配电网线损计算方法及降损主要措施探讨

配电网线损计算方法及降损主要措施探讨
配电网线损计算方法及降损主要措施探讨

配电网线损计算方法及降损主要措施探讨

要摘线损率是衡量电网企业管理水平高低的重要技术经济指标,对其进行控制具有重要意义。因此首先对线损计算方法进行研究,然后介绍降低线损的管理措施和技术措施。

关键词线损;降损;配电网;降损措施

电网的线损率既是电力系统一项重要的技术经济指标,用来综合衡量电力企业的管理水平,也是国家电力工业发达的重要标志之一。电力系统中发电厂生产的电能是通过电网的输电、变电和配电环节供给用户的。在输送和分配电能的过程中,电网中各元件,变压器、输电线路、补偿和调整设备以及测量和保护装置,都要耗费一定的电能。

在给定的时间段内,电网所有元件中产生的电能损耗称为电网的线损电量,简称线损。通常,线损是用电度表计量的“总供电量”和“总售电量”相减得到的,我们把线损电量占供电量的百分数称为线损率,即:

线损率=(供电量-售电量)/供电量×100%

在电网的实际运行中,用电度表计量统计出的供电量和售电量之差得到的线损电量,称为统计线损电量,相应的线损率称为统计线损率。在统计线损电量中,有一部分是电能在输、变、配电过程中不可避免的,其数值由相应时段内运行参数和设备参数所决定。其中主要包括:与电流平方成正比的变压器绕组和输电线路导线中的电能损耗;与运行电压有关的变压器铁芯、电容器和电缆的绝缘介质损耗以及电晕损耗等,这部分损耗电量习惯上称为“技术线损电量”,它可以通过理论计算得出,所以又称为理论线损电量。统计线损的另一部分是由于管理工作上的原因造成的,这部分损失电量习惯上称为“管理线损电量”。

线损率是电力系统一项重要的技术经济指标,是综合衡量电力企业管理水平的重要标志之一,特别对供电企业来说,它是一项主要的技术经济考核指标。另外,配电网线损计算对配电网的无功优化、电网技术改造以及电力市场成本电价的计算都有着十分重要的意义。因此,对配电网线损的控制对电网经济性具有较大影响。

1 线损的理论计算方法

配电网具有闭环设计,开环运行的特点,因此实际运行中的配电网多呈辐射状,而配电网中要详细收集和整理各负荷点的负荷资料及元件运行数据是非常困难的,也缺乏进行潮流分析所需的负荷数据。一般来说,馈线出口均装有电流表、功率表,可以获取馈线出口代表日24h正点电流。

因此,均方根电流法是10kV及以下电压等级的配电网中最常见的理论线损计算方法,另外也可根据计算条件和计算资料,采用平均电流法(形状系数法)、最大电流法(损失因数法)、等值电阻法、电压损失法等方法进行计算。

1)均方根电流法。在进行配电网线损计算时,需收集沿线各节点的负荷。由于配电网节点数多,负荷在不同时段的变化又比较大,运行数据根本无法全面收集。为尽量减少运行数据的收集量,同时又不影响线损计算的精度,一般作如下假设:①各负荷节点负荷曲线的形状与首端相同。②各负荷节点功率因数与首端相等。③忽略沿线的电压损失对能耗的影响。④负荷的分

配与负荷节点装设的变压器额定容量成正比,即各变压器的负荷系数相同(负荷系数为通过变压器的视在功率与其额定容量之比)。

2)平均电流法(形状系数法)。平均电流法是利用均方根电流与平均电流的等效关系进行能耗计算的方法。因为用平均电流计算出来的电能损耗是偏小的,因此要乘以大于1的修正系数。令均方根电流与平均电流之间的等效系数为K,称为形状系数。

3)最大电流法(损失因数法)。最大电流法是利用均方根电流与最大电流的等效关系进行能耗计算的方法。与平均电流法相反,用最大电流法计算出的损耗是偏大的,要乘以小于1的修正系数。令均方根电流的平方与最大电流的平方的比值为F,称为损失因数。

4)等值电阻法。等值电阻法的理论基础是均方根电流法。因10(6)kV配电网络节点多、分支线多、元件也多,各支线的导线型号不同,配电变压器的容量、负荷系数、功率因数等参数和运行数据也不相同,要精确的计算配电网络中各元件的电能损耗是比较困难的。因此,在满足实际工程计算精度的前提下,使用等值电阻法计算配电网络的电能损耗具有可行性和实用性。

2 降损措施

2.1 电网降损管理措施

线损率是衡量电力企业管理水平的一项重要指标,为切实降低损耗,供电企业应建立健全线损管理责任制,加强指标管理、用电管理、计量管理、明确各管理部门的职责,并落到实处。以近期线损理论计算值和前几年线损统计值为基础,根据影响线损率升、降的许多因数进行修正,制定适合本单位具体情况的线损计划指标,作为考核、评价本单位生产任务和经济效益完成好坏的依据。线损管理部门要认真收集资料,统计要及时,数据要正确,以便对线损定期定量分析,弄清线损升降的原因:①电网网损中的输、变电线损应分压、分线进行,配电线损的分析应分线(片)、分台变(区)进行,并分别与其相应的线损理论计算值进行比较,以掌握线损电量的组成,找出薄弱环节,明确主攻方向。②按售电量构成分析线损,将无损用户的专用线路,专用变压器以及通过用户的转供电、兜售电等相应的售电量扣除后进行统计分析,以求得真实的线损率。③分析供、售电量不对应对线损波动的影响。④健全营业管理分级考核,严格岗位责任制,并制订相应的奖惩办法,调动职工的积极性。⑤加强营业普查,查偷漏,查卡、帐、票、证及底册与电能表度数,查电压和电流互感器变比,查电能表接线,杜绝无表用电。对抄表人员的管辖范围实行定期轮换,对用户实行两人抄表,以削弱人情电、关系电的产生。

2.2 电网降损技术措施

在搞好线损管理的基础上,采取行之有效的技术措施是降低电网电能损耗的重要途径,供电企业从实际情况出发,要认真搞好电网规划建设、调整网络布局、电网升压改造、简化电压等级、合理调整运行电压、缩短供电半径、减少迂回供电、换粗导线截面、更换高能耗变压器、增加无功补偿容量等。①电网升压改造。电网升压改造是指在用电负荷增长,造成线路输送容量不够或者能耗过大,以及为了简化电压等级所采取的技术措施。②合理调整运行电压。合理调整运行电压指通过调整发电机端电压和变压器分接头,在母线上投切电容器及调相机调压等手段,在保证电压质量的基础上适度地调整。③更换导线截面。在输送负荷不变的情况下,更换导线截面,减少线路电阻可以达到降损节能的效果。

