TOP开关电源芯片工作原理及应用电路(荐)

TOP开关电源芯片工作原理及应用电路(荐)
TOP开关电源芯片工作原理及应用电路(荐)

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动, 应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种PWM空制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1.开关电源控制电路原理分析 DC- DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成 另一等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间 长度来控制平均输出电压,这种方法也称为脉宽调制[PWM法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode con trol )和电流型 控制(current modecontrol )。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PW信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个—阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图即为电压型控制的原理框图。 1

开关电源工作原理

开关电源 一.开关电源得工作原理 (以LQ-1600K3电源为例) 1、滤波电路 交流输入经滤波电路整形进入全桥整流。滤波电路减小了外部噪声与打印机内部所产生得噪声。滤波器中使用得线圈与电容得作用就是抑制交流电中得毛刺脉冲,使噪声干扰降低到最小从而得到一个较平滑得正弦波.C3、C4电容接于地就是为了防止电源中窜入高脉冲损坏电路. 经全桥整流与电容滤波形成300多伏得准直流电压。 2.开关电路 开关电路使用环形阻塞转换器式交流输入开关电源电路。具有元件少,变压器小得特点,场效应管Q1既就是开关管又就是振荡管,振荡周期由电阻R11与C13得充放电时间常数所决定。电路得工作过程就是导通饱与→截止→导通饱与,周而复始地进行下去。其工作过程如下: a、导通饱与阶段 电源接通,交流220V经过滤波、整流、平滑输出直流电压300V,由启动电阻R10、R31接至振荡管Q1得栅极上,产生栅压Vgs,在Q1得漏极上产生漏极电流Id,从小到大。在变压器T1上线圈T15—12内产生一个力图阻止Id增大得自感电动势,极性为上正下负,同时在T10—9中感应出一个感应电动势其极性也为上正下负,由于C13两端电压不能突变,因此T10—9线圈中产生得感应电势不能立即充电, 通过R11、C13加至Q1得栅极,使栅极电位提高,Q1漏极电流更加增大,又通过T10—9使Q1栅极电位更加提高,从而使漏极电流增

大更快,这种连锁得正反馈使Q1进入饱与状态. b、从饱与到截止阶段 由于Q1导通饱与后,T10—9感应电动势通过R11、R19向C13充电,充电方向从T10-9得10端经R11、C13、R19,于就是C13被充电,电压为右正左负,随着充电得进行,C13右端电位逐渐升高,左端电位随着降低,经过一段时间,当C13左端电位低到一定数值时,Q1得栅压开始减小,漏极电流Id也随之减小,由于线圈有抵制电流变化得特性,T15—12线圈中就产生一个力图阻止漏极电流减小得自感电动势,它得极性与刚才得相反,就是上负下正,并且在线圈T10—9中感应出一个上负下正得感应电动势,它得负端通过R11、C13加到Q1得栅极,使栅极电压更负,从而使漏极电流Id更小,这种正反馈得作用,使Q1很快脱离饱与转入截止状态,即所谓截止阶段. Q1关断时,产生一个浪涌电流经线圈T15—12使线圈T15-12中产生一个上正下负得感应电动势,并且在线圈T11—9中也感应出一个上正下负得感应电动势,然而Q3得发射极电压超过了基极电压,而Q3得基极电压就是由IC1(TL431)稳压得,所以Q3导通,便使?Q2也导通,并且短路Q1得栅极,维持接地,保持Q1可靠得截止,直至浪涌电压经地线耗尽为止。 c、从截止到导通饱与阶段 Q1截止后,C13停止充电,并通过R11→T10-9→D2→C13放电,C13两端电位发生了变化,C13右边电位降低,左边电位相对提高,于就是通过C13左边连接到Q1栅极得电位也随之提高,当栅极得电位升高到一定数值时,就重新产生漏极电流,如上述由于正反馈得作用使Q1很快从截止状态进入导通饱与阶段. 所以振荡电路从导通饱与—-截止——导通饱与周而复始地循环 3.+35V整形电路 包括T3—5、T4—6、D51、C51、C52等。 4、 +35V稳压控制电路 正常工作状态下,稳压控制电路使输出电压稳定在35±6%之间。如果因某种原因引起输出电压高于35V+6%,而稳压二级管ZD51、ZD81~ZD85两端电压32、7V保持不变;或因稳压二级管ZD51、ZD81~ZD85两端电压低于32、7—2、75%V时,流经DZ51—DZ85—D81-R57得电流会增大,使得PC1得1-2腿上得电流加大并使7—8腿导通,以至于使Q3发射极电位提高导至Q3、Q2导通,使Q1截止;相反若输出低于35V-6%时,PC1、Q2截止,Q1处于正常导通状态,输出继续增大,直到恢复35V±6%。 5、 +35V过载检测电路

