章工艺过程介绍................................................................................................ 3 第一节压缩吸附部分....................................................... 3第二节精馏贮存部分....................................................... 5第三节冷冻液化部分....................................................... 5 第四章装置的操作.................................................................................................... 5 第一节首次开车准备....................................................... 5 1、1管路系统的准备工作.................................................................................................... 5 1、2机泵、控制系统的单体试车........................................................................................ 7第二节正常开车步骤....................................................... 8 2、1压缩吸附部分................................................................................................................ 8 2、2 精馏部分....................................................................................................................... 8 2、3 冷冻部分....................................................................................................................... 9第五章装置的正常运行........................................................................................ 10 第一节压缩吸附部分.................................................... 10 1、1第一冷却器................................................................................................................ 10 1、2干燥床的操作及再生................................................................................................ 10 1、3 吸附床的操作及再生............................................................................................... 11

克劳斯硫回收操作规

克劳斯硫回收操作规程 1.岗位任务及意义 我厂所采用的原料煤硫含量较高,如果不加以回收,就会污染空气。本岗位接受低温甲醇洗岗位送来的硫化氢尾气,通过克劳斯回收装置回收,并制成固体硫磺。本装置H2S的总转化率90-95%;COS不发生克劳斯反应,通过尾气烟囱直接放空。年产硫磺1万吨,回收硫磺不仅经济效益可观还可以消除污染。 2.工艺原理及流程叙述 2.1工艺原理 克劳斯法回收硫的基本反应如下: H2S+1/2O2→S+H2O (1) H2S+3/2O2→SO2+H2O (2) 2H2S+SO2→3S+2H2O (3) 反应(1)(2)在燃烧室中进行,在温度1150℃-1300℃,压力0.06MPa 和严格控制气量的条件下,将硫化氢燃烧成二氧化硫,为催化反应提供(H2S+CS2)/SO2为2/1的混合气体。 此气体通过AL2O3基触媒,按反应(3)生成单质硫。 2.2流程叙述 来自上游甲醇洗工序的酸性气温度为37.2℃,压力为0.22MPaG,经进料管分离罐(V1301)分出挟带液后,按一定比例分成两股,其中一股去H2S燃烧炉(F1301)。该流股经过控制阀后压力降为0.06 MPaG 进入H2S燃烧炉(F1301),在H2S燃烧炉(F1301)中,酸性气和一定

比例的反应空气发生燃烧反应,反应生成SO2的和燃烧反应剩余的H2S 进一步发生部分克劳斯反应,反应后的酸性气体温度可达800℃以上。高温酸性气随后进入H2S余热回收器(E1301)回收器废热并副产蒸汽,同时将反应生成的单质硫部分冷凝。H2S余热回收器(E1301)一共有四程换热管(PASS1~4)回收本工序工艺气的废热,高温酸性气废热的回收是通过其中的第一、二换热管(PASS1、PASS2)进行的。高温酸性气全部通过PASS1后温度降为600℃,然后分成两股,其中一股流经PASS2温度进一步降至185℃,然后和未经过PASS2的流股混和。通过调整两个流股的比例可使混合后的温度控制在约300℃。混合后的酸性气流股和进料器分离罐(V1301)后未进入H2S燃烧炉(F1301)的旁路酸性气体混合后温度降至230℃、压力0.04MPaG进入克劳斯反应器(R1301)一段。在该段床层酸性气中的H2S和SO2在催化剂LS-971和LS-300的作用下发生克劳斯反应生成单质硫,H2S的转化率为80%~85%。流出反应器的酸性气体温度约为340℃,经过H2S余热回收器PASS3回收器废热后,温度降为175℃,同时绝大部分的单质硫被冷凝下来。为达到克劳斯反应器二段所需的温度,流程中设置了第一再加热器(E1302),酸性气进入该加热器预热到约238℃后进入克劳斯反应器二段继续进行克劳斯反应以回收剩余的硫。在二段反应床中,H2S的转化率约为75%,反应后的酸性气温度约为255℃。经过H2S余热回收器PASS4回收该股的废热后,流股的温度降至175℃,其中的单质硫也被大部分冷凝分离。经过第二再加热器预热至230℃后该流股进入反应器三段发生克劳斯反应,此时H2S