2.3 线路的经济运行

按经济电流密度运行的降损节电效果,经济电流密度是根据节电投资、年运行费用及有色金属消耗量等因素制定的。选用导线截面时,应根据负荷性质考虑最大负荷利用小时数。导线按经济电流运行电能损耗降低幅度大,导线越细,降低幅度越大。增加并列线路运行,指由同一电源至同一受电点增加一条或几条线路并列运行。

2.4 变压器经济运行

确定变压器经济运行应经过计算,按能耗最小的方式安排运行,达到最经济的目的。变压器经济运行是指安装在变电站的主变压器,分双绕组单台变压器经济运行、双绕组多台变压器经济运行、两台三绕组变压器经济运行。当变电站有多台相同型号的双绕组变压器并列运行时,应分别计算变压器的临界负荷,确定不同负荷情况下应当投运的变压器台数。

当变电站有多台不同型号的双绕组变压器时,计算列出各种组合方式下的临界负荷表,然后再根据变电站的负荷选择最经济的组合方式。

变电站有两台相同型号的三绕组变压器需要并列或单台运行时,应分别计算变压器参数、经济负荷分配系数和经济负荷。两台变压器高压侧并列,中、低侧分开运行的经济负荷分配系数是随着中压侧总负荷系数C变化的一条曲线。 2.5 降低配电变压器电能损耗

配电变压器的损耗是配电网络损耗的主要组成部分,故降低配电变压器损耗是降低网损的有效途径之一。通常采用以下方法:①淘汰高损耗配电变压器。②停用空载配电变压器。③加装低压电容器。④加强运行管理。⑤合理配置配电变压器容量。

2.6 配电网的无功补偿

配电网的无功补偿也属于降低配电网线损的技术措施。

1)无功功率与电压及线损的关系。首先,电力系统中无功平衡与电压水平有着密切关系。如果发电机有足够的无功备用,系统的无功电源比较充足,就能满足较高电压下的无功平衡的需要,系统就有较高的运行电压水平。反之,无功不足,系统只能在较低的电压水平下运行。在电力系统中应力求做到在额定电压下的系统无功平衡,并根据实现额定电压下的无功平衡要求装设必要的无功补偿设备。

其次,无功是影响电压质量的一个重要因素。电压是电能质量的主要指标之一,保证电压质量,即保证端电压的偏移和波动都在规定的范围内,是电网运行的主要任务之一。从电压损耗的公式ΔU= (PR+ QX)/U可见,在电网结构(R,X)确定的情况下,电压损耗与输送的有功功率和无功功率都有关,而在输送的有功功率一定的情况下,电压损耗主要取决于输送的无功功率。

造成电压波动的主要因素:一是用户无功负荷的变化,二是电网内无功潮流的变化。如果电网中没有足够的无功补偿设备和调压装置,就会产生大的电压波动和偏移,甚至出现不允许的低电压或高电压运行状态。保证电网的电压质量,与无功的平

衡之间存在着不可分割的关系。第三,无功是影响线路损耗的一个重要因素。

电压质量对电力系统稳定运行、降低线路损耗和保证安全生产都有着重要意义。因为,如果大量的无功不能就地供应,而靠流经各级输变电设备长途输送,就会产生较大的电能损耗和电压降落,若无适当的调压手段,便会造成电网低电压运行。相反,当电网有足够的无功电源,用户所需的无功又大大减少时,输送中的无功损耗也相应减少,用户端电压便会显著上升,甚至出现电网高电压运行现象。如果无功过补偿,过剩的无功反向流向电网也会造成电能损失。

2)配电网的主要无功负荷。变压器是个大感性负载,有功功率损耗一般可以忽略不计,容量越大其无功功率的消耗就越大,无功功率本身并不损耗能量,它仅完成电磁能量的相互转换,但是在电网传输过程中会造成相应的有功损耗,其产生的电压降也影响电网质量,对用户来说,无功电量增加会提高用电成本。变压器的无功功率损耗包括励磁无功损耗和漏抗无功损耗两部分,励磁无功损耗与运行电压平方成正比,但无功电量增加会使得过电压运行大幅度增加,过压百分之五励磁无功损耗增加一倍,过压百分之十励磁无功损耗增加倍数非常大,所以过电压运行会增加电网对无功补偿的需求。对容量小、空载电流大、负荷率低、运行电压偏高的农村电网,变压器的励磁功率在电网无功负荷中所占比重很大,该无功负荷可认为基本不变,且运行时间最长,对其补偿的经济性最好,所以无功补偿的首要任务就是补偿变压器的励磁功率。

3)配电网无功补偿的原则。①无功补偿尽量做到使无功就地平衡,尽量减少从电源侧输送的无功电力;②配电网无功补偿的设备以安装维护方便、成本低、补偿效益好的电容器为主;③配电网无功补偿既要满足全网总的无功电力平衡,又要满足分线、分站的无功电力平衡,尽可能地使长距离输送的无功电力最小;④集中补偿和分散补偿相结合,以分散补偿为主。在变电站进行集中补偿,在线路上用电设备处和变压器旁进行分散补偿,以实现就地(近)补偿;⑤高压补偿和低压补偿相结合,以低压补偿为主;⑥降损与调压相结合,以减损为主,兼顾调压,特别是对于线路长、分支多、负荷分散、功率因数低的农村配电网降损是主要目的;⑦供电企业的无功补偿要和用户的无功补偿相结合;⑧力求取得最佳的补偿效果,要防止负荷轻载时的过补偿。

4)配电网无功补偿的标准。功率因数补偿的高低,既要考虑经济性,又要达到要求。补偿得过高,投资高而不经济,过补偿反而又使线损增加;补偿得过低达不到降低线损的目的,对于参与利率考核的用户,由于利率电费的增加也不经济。一般补偿的标准以达到规定要求为准。按照电力工业部1996年颁布的《供电营业规则》规定,用户的功率因数应达到以下标准:

100千伏安及以上高压供电的用户功率因数的标准为0.9。其它电力用户和大、中型电力排灌站、定购转售电企业,功率因数的标准为0.85。农业用电功率因数的标准为0.8。

5)提高功率自然因数。利用现有设备,提高自然功率因数,降低用电设备所需的无功功率是无功平衡的首要措施。负荷的自然功率因数是指未进行无功补偿前的功率因数,提高功率自然因数的方法如下:①合理选择和使用感应电动机。感应电动机是影响功率因数的最重要因素,在容量相同时,一般高转速的电动机比低转速的电动机功率因数高。在容量、型式、转速相同时,鼠笼式电动机比绕组式电动机的功率因数高约4-5%,开启式电动机较封闭式电动机的功率因数高。因此,选择电动机时,在满足机械性能、电气指标及环境等情况下,尽可能选择功率因数高的电动机。②因为感应电动机吸收的无功功率与加在每个定子绕组上的电压平方成正比,根据式Q=U2/R,所以当电动机长期所带负荷小于其额定负荷时,减低电动机定子上所加的电压,以降低电动机吸收的无功功率。③合理选择配电变压器的容量和台数变压器在运行中由于建立主磁通而要消耗一定数量的无功

功率。如果变压器的容量比实际负荷大得多,则将使变压器经常处于低负荷的状态下运行,这样变压器本身将消耗多余的无功功率。因此在选择变压器的容量时,一般考虑负荷率在75-80%最合适,这时,变压器的效率也最佳。所以,合理选择配电变压器的容量和台数,使负荷率增高,从而提高功率因数。

6)无功功率补偿办法。根据无功负荷分布的特点,按照无功功率就地补偿的原则,应采用以分散补偿和集中补偿相结合的补偿方式,更好地实现降低网损的目的。分散补偿就是对分散的配电变压器以及分散的用户感性负荷进行分散就地补偿,集中补偿就是对主变压器、输电线、配电线在变电所的主变压器二次侧进行集中补偿。在电力系统中,有功不足将引起频率下降,无功不足将导致电压下降。电网中常用的几种无功补偿措施有:①调相机补偿。调相机是一种专门设计的无功功率发电机,是一种不带机械负载的可以过励磁或欠励磁运行的发电机,一般装设在枢纽变电站。②静止无功补偿装置(SVC)。静止无功补偿装置是七十年代发展起来的无功补偿技术,是一种利用电容器、电抗器和电力电子装置组合而成的无功功率补偿设备,也称静止无功补偿器。③电容器补偿。并联电容补偿是目前应用最广的一种调压方式,可永久连接或用断路器连接至系统某些节点上。当系统无功不足时,补偿装置要尽量装在无功负荷的中心,做到无功功率就地平衡。通常小容量的、分散的或用户的无功补偿采用电容器,而大容量的、系统中枢点的无功补偿则采用调相机或兼用调相机和电容器。

3 结束语

能源是发展国民经济的关键,充分合理地利用和节约能源不仅可以大大降低国民生产成本,同时对社会发展也具有深远的意义。供电系统的安全生产和降损是直接面向电力用户的电力企业始终面临的两大主题,线损水平是衡量和考核供电企业生产技术和经营管理水平的一项重要综合指标,有效降损也是提高企业经济效益的重要手段和有效途径。

参考文献

[1]陈星莺,廖迎晨,单渊达,虞忠年,江卫中.配电网络及低压配电台区理论线损计算.电工技术,2000,11:14-15.

[2]廖学琦.农网线损计算分析与降损措施.北京:水利出版社,2003.

[3]虞忠年,陈星莺,刘昊编著.电网电能损耗.北京:中国电力出版社,2000.

10kV及以下配电网理论线损计算5页

10kV及以下配电网理论线损计算 0 引言 10kV及以下配电网的网架结构、设备和用电负荷都比较复杂,占了电网电量损耗的大头。加强配电网线损计算是降损节能的重要管理手段[1]。线损计算是根据电网的网架和运行电气参数,应用相应的电路原理计算电网中各个原件的理论线损电量。在配电网规划中,规划年的理论线损计算是不可缺少的内容,但相对于高压配电网,中低压配电网由于设备规模和数量较为庞大,大量缺乏网架内的元件参数和运行参数,特别是规划年的网络参数和运行环境缺失,使得使用精确模型建模和运用成熟的计算软件进行计算较为困难。根据中低压配电网的实际特点,充分利用配电网规划方案可以获取的有限条件进行理论线损计算是配电网理论计算在工程应 用方向的可行路径[2]。本文采用简化负荷模型对配电网进行降低规模计算,求得各类负荷分布类型线路的功率损耗,最后采用最大负荷利用小时法得到规划区域内的理论电量损耗。 1 10kV中压配电网理论线损计算 根据地区线路特性和计算结果,把线路简化为5种负荷分布形式的线路,包括末端集中分布、均匀分布、递增分布、递减分布和中间集中分布。下面具体对各种负荷分布线路模型进行分析。 1.1 中压线路负荷分布模型 1.1.1 末端集中分布 设10kV中压线路主干始端电流为I,单位阻抗为r,负荷集中于线路的末端,则主干的线路损耗为:

1.1.2 线路负荷均匀分布 线路负荷均匀分布于线路上,假设线路始端主干电流为I,末端电流为i0,距离始端x距离的分置电流为ix。图1为负荷均分布模型,X轴为距离线路始端的距离,线路全长为L;Y轴为线路分支线电流的总和。 1.1.3 负荷递增分布 1.1.4 负荷递减分布 1.1.5 负荷中间集中分布 1.2 功率损耗系数 根据以上的计算分析,可以得到各种负荷分布模型的线路功率损耗系数,见下表。 1.3 中压线路损耗估算流程 1.3.1 中压线路主干损耗估算 (1)按照线路主干型号,查找相应的线路的单位电阻r,根据线路长度L得到主干的阻抗为R=L×r; (2)分析线路的分布模型,获得该线路的的功率损耗系数β; (3)计算该线路的功率损耗 1.3.2 中压线路装接配变损耗估算 根据变压器型号和单台变压器容量S,查找变压器参数表得到该型号变压器的空载损耗为ΔPk,负载损耗为ΔP T。中压线路装接配变损耗为:公式中,ST为变压器实际运行容量,采用年最高负荷。 1.3.3 中压线路的总功率损耗 每回中压线路的功率损耗为中压线路功率损耗ΔPL和中压线路装接