硫磺回收系统的操作要求和工艺指标

一、制硫工艺原理 硫磺回收系统的操作要求和工艺指标 Claus制硫总的反应可以表示为: 2H2S+02/X S x+2H20 在反应炉内,上述反应是部分燃烧法的主要反应,反应比率随炉温变化而变化,炉温越高平衡转化率越高;除上述反应外,还进行以下主反应: 2H2S+3O2=2SO2+2H2O 在转化器中发生以下主反应: 2H2S+SO23/XS x+2H2O 由于复杂的酸性气组成,反应炉内可能发生以下副反应: 2S+2CO2COS+CO+SO2 2CO2+3S=2COS+SO2 CO+S=COS 在转化器中,在300摄氏度以上还发生CS2和COS的水解反应: COS+H2O=H2S+CO2 二、流程描述 来自上游的酸性气进入制硫燃烧炉的火嘴;根据制硫反应需氧量,通过比值 调节严格控制进炉空气量,经燃烧,在制硫燃烧炉内约65%(v)的H2S进行高温克 劳斯反应转化为硫,余下的H2S中有1/3转化为SO2燃烧时所需空气由制硫炉鼓风机供给。制硫燃烧炉的配风量是关键,并根据分析数据调节供风管道上的调节阀,使过程气中的H2S/SO2比率始终趋近2:1,从而获得最高的Claus转化率。 自制硫炉排出的高温过程气,小部分通过高温掺合阀调节一、二级转化器的 入口温度,其余部分进入一级冷凝冷却器冷至160℃,在一级冷凝冷却器管程出 口,冷凝下来的液体硫磺与过程气分离,自底部流出进入硫封罐。 一级冷凝冷却器管程出口160℃的过程气,通过高温掺合阀与高温过程气混合后,温度达到261℃进入一级转化器,在催化剂的作用下,过程气中的H2S和SO2转化为元素硫。反应后的气体温度为323℃,进入二级冷凝冷却器;过程气冷却至160℃,二级冷凝冷却器冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫封罐。分离后的过程气通过高温掺合阀与高温过程气混合后温度达到225℃进入二级转化器。在催化剂作用下,过程气中剩余的H2S和SO2进一步转化为元素硫。 反应后的过程气进入三级冷凝冷却器,温度从246℃被冷却至1.60~C。三级 冷凝冷却器冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫 封罐。顶部出来的尾气自烟囱排放。 三、开车操作规程 1、系统升温 条件确认:制硫炉和一、二、三级冷凝冷却器达到使用条件:一、二、三级 冷凝冷却器内引入除氧水至正常液位;按程序对制硫炉点火;按升温曲线对制硫 炉升温;流程:制硫炉烘炉烟气一废热锅炉一一级冷凝冷却器一高温掺合阀一一 级转化器一二级冷凝冷却器一高温掺合阀一二级转化器一三级冷凝冷却器一为 其扑集器一烟囱;一、二级转化器升温至200~C,废热锅炉蒸汽压力0.04—0.045mpa,冷凝

克劳斯硫磺回收技术的基本原理讲解

前言 在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’ H2S + 3/2 O2 = S02 + H2O (1) 2H2S + S02 = 3/X Sx +2H2O (2) 其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应: CS2 + H2O = COS + H2S (3) COS + H20 = H2S + C02(4) 本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述. 1、工艺的发展历程 1.1原始的克劳斯工艺 1883年英国化学家C,F·C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。关于后者的反应过程列于下式: 2NaCl + H2S04 = Na2SO4 + 2HCl (5) Na2SO4 + 2C = Na2S + 2CO2 (6) Na2S + CaCO3 = Na2CO3 + CaS (7)

为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气) (8) 反应式(9)进行反应。反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。据报导, H2S + 1/2 O2 = 1/X Sx + H2O (9) 如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放的热量又只靠辐射来发散,因此限制了克劳斯窑炉只能处理少量的H2S气

克劳斯硫磺回收主要设备及操作条件

编号:SM-ZD-41016 克劳斯硫磺回收主要设备 及操作条件 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

克劳斯硫磺回收主要设备及操作条 件 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 现以直流法为例,这类硫磺回收装置的主要设备有反应炉、余热锅炉、转化器、硫冷凝器和再热器等,其作用和特点如下。 1. 反应炉 反应炉又称燃烧炉,是克劳斯装置中最重要的设备。反应炉的主要作用是:①使原料气中1/3体积的H?S氧化为SO?;②使原料气中烃类、硫醇氧化为CO?等惰性组分。 燃烧在还原状态下进行,压力为20~100kPa,其值主要取决于催化转化器级数和是否在下游需要尾气处理装置。 反应炉既可是外置式(与余热锅炉分开设置),也可是内置式(与余热锅炉组合为一体)。在正常炉温(980~1370℃)时,外置式需用耐火材料衬里来保护金属表面,而内置式则因钢质火管外围有低温介质不需耐火材料。对于规模超过30t/d