配电网节能降损优化研究综述

配电网节能降损优化研究综述 摘要:伴随我国经济的快速发展,我国电网的负荷也在不断的提升,配电网的 电能损耗也在逐渐的增加。怎样有效的减少电能在运输过程中的损耗,即节能降 损已成为配电网中亟待解决的问题。节能降损是当前企业发展的一个重要标准, 也是提高企业在市场上竞争力的一个重要举措。这篇文章根据配电网中节能降损 和优化的措施进行探索,对配电网节能降损的现状和问题做出分析,提出了有效 的降损方式。 关键词:配电网;节能现状;存在问题;优化措施 引言 电网运输是电能传输的重要渠道,电网本身的节能降耗是我国节能工作中的 一个重要组成成分。当前电网配置比较弱,这是我国电网结构中急需解决的一个 问题。因为配电网点比较多,配电线路也比较繁复,电能损失比较大,大约占电 网损失的一半以上,所以说它可节能地方比较大。城镇之间的配电网是电力系统 的主要部分,该文章根据配电网对如何节能降耗进行研究探索,对节能降损的现 状进行分析,提出了当前节能降耗中存在的一些问题以及解决措施[1]。 一、配电网节能降损的现状 现在我国对配电网节能降损的探究还处于比较独立的阶段,对部分地区的电 网线损进行计算,无功优化,变压器经济运转期,并且这些部分的技术都是由不 同的企业掌控,过于离散,缺少整合。各个系统之间的信息合成率过低,数据之 间的连接也不符合规定,运行员工没法及时的掌控配电网运行的现时情况,这会 导致工作繁复以及效率低的后果。而现在配电网中无功补偿节能设施和电力质量 处理装备分布面积还不够广,不仅没有数据上传和收集的单位,也没有设备的整 体调控单位,在设施的运转状态,故障以及节能成效和电力质量的治理成效也没 法知晓。所以,按照配电网的建设和发展需求,研发一种新型的配电网节能减损 和电力质量综合调控设备是非常重要的。利用先进技术逐渐推行电网的节能和提 升电力质量的工作。 电力降损系统的硬件装备的发展过程有:电网发展的初级阶段只是无功调节 和优化的要求,经过了由同步调相机到开关投切电容器到静止无功补偿的变化过程,他们的共有特征是用来调控无功功率从而达到降耗的目的。然而它们在不同 的方面也会出现一些弊端,比如说同步调相机的反应速度不高,噪声大,耗损多,技术老旧,所以属于过去式了。开关投切电容器反应较慢,而且连续控制能力比 较弱。而静止型动态无功补偿器的压制能力弱,体积大,本身谐波污染就比较大。 二、配电网节能降损工作存在的问题。 (一)无功补偿不足而造成的无功损耗问题 现在配电网应用的降损方式主要是电容的补偿,但是因为速度比较低,不能 动态调整,很易过量补偿的现象,所以说电网的损耗现象仍然很重[2]。 (二)能设备无法治理电能质量的问题 电网损耗以及电力质量的问题主要体现在电网的谐波波动、三相负载不平衡。引发的问题主要有:第一,谐波对供电变压器来说会产生额外的损耗,升高变压 器温度,降低了绝缘期限;第二,谐波对旋转电机也会产生一定的副作用,不仅 能产生额外的损耗,还能导致发生机械震动,产生噪音和谐波过电压等;第三,

线损理论计算方法

线损理论计算方法 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑: 1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB

配电网线损降损措施

配电网线损降损措施 在配电变压器方面,仍有S7型高能耗变压器在运行,S9节能型变压器的普及不够。运行中的配电变压器普遍存在台变容量过大,而负荷率(在最大负荷时)很低及三相负荷不平衡的现象。 在城网改造中,都注重改造了10 kV主线,而变压器380 V以下的低压线路则基本未进行改造。目前运行中的低压线路现状是陈旧、凌乱、搭头多、线路过长,这不仅存在安全隐患,也使线损增加。 降低线损的技术措施 1.采用无功功率补偿设备提高功率因数 在负荷的有功功率P保持不变的条件下,提高负荷的功率因数,可以减小负荷所需的无功功率Q,进而减少通过线路及变压器的无功功率,减少线路和变压器的有功功率和电能损耗。 2.对电网进行升压改造 在负荷功率不变的条件下,电网元件中的负荷损耗部分随电压等级的提高而减少,提高电网电压,通过电网元件的电流将相应减小,负载损耗也随之降低。升压是降低线损很有效的措施。升压改造可以与旧电网的改造结合进行,减少电压等级,减少重复的变电容量,简化电力网的接线,适应负荷增长的需要,以显著降低电力网的线损。具体可有如下措施。 3.分流负荷,降低线路的电流密度。利用变电站剩余出线间隔,对负荷大、损耗高的线路进行分流改造,通过增加线路出线的方式降低线路负荷,从而降低线损。 4.调整负荷中心,优化电网结构。针对农村10 kV配电网中存在的电源布点少,供电半径过长的问题,采取兴建新站和改造旧站的方法来缩短供电半径,农村低压配电网中则采取小容量、密布点、短半径的方式来达到节电的目的。 5.改造不合理的线路布局,消除近电远供,迂回倒送现象,减少迂回线路,缩短线路长度。 对运行时间长、线径细、损耗高的线路更换大截面的导线。 6.更新高损主变,使用节能型主变。 主变应按经济运行曲线运行,配有两台主变的要根据负荷情况投运一台或两台主变,并适时并、解裂运行.

电力线路线损计算方法

电力线路线损计算方法 线路电能损耗计算方法 A1线路电能损耗计算得基本方法就是均方根电流法,其代表日得损耗电量计算为: ΔA=3Rt×10-3(kW?h)(Al-1) Ijf=(A)(Al-2) 式中ΔA——代表日损耗电量,kW?h; t——运行时间(对于代表日t=24),h; Ijf——均方根电流,A; R——线路电阻,n; It——各正点时通过元件得负荷电流,A。 当负荷曲线以三相有功功率、无功功率表示时: Ijf==(A)(Al-3) 式中Pt——t时刻通过元件得三相有功功率,kW; Qt——t时刻通过元件得三相无功功率,kvar; Ut——t时刻同端电压,kV。 A2当具备平均电流得资料时,可以利用均方根电流与平均电流得等效关系进行电能损耗计算,令均方根电流Ijf与平均电流Ipj(代表日负荷电流平均值)得等效关系为K(亦称负荷曲线形状系数),Ijf=KIpj,则代表日线路损耗电量为: ΔA=3K2Rt×10-3(kW?h)(A2-1) 系数K2应根据负荷曲线、平均负荷率f及最小负荷率α确定。 当f>0、5时,按直线变化得持续负荷曲线计算K2: K2=[α 1/3(1-α)2]/[1/2(1 α)]2(A2-2) 当f<0、5,且f>α时,按二阶梯持续负荷曲线计算K2: K2=[f(1 α)-α]/f2(A2-3) 式中f——代表日平均负荷率,f=Ipj/Imax,Imax为最大负荷电流值,Ipj为平均负荷电流值; α——代表日最小负荷率,α=Imin/Imax,Imin为最小负荷电流值。 A3当只具有最大电流得资料时,可采用均方根电流与最大电流得等效关系进行能耗计算,令 均方根电流平方与最大电流得平方得比值为F(亦称损失因数),F=/,则代表日得损耗电量为: ΔA=3FRt×10-3(kW?h)(A3-1) 式中F——损失因数; Imax——代表日最大负荷电流,A。 F得取值根据负荷曲线、平均负荷率f与最小负荷率α确定。 当f>0、5时,按直线变化得持续负荷曲线计算F: F=α 1/3(1-α)2(A3-2) 当f<0、5,且f>α时,按二阶梯持续负荷曲线计算: F=f(1 α)-α(A3-3) 式中α——代表日最小负荷率;