克劳斯法硫回收工艺实例

克劳斯法硫回收工艺 一、工艺要求 三高无烟煤:元素分析含硫3.3% 造气:121332Nm3含硫化氢1.11% 含COS0.12% 约17克/Nm3 低温甲醇洗:净化气含硫0.1ppm 送出H2S含量为35%左右的酸性气体3871Nm3。 本岗位主要任务是回收低温甲醇洗含硫CO2尾气中的H2S组份,通过该装置回收,制成颗粒状硫磺。同时将尾气送到锅炉燃烧,使排放废气达到国家排放标准,本装置的正常硫磺产量约为16160吨/年。 二、工艺方法 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。

克劳斯法硫磺回收方法

克劳斯法硫回收 一、工艺设计 三高无烟煤:元素分析含硫3.3% 造气:121332Nm3含硫化氢1.11% 含COS0.12% 约17克/Nm3 低温甲醇洗:净化气含硫0.1ppm 送出H2S含量为35%左右的酸性气体3871Nm3。 本岗位主要任务是回收低温甲醇洗含硫CO2尾气中的H2S组份,通过该装置回收,制成颗粒状硫磺。同时将尾气送到锅炉燃烧,使排放废气达到国家排放标准,本装置的正常硫磺产量约为16160吨/年。 二、工艺方法 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。

各类岗位操作规程

一、兰炭生产概述 兰炭 兰炭,结构为块状,粒度一般在3mm以上,颜色呈浅黑色,是铁合金、化肥、电石、高炉喷吹等行业的燃料及还原剂,也是生产活性炭等化工产品的原料。 兰炭最早的使用其实是从民间开始的,有些烧碳比较缺乏的地方,把炉子里燃剩的煤块剔出来,用以炉膛压火或烧风箱炉用,由于烟少,温度高,耐燃等优点受到农村家庭主妇的青睐。其实兰炭的称呼也始于民间。 现在的兰炭又被称为“焦粉、半焦”,是生产铁合金、电石的优质还原剂,其具有三高四低的特点:固定炭高、化学活性高、比电阻高、灰分低、铝低、硫低、磷低。用兰炭生产铁合金、电石时最大的优势是节能降耗!单位电耗的降低率 %!尤其是用兰炭生产硅铁、硅合金时可以使产品的铝含量降低,增加优质品的产出率。以逐步取代冶金焦而广泛运用于电石、铁合金、硅铁.碳化硅等产品的生产,成为一种不可替代的炭素材料。 兰炭质量标准 兰炭规格 a、焦面; b、3-15mm; c、15-25mm; d、25mm以上 质量标准 灰份≤10%,水份≤10%,挥发份≤6%,固定炭≥82%,含硫≤%。 主要用途及副产品 1.3.1 主要用途: 兰炭可代替焦炭(冶金焦)而广泛用于化工、冶炼、造气等行业,在生产金属硅、铁合金、硅铁、硅锰、化肥、电石等高耗能产品过程中优于焦炭。 1.3.2 副产品 主要副产品有煤焦油和煤气。 a、煤气与空气在火道内混合均匀后,经火口进入干馏段燃烧,干馏段下部成品兰炭落入水封槽冷却息焦,然后排出。荒煤气在干馏室内沿料层上升,通过煤气收集

罩、上升管、桥管后经文氏管塔、旋流板塔洗涤,部分煤气在风机的作用下回炉加热,剩余部分放散或作为其他用途。 b、煤焦油:生产兰炭时的副产品,属中温焦油 用途:制作二甲酸酐、生产树脂、工煤程塑料、合成纤维、医药原料、原油材料、人工造油等。 煤气及焦油质量标准 a、煤气:杂质量小于:焦油:5g/Nm3;苯:10g/ Nm3;荼: Nm3;NH3:4g/ Nm3;H2O:3g/ Nm3。 b 以上指标是冶金焦炼焦高温焦油质量指标,对于低温焦油国家未制定标准。煤种不同,干馏温度不同,焦油质量也不同。生产中以控制灰份、水份为主。 兰炭主要生产方法 目前,兰炭主要有两种规格:一是土炼兰炭,二是机制兰炭;尽管两种规格的兰炭用的是同一种优质精煤炼制而成,但因生产工艺和设备的不同,其成本和质量也大不一样。 1.4.1土炼兰炭 七十年代末,由于当时的交通、运输、投资资金等制约因素,煤矿将难以销售的块煤在平地堆积,用明火点燃,等烧透后用水熄灭而制成兰炭,尽管生产工艺简单、落后,但因为煤质优良,其产品还是为广大用户所认可,并且在电石、铁合金生产中已经成为一种不可替代的优质炭素材料,这种土法冶炼的兰炭我们称之为:“土炼兰炭”。