关于配电网节能降损措施分析

摘要:从合理选择配电变压器、改善低压供电网网架结构、改造老旧低压计量装置、 保持变压器低压三相负荷平衡运行、加大无功补偿力度、改善供电电压水平六个方面,阐 述了配电网节能降损的技术措施,指出了配电网节能降损的管理措施。 供电企业“跑、冒、滴、漏”和配电网线损居高不下的问题,一直是困扰供电企业经 济效益的瓶颈。通过近几年的电网改造,电网装备水平得到了较大改善,线损率逐年下降,但一些台区特别是乡镇居民密集区低压线损率依然居高不下,个别台区线损高达30%以上,这给供电企业线损管理和经营带来了巨大压力。 配电网的损耗分为管理线损和技术线损,管理线损通过科学的管理方法来降低,技术 线损主要采取技术措施来降低,包括对电网进行技术改造和改善电网运行方式等措施。下 面谈谈农村配电网节能降损几项技术措施。 一、合理选择配电变压器 配电变压器的选择包括配电变压器容量、型号的选择以及变压器安装位置的选择。 1.配电变压器容量选择 配电变压器容量应根据该区域的现状和发展趋势选择,如果容量选择过大,会出现 “大马拉小车”现象,变压器利用率低,空载损耗增加。选择容量过小,会引起变压器过载,损耗同样增加,严重时将可能导致变压器过热或烧毁,因此,配电变压器必须根据所 安装区域平时负荷和最大负荷进行合理的选择。 2.配电变压器型号的选择 主要是选用应用了新技术、新材料、新工艺的新型号高效节能配电变压器,降低能耗。 (1)选用非晶合金铁芯变压器。非晶合金铁芯变压器是用新型导磁材料——非晶合金制 作铁芯而成的变压器,它比硅钢片作铁芯变压器的空载损耗下降80%左右,空载电流下降 约85%,是目前节能效果较理想的配电变压器,特别适用于农村电网和变压器负载率较低 的地方使用。三相非晶合金铁心配电变压器与S9型配电变压器相比,其年节约电能量相当可观。 (2)选用卷铁芯全密封型配电变压器。卷铁芯全密封型配电变压器是近几年研制的新一 代低噪声、低损耗型变压器,卷铁芯无接缝,全部磁通磁化方向与硅钢片轧压方向相同, 充分地发挥了硅钢片的取向性能,在条件相同的情况下,卷铁芯与叠片铁芯相比,空载损 耗下降了7%~10%,空载电流可下降50%~70%。由于变压器高低压线圈在芯柱上连续绕制,绕组紧实,同心度好,更加增强了产品的防盗性能,噪声下降10分贝以上,温升低16~ 20K。 由于该型号变压器空载电流小,因此降损效果明显,可提高网络功率因数,减少无功 补偿设备的投入,节省设备投资和降低运行能耗。 (3)选择有载自动调容配电变压器。有载自动调容变压器是将变压器线圈采用串、并联 接线,在变压器的低压线圈上接有有载调容开关,在变压器低压侧接有电流互感器和自动 控制器,通过电流互感器提供变压器负荷状态,自动控制器可按负荷自动调挡运行。有载 自动调容变压器解决了长期以来电磁线圈变压损耗较高、需要人工操作的缺点,进一步降 低了变压器的空载损耗和空载电流。有载自动调容变压器特别适用于负荷分散、季节性强、平均负荷率低的用户。 3.配电变压器安装位置的选择 变压器安装位置除满足场地、环境要求外,还要考虑将配电变压器接近负荷中心位置,使供电半径尽量缩短,最好控制在500米范围内。对于负荷比较分散的台区,也应将绝大 部分负荷尽量控制在500米范围内。

配电网理论线损计算方法._secret

配电网理论线损计算方法 配电网线损是电力部门一项综合性的经济、技术指标。准确合理的配电网线损理论计算是电力部门分析线损构成、制定降损措施的有力工具,对促进供电企业降低能耗,内部挖潜,提高经济效益,优化电网规划设计方案,加强运行管理具有重要意义。目前,由于配电网结构的复杂性、参数多样性和资料不完善以及缺乏实时监控设备,准确计算配电网理论线损比较困难,一直是个难题。配电网理论线损计算的主要目的是通过对电能在输送和分配过程中各元件产生的电能损耗及各类损耗所占比例的计算,来确定配电网线损的变化规律。配电网理论线损计算方法,主要分为两类:一类是依据网络主要损耗元件的物理特征建立的各种等值模型算法;另一类是根据馈线数据建立的各种统计模型和神经网络模型等算法。传统计算方法,如均方根电流法、平均电流法等,计算结果精度不高,不便于降损分析。针对这种情况,近几年来,部分学者将遗传算法(GA)、人工神经网络(ANN)和模糊识别等理论应用于配电网理论线损计算,研究计算速度快、计算结果精度高的数学模型,丰富和发展了理论线损计算方法,拓宽了研究思路。 1传统的主要的配电网理论线损计算方法 1.1均方根电流法均方根电流法是基本计算方法 均方根电流法的物理概念是,线路中流过的均方根电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。

均方根电流法的优点是:方法简单,按照代表日24小时整点负荷电流或有功功率、无功功率或有功电量、无功电量、电压、配电变压器额定容量、参数等数据计算出均方根电流就可以进行电能损耗计算,易于计算机编程计算。缺点是:代表日选取不同会有不同的计算结果,计算误差较大。 1.2 平均电流法平均电流法 平均电流法平均电流法也称形状系数法,是利用均方根电流法与平均电流的等效关系进行电能损耗计算的,由均方根电流法派生而来。平均电流法的物理概念是,线路中流过的平均电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。平均电流法的优点是:用实际中较容易得到并且较为精确的电量作为计算参数,计算结果较为准确,计算出的电能损耗结果精度较高;按照代表日平均电流和计算出形状系数等数据计算就可以进行电能损耗计算,易于计算机编程计算。缺点是:对没有实测记录的配电变压器,形状系数不易确定,计算误差较大。1.3最大电流法最大电流法 最大电流法最大电流法也称损失因数法,是利用均方根电流法与最大电流的等效关系进行电能损耗计算的,由均方根电流法派生而来。最大电流法的物理概念是,线路中流过的最大电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。最大电流法的优点是:计算需要的资料少,只需测量出代表日最大电流和计算出损失因数等数据就可以进行电能损耗计算,

配电网的网损计算与降损措施分析

配电网的网损计算与降损措施分析 摘要 总结了国内外对配电网网损计算的研究情况, 介绍了传统的配电网网损计算方法; 提出采用最大电流法与新的数据处理方式相结合的线损计算方案, 充分地利用了所能采集到的运行数据, 采用持续负荷曲线直接求线损, 提高了计算精度和计算效率, 适用于10 kV 及以下的县级配电网的线损计算; 并对电力市场化后, 配电网经济运行所面临的新问题进行了分析。 关键词配电网; 网损计算; 持续负荷曲线; 经济运行 随着配电自动化工作的开展, 配电网的线损管 理变得越来越重要。降低线损是提高配电网经济效 益的重要因素, 采取技术措施降低线损是电力企业追求效益最优化的必然趋势。配电网线损率是表征一个供用电企业经济效益和技术管理水平的综合性技术经济指标, 也是国家贯彻节能方针考核供用电部门的一项重要指标。目前, 我国的线损率与世界上发达国家相比还比较高, 各省、市电力公司的线损率差距也不小, 节电潜力比较大。因此, 进行线损的理论计算和降损分析计算, 具有重要的现实意义。1传统的配电网网损计算分析 1. 1均方根电流法 均方根电流法原理简单, 易掌握, 对局部电网 和个别元件电能损耗的计算或线路出口处仅装设电 流表时是相当有效的。尤其是在0. 4~10 kV 配电

网的电能损耗计算中, 该法易于推广和普及。但缺点是负荷测录工作量庞大, 需24 h 监测, 准确率差, 计算精度不高, 且由于当前我国电力系统运行管理水平所限, 缺乏用户用电信息的自动反馈手段, 给计算带来困难, 所以该法适用范围较窄。 1. 2节点等值功率法 节点等值功率法方法简单, 适用范围广, 对于 运行电网进行网损的理论分析时, 所依据的运行数据来自计费用的电能表, 即使不知道具体的负荷曲线形状, 也能对计算结果的最大可能误差作出估计, 并且电能表本身的准确级别比电流表要高, 又有严格的定期校验制度, 因此发电及负荷24 h 的电量和其他的运行参数等原始数据比较准确, 且容易获取。这种方法使收集和整理原始资料的工作大为简化。在本质上, 这种方法是将电能损耗的计算问题转化为功率损耗的计算问题, 或者说是转化为潮流计算问题, 这种方法相对比较准确, 而又容易实现。因 而在负荷功率变化不大的场合下可用于任意网络线损的计算, 并得到较为满意的结果。缺点是该法实际计算过程费时费力, 且计算结果精度低。因为该法只是通过将实际连续变化的节点功率曲线当作阶梯性变化的功率曲线处理或查负荷曲线形状系数的

电缆线损计算

电缆线损计算 35平方铜芯单相直流电缆,长度为100M,电流70A,铺设方式是裸线水中铺设,为什么我用两种方法算的线损结果差好多啊谁能告诉我比较精确的计算方法啊~~谢谢了~~ 方法1:线损=电流×电路总线长×线缆电压因子=70×100×(mv)= 方法2:△P=IR,,R用电阻率计算出来 (参考: 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线

温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑: 1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ ) 环境温度25度,算得结果

配电网理论线损计算方法的应用探讨

配电网理论线损计算方法的应用探讨 摘要:计算理论线损是分析线损构成、制定降损措施及确定线损指标的必要手段。本文笔者结合多年的实际工作经验,介绍了配电网理论线损计算方法,指出目前各种线损计算方法的局限性,在此基础上,提出采用电量潮流法计算线损的新方法,供同行参考。 关键词:配电网线损计算方法 配电网线损是电力部门一项综合性的经济、技术指标,是国家考核电力部门的一项重要指标,也是表征电力系统规划设计水平和经营管理水平的一项综合性技术经济指标。只有通过加大技术降损力度,提高技术含量以及加强管理降损水平,走上精细管理之路,才能取得显著的经济效益和社会效益。因此,线损的理论计算还需要进一步深入研究。 1、配电网理论线损计算方法 传统理论线损计算方法主要有: 损失因数法、均方根电流法、等值功率法、回归分析法和人工神经网络法(ANN) 1.1 损失因数法 损失因数法是利用日负荷曲线的最大值与均方根值之间的等效关系(即损失因数)进行线损计算的方法。其计算式为: (1) 式中,为最大电流;F为负荷损失因数。负荷损失因数F因配电网结构、损失种类、负荷分布及负荷曲线形状不同而异,特别是与负荷率密切相关。由于最大负荷电流取自电流表,而损失因数F是由负荷率通过统计得到的,其精度不高,因此这种算法只适用于电网规划的线损测算和35kV及以上电压等级电网(如城市电网)的线损计算。 1.2 均方根电流法 均方根电流法是目前l0kV配电网中最常见的理论线损计算方法,算法原理是将线路中流过的均方根电流所产生的电能损耗, 近似于实际负荷在同一时期所消耗的电能。电流通过电力网元件(电阻为R)时产生的三相有功功率损耗为△P = 3I2R,则该元件在24h内的电能损耗可以表示为: (2) 其中是随机变量一般不能准确获得,通常可由代表日的均方根电流代替,即: (3) 其中, 均方根电流法原理简单,方法易于掌握,应用广泛,但是算法在实际应用时所需数据计算量大,而且没有考虑负荷曲线形状的差异和负荷功率因数不同对计算结果的影响,在一定程度上降低了算法精度。用代表日的线损率近似系统全年线损率误差较大,另外典型日的数据很难保证准确性,这样又增加了计算结果的误差。因此算法只适用于供用电较为平衡,负荷峰谷差较小(日负荷曲线较为平坦) 且精度要求不高的情况。 1.3 等值功率法 等值功率法由准确级别高的电能表读数求取平均功率,通过将负荷曲线梯形化或查负荷曲线形状系数的方式获取节点等效功率,将电能损失的计算转化为功率损失的计算,将计算时段内随时间变化的各节点注入功率处理为节点等值功率,

配电网中理论线损计算方法及降损措施的研究

华北电力大学 毕业设计 题目配电网中理论线损计算方法及降损措施的研究学院自动化与电气工程学院 专业电气工程及其自动化 二〇一七年三月三十一

配电网中理论线损计算方法及降损措施的研究 [摘要]线损率是综合反映电力网规划设计、生产运行和经营管理水平的主要经济技术指标。降低线损率,可以减少电能传输能耗,提高电力供应能力,增加供电企业经济效益。研究配电网理论线损计算方法有很重要的理论与实际意义。本文阐述了进行配电网线损计算的意义和线损的基本概念,在理论研究方面,本文通过对几种常用配电网线损计算方法的分析比较,主要采用改进等值电阻法进行配电网线损计算,目的是为了降低配电网电能损耗、加强电网的经济运行。 [关键词]配电网;理论线损计算;改进等值电阻法;电能损耗 Research on Calculation Methods of Theoretical Line Losses and

Reducing Energy Loss Methods in Distribution Network Wu Tao (Grade07,Class1,Electrical Engineering and Automation ,Department of Electrical Engineering ,ShaanXi University of Technology, Han Zhong 723003,ShaanXi) Tutor: Yang Zhangyong [Abstract] The distribution lines loss rate is an important norm which comprehensively reflectes the degree of programing ,designing ,producing working and managing in distribution network. Lowing the distribution lines loss rate can not only reduce the energy loss in transporting, improve the electricity supply ability, but also increase the economic performance of Power Company. It was very important in theory and actual to study on the method of theoretical energy loss calculation for distribution network. The calculation significance of distribution network and the basic concepts were introduced in this paper. In theory,through analysis and comparison of some commonly-used calculation of line losses of distribution network methods, the equivalent resistance method to improve the distribution network calculation of line losses was adopted in order to reduce energy loss and operating economicly. [Key Words] distribution network;theoretical energy loss calculation;improving of the equivalentelectric resistance method;energy loss 目录 引言 (5) 1 配电网理论线损计算简介 (6) 1.1国内外研究动态和趋势 (7) 1.2传统的配电网理论线损计算方法 (7)