克劳斯法-工艺介绍

克劳斯法回收硫磺 CPEE天津分公司 2012.1.20

克劳斯法硫回收工艺 一、工艺方法及原理 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。 一般克劳斯尾气吸收要经过尾气焚烧炉,通过吸收塔,在吸收塔内用石灰乳溶液或稀氨水吸收,生成亚硫酸氢钙或亚硫酸氢铵,通过向溶液中通空气,转化为石膏或硫酸铵,达到无害处理,我公司硫回收尾气送至锅炉燃烧并脱硫后排放。 3、克劳斯法制硫基本原理 克劳斯硫回收装置用来处理低温甲醇洗的酸性气体,使酸性气中的H2S转变为单质硫。首先在燃烧炉内三分之一的H2S与氧燃烧,生产SO2,然后剩余的H2S与生成的SO2在催化剂的作用下,进行克劳斯反应生成硫磺。

熔硫过滤岗位生产操作规程(10.10.08)

熔硫过滤岗位生产操作规程 一、岗位任务 1、负责将固体硫磺及时、足量地熔化。 2、严格按工艺指标操作,保证向焚硫转化工序及时供应符合工艺要求的液硫。 3、维护好管辖范围内各机电设备和仪表。 4、密切与关联岗位的联系,防范液硫火灾,搞好安全生产和环境卫生。 二、管辖范围 斗式铲车、硫磺皮带运输机、快速熔硫槽、卧式液硫过滤机、预涂槽、预涂槽输送泵、液硫大库等设备及其附属管线和机泵。 三、工艺流程 固体硫磺由皮带运输机送入快速熔硫槽,槽内的蒸汽盘管通入0.6MPa饱和蒸汽进行熔融,经熔融后的液体硫磺溢流至预涂槽,由预涂槽输送泵将液体硫磺送入卧式液硫过滤机,再回流到预涂槽内,经液硫过滤机过滤合格后的液体硫磺,由预涂槽输送泵通过液硫过滤机打入液硫大库,再放入精硫槽,由硫磺输送泵打入焚硫炉。 四、岗位主要设备

五、主要工艺控制指标 六、岗位开车: 开车前的准备及检查: 1、确认所有设备、管线、贮槽等清洁无外界杂质。 2、检查所有设备、管线、阀门是否灵活好用处于开车前的关闭状态。 3、检查所有电器、仪表是否良好,并处于正常待用状态,检查仪表是否可以投用。 4、检查有关设备和管线的保温是否良好,疏水是否畅通。 5、检查所有机泵润滑是否良好,盘车时是否转动自如,磺泵试运转,处于备用状态。 6、检查水、电、低压蒸汽是否供应到本岗位,并打开蒸汽阀对快速熔硫槽、卧式液硫过 滤机、预涂槽、预涂槽输送泵、精硫槽、液硫大库、硫磺输送泵等设备和输硫管线进行预热15—30分钟。 开车操作(新建第一次开车或长期停车后开车): 1、接到开车通知后,将固体硫磺经皮带机加入快速熔硫槽。 2、控制快速熔硫槽加热蒸汽压力在0.7Mpa左右,检查各管道的疏水器是否处于正常工作,保证固体硫磺在槽内的堆积高度略高于其加热盘管。 3、用手盘动快速熔硫槽搅拌器,待盘动灵活时启动搅拌器,不断加入固磺将其熔化。

硫磺回收工艺介绍样本

目录 第一章总论 .............................................................................. 错误!未定义书签。 1.1项目背景 ..................................................................... 错误!未定义书签。 1.2硫磺性质及用途............................................................ 错误!未定义书签。第二章工艺技术选取 ................................................................. 错误!未定义书签。 2.1克劳斯工艺.................................................................. 错误!未定义书签。 2.1.1MCRC工艺............................................................ 错误!未定义书签。 2.1.2CPS硫横回收工艺............................................. 错误!未定义书签。 2.1.3超级克劳斯工艺 .............................................. 错误!未定义书签。 2.1.4三级克劳斯工艺 ........................................... 错误!未定义书签。 2.2尾气解决工艺............................................................... 错误!未定义书签。 2.2.1碱洗尾气解决工艺 .............................................. 错误!未定义书签。 2.2.2加氢还原吸取工艺 .............................................. 错误!未定义书签。 2.3尾气焚烧某些............................................................... 错误!未定义书签。 2.4液硫脱气 ..................................................................... 错误!未定义书签。第三章超级克劳斯硫磺回收工艺............................................ 错误!未定义书签。

相关文档
最新文档