低压线路损耗理论计算

在农村用电管理工作中,低压配电网理论线损的计算和实际线损的考核是一个薄弱环节。 笔者推荐一种简单实用的计算方法,以供广大城乡电工参考。 1低压线路理论线损的构成 1.1低压线路本身的电能损耗。 1.2低压接户线的电能损耗。 1.3用户电能表的电能损耗。 1.4用户电动机的电能损耗。 1.5用户其他用电设备的电能损耗。 以上所有供电设备的电能损耗之和,即构成低压线路的理论线损电量,其线损电量与线路供电量之比百分数,即为线路的理论线损率。 要说明的是,在实际线损计算中,只计算到用户电能表,用户的用电设备不再参与实际线损计算。但在理论计算中,凡连接在低压线路上的用电设备的电能损耗,均应计算在内。 2低压线路理论线损计算通用公式 △A=NKI pjR dzt×10 式中N——配电变压器低压侧出口电网结构系数; ①单相两线制照明线路N=2; ②三相三线制动力线路N=3; ③三相四线制混合用电线路N=3.5;

K——负荷曲线形状系数,即考虑负荷曲线变化而采用的对平均电流(I pj)的修正系数,K值按推荐的理论计算值表1选用; 表1负荷曲线形状系数k 值表 最小负荷率 K值0.20.30.4 1.050.5 1.030.6 1.020.7 1.010.8 1.000.8 1.001.0 1.00。2。2。。-3 1.171.09 (最小负荷率a=最小负荷/最大负荷) t——线路月供电时间,h;Rdz——线路导线等值电阻,Ω。 等值电阻可按下式计算: Rdz=ΣN KI zd。 kR k/N×I

zd 式中I zd——配电变压器低压出口实测最大电流,A; 22KI pj——线路首端负荷电流的月平均值,A。可根据以下不同情况计算选用。 ①配电室装有电流表,并有记录的,可直接计算月平均负荷电流值。 ②如装有电流表,但无记录的,可选取代表性时段读取电流值,然后计算平均负荷电流值。 ③如未装电流表时,可选取代表性时段,直接用钳形电流表读取负荷电流值。 ④配电室装有有功电能表和无功电能表时,可按下式计算。 式中U pj——线路平均运行电压值,kV,也可近似地用额定电压(Un)代替;AP——线路月有功供电量,kW。h;AQ——线路月无功供电量,kvar。h; t——线路月供电量时间,h。 ⑤如配电室装有有功电能表和功率因数表时,可按下式计算: 式中cosφ pj——线路负荷功率因数的平均值。 3低压接户线的理论线损计算 从低压线路至用户电能表,从电能表到用电器具的连接线称接户线(或下户线),其理论线损电量可按每10m月损耗为0.05kW。h计算,当接户线长度为L 时,月损耗电量为:

配电网降损节能的措施

配电网降损节能的措施 摘要电网的经济运行与用电管理是降低供电成本的有效途径。本文结合某油田供电系统实际情况,总结了近年来在供电降损工作中的成绩,客观地分析了电网电量损失的原因,进一步阐述了降低供电网损的途径,应重视技术措施和管理措施降等,对今后降低供电网损有一定的指导意义。 关键词电网降损节能 线损率是电力企业经营中的一项重要经济指标,如何降低电力线路损耗,加强电网运行管理至关重要。近年来,油田供电系统在降低供电网损率方面做了大量工作,供电网损率逐年下降,取得了较好的成绩。随着社会的进步,现代化管理方法的应用和科学技术的发展,为进一步降低供电网损提供了可能。扎实地做好降损工作,落实各项降损措施是每一位工作人员义不容辞的责任,是供电企业管理的重要内容。本文通过对供电网损的进一步分析,查找生产、经营、管理各环节存在的问题,挖掘降低网损的可能,实现电网经济合理运行,提高企业的管理水平。 一、线损情况分析 近年来,油田供电系统围绕降低供电网损做了大量工作,采取了一系列切实可行的管理和技术措施,取得了较好成绩,但是,仍然存在以下有待进一步改进的问题:1.线损波动较大,过程管理、预控能力还有待加强和提高。如有些变电站更换CT、电能表、计量回路异常等原因形成的可追补的损失电量参数没有详细记录下来;购进电量与抄回电量未同时抄录;供、售电量实时跟踪能力较差,有时贻误处理问题的最佳时机。 2.电网结构老化。油田电网点多线长,电网老化严重,还存在一定数量的配电变压器容量与实际用电负荷不匹配的情况,造成电量损失较高。 3.人员素质需加强,分析处理问题能力有待提高。日常工作中存在抄表不同步现象;线损管理制度在执行过程中仍然存在管理流程不畅现象。

低压线路损耗理论计算

N——配电变压器低压出口结构常数(如前); ——低压线路各分段结构常数,取值与N相同; N K ——线路首端负荷电流的月平均值,A。可根据以下不同情况计算选用。 I pj ①配电室装有电流表,并有记录的,可直接计算月平均负荷电流值。 ②如装有电流表,但无记录的,可选取代表性时段读取电流值,然后计算平均负荷电流值。 ③如未装电流表时,可选取代表性时段,直接用钳形电流表读取负荷电流值。 ④配电室装有有功电能表和无功电能表时,可按下式计算。 ——线路平均运行电压值,kV,也可近似地用额定电压(Un)代替; 式中U pj A ——线路月有功供电量,kW。h; P ——线路月无功供电量,kvar。h; A Q t——线路月供电量时间,h。 ⑤如配电室装有有功电能表和功率因数表时,可按下式计算: 式中cosφ ——线路负荷功率因数的平均值。 pj 3低压接户线的理论线损计算 从低压线路至用户电能表,从电能表到用电器具的连接线称接户线(或下户线),其理论线损电量可按每10m月损耗为0.05kW。h计算,当接户线长度为L时,月损耗电量为: ΔA=0.05L/10kW。h。 4电能表的理论线损计算 4.1单相电能表每只每月损耗按1kW。h计算。 4.2三相三线表每只每月损耗按2kW。h计算。 4.3三相四线表每只每月损耗按3kW。h计算。 5电动机的电能损耗计算 电动机的额定输入功率与额定输出功率的差值即为其损失功率(包括铁损、铜损等),乘以当月运行小时数即为其电量损失,其计算公式为: ——电动机的额定运行电压,kV; 式中U n I ——电动机的额定电流,A; n ——电动机的额定功率因数; cosφ n P ——电动机的额定功率,kW; n t——电动机的月运行时间,h。 6其他用电器具的电能损耗 △A=Σ(各类电器总台数×额定功率×运行时间)×0.01kW。h

配电网线损分析及降损措施研究

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 华北电力大学(北京) 硕士学位论文 配电网线损分析及降损措施研究 姓名:张鸿雁 申请学位级别:硕士 专业:技术经济及管理 指导教师:赵会茹 20070601

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 华北电力大学硕士学位论文 摘要 电力网电能损失率(简称线损率)是电力企业的一项重要综合性技术经济 指标,它反映了一个电力网的规划设计、生产技术和运行管理水平。在电力网 线损构成中,IOKV配电网线损占全部线损的主要部分。 本文在对电能损耗计算的理论方法、管理以及各种降损措施分析的基础上, 对郑州供电公司线损分析计算的现状及存在的问题,从线损计算的数据收集、 理论线损的计算方法以及降损措施等各个方面作了比较全面的分析与研究,特 别是在降损措施方面,从技术和管理两个方面提出了许多很有价值的建议,并 通过对不同措施的经济效益分析,为下一步营销策略及发展方向提供了参考。 关键词配电网线损率降损措施效益分析 Abstract Lineloss rate is an economical and technical index of important synthetic electric power enterprise.It represents the level of the plan and design,the level of and and the level of and management of a electric production technology operation power network.The line loss of IOKV distribution networks is the major part of total line loss. Based on the discussion of the calculation,methods,management of electric power losses and the compliment of various solutions of deducing power losses,this paper?s analyzed the line loss analysis of the current situation and the problems of ZhengZhou power supply company in the round from the sides of data gathering, arithmetic simplifying and the solution of deducing loss,and so on.Especial in the side of out a lot of valuable have deducing loss,this paper brought suggestions,and provided a reference by the fact that the economic effect analysing,for camp next step sells tactics and developing direction. Zhang Hongyan(Techno—economics&Management) Directed by proL Zhao Huiru KEY WORDS:distribution networks;line loss rate;solution of deducingloss;economic effect analysing

低压配电线路理论线损的计算

低压配电线路理论线损的计算 在农村用电管理工作中,低压配电网理论线损的计算和实际线损的考核是一个薄弱环节。笔者推荐一种简单实用的计算方法,以供广大城乡电工参考。 1低压线路理论线损的构成 1.1低压线路本身的电能损耗。 1.2低压接户线的电能损耗。 1.3用户电能表的电能损耗。 1.4用户电动机的电能损耗。 1.5用户其他用电设备的电能损耗。 以上所有供电设备的电能损耗之和,即构成低压线路的理论线损电量,其线损电量与线路供电量之比百分数,即为线路的理论线损率。 要说明的是,在实际线损计算中,只计算到用户电能表,用户的用电设备不再参与实际线损计算。但在理论计算中,凡连接在低压线路上的用电设备的电能损耗,均应计算在内。 2低压线路理论线损计算通用公式 △A=N。K2。I2 pj 。R dz 。t×10-3 式中N——配电变压器低压侧出口电网结构系数; ①单相两线制照明线路N=2; ②三相三线制动力线路N=3; ③三相四线制混合用电线路N=3.5; K——负荷曲线形状系数,即考虑负荷曲线变化而采用的对平均电流(I pj )的修正系数,K值按推荐的理论计算值表1选用; 表 1 负荷曲线形状系数 k 值表

(最小负荷率a=最小负荷/最大负荷) t——线路月供电时间,h; R dz ——线路导线等值电阻,Ω。 等值电阻可按下式计算: R dz =ΣN K I2 zd。k R k /N×I2 zd 式中I zd ——配电变压器低压出口实测最大电流,A; I zd。k ——低压线路各分段实测最大电流,A; R K ——低压线路各分段电阻:R K =r ok 。I k ,Ω; N——配电变压器低压出口结构常数(如前); N K ——低压线路各分段结构常数,取值与N相同; I pj ——线路首端负荷电流的月平均值,A。可根据以下不同情况计算选用。 ①配电室装有电流表,并有记录的,可直接计算月平均负荷电流值。 ②如装有电流表,但无记录的,可选取代表性时段读取电流值,然后计算平均负荷电流值。 ③如未装电流表时,可选取代表性时段,直接用钳形电流表读取负荷电流值。 ④配电室装有有功电能表和无功电能表时,可按下式计算。 式中U pj ——线路平均运行电压值,kV,也可近似地用额定电压(Un)代替; A P ——线路月有功供电量,kW。h; A Q ——线路月无功供电量,kvar。h; t——线路月供电量时间,h。 ⑤如配电室装有有功电能表和功率因数表时,可按下式计算:

配电网技术降损措施研究

龙源期刊网 https://www.360docs.net/doc/586580385.html, 配电网技术降损措施研究 作者:刘志熠 来源:《城市建设理论研究》2013年第35期 摘要:线损率是配电网的一项重要的综合技术经济指标,它综合反映了配电网规划设计水平、生产技术和经营管理水平。强化线损管理,降低电能损耗,对配电网节能减排有着十分重要的意义,因此电力行业对配电网降损比较重视,不少学者也对此展开了深入的研究。本文从建设措施和运行措施两个角度入手,分析和研究了各种降损措施的作用。 关键词:配电网;线损;降损;建设措施;运行措施 中图分类号:TM712 文献标志码:A 引言 线损是电网电能损耗的简称。在电力系统的实际运行中,配电网的损耗在整个电网电能损耗中占有比较大的比重,它是制约电网运行经济性的一个重要因素,因此在线损理论计算和成因分析的基础上,采取行之有效地降损措施,是降低配电系统电能损耗的重要手段[1]。 配电网技术降损措施可以分为建设措施和运行措施两个方面。建设措施一般有电网结构改造,变压器改造,线路改造,装设无功补偿装置等;运行措施一般有确定经济合理的运行方式,变压器经济运行,无功补偿优化配置,平衡三相负荷等。本文将从建设措施和运行措施入手,分别阐述相关的降损措施。 1.建设措施 1.1电网结构改造措施 随着社会经济的飞速发展,城镇居民生活水平不断提高,用电量也急剧增加。原有配电网的出现了各种各样的问题:线路高负荷运行、迂回供电、供电半径过长等因素致使线损增加。因此,对原有的配电网结构进行改造显得十分迫切,全国供电系统也就此展开了积极的尝试,大体有以下几种改造措施: 1)高压线路直接深入负荷中心 直接将高压线路深入到负荷中心向用户供电,利用有限的变电站出线,建立开关站向附近多个负荷点供电;推广小区供电,在小区中心建立低压变电站,尽量做到以变压器为中心向外辐射供电到各用户,以减少供电半径。这既保证了供电质量和可靠性,也大大降低了线损。这一改造的实施,缩短了配电线路的供电半径,解决了开关站电源及大负荷用户的供电[2]。

相关文档
最新文档