[工作]开关电源原理与维修开关电源原理图

[工作]开关电源原理与维修开关电源原理图开关电源原理与维修开关电源原理图 电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 二(开关电源的组成 开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。 1( 主电路 冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。 整流与滤波:将电网交流电源直接整流为较平滑的直流电。逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。 输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 2( 控制电路 一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。 3( 检测电路 提供保护电路中正在运行中各种参数和各种仪表数据。 4( 辅助电源

实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。 开关电源原理图 三(开关电源的工作原理 开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。 VO=TON/T*Vi VO 为负载两端的电压平均值 TON 为开关每次接通的时间 T 为开关通断的工作周期

电源管理芯片工作原理和应用

电源管理芯片工作原理和应用 本文主要是关于电源管理芯片的相关介绍,并着重对电源管理芯片进行了详尽的阐述。 电源管理芯片电源管理芯片(Power Management Integrated Circuits),是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。常用电源管理芯片有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。 基本类型 主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装,其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。 应用范围 电源管理芯片的应用范围十分广泛,发展电源管理芯片对于提高整机性能具有重要意义,对电源管理芯片的选择与系统的需求直接相关,而数字电源管理芯片的发展还需跨越成本难关。 当今世界,人们的生活已是片刻也离不开电子设备。电源管理芯片在电子设备系统中担负起对电能的变换、分配、检测及其它电能管理的职责。电源管理芯片对电子系统而言是不可或缺的,其性能的优劣对整机的性能有着直接的影响。 提高性能 所有电子设备都有电源,但是不同的系统对电源的要求不同。为了发挥电子系统的最佳性能,需要选择最适合的电源管理方式。 首先,电子设备的核心是半导体芯片。而为了提高电路的密度,芯片的特征尺寸始终朝着减小的趋势发展,电场强度随距离的减小而线性增加,如果电源电压还是原来的5V,产生的电场强度足以把芯片击穿。所以,这样,电子系统对电源电压的要求就发生了变化,

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

开关电源工作原理详细解析

开关电源工作原理详细解析 个人PC所采用的电源都是基于一种名为―开关模式‖的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC 交流电转化为脉动电压(配图1和2中的―3‖);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的―4‖);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC 直流电输出了(配图1和2中的―5‖) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的―开关电源‖其实是―高频开关电源‖的缩写形式,和电源本身的关闭和开启式没有任何关系的。

专用开关电源芯片组成的开关电源实用原理分析

简单实用:用VIPer22A芯片制作开关电源 VIPer开关电源具有效率高的特性,电源电路比较整洁简单,能输出10W的功率。 1. VIPer开关电源的基本工作原理 VIPer开关电源的结构框图如图1。 图一VIPer22A组成的开关电源拓扑结构 由对输出电压“取样”,并对基准源进行“比较”后控制“调整管”或“开关管”,此时开关电源的“开关管”相当于一个开关,开通时间由比较结果而定;当开关电源输出的电压太低时,通过“比较放大”控制“开关时间控制电路”使“开关管”开通时间变长,从而使输出的电压提升。 开关电源的核心部分是“开关管”和“变换器”组成的开关式直流-直流变换器。它把直流电压Ui(一般由输入市电经整流、滤波后获得)经开关管后变为有一定占空比的脉冲电压Ua,然后经整流滤波后得到输出的电压Uo。 2. VIPer22A开关电源电路实物 图2所示是VIPer22A开关电源电路的实物图。图中右上角输入220V交流市电,先经电源滤波电路后用右下角的二极管进行整流,再经大电容滤波后输出直流。由于是对220V交流信号进行整流滤波,所以二极管的耐压值要高,而电容的容量也要大,所以实物图中右下角的电容体积很大。整流滤波后得到的直流信号再经右边居中的开关电源IC转换成高频的交流信号,再经变压器耦合输出各路低电压的交流信号。由于变压器是工作在高频状态,所以其体积较小。耦合输出的各组交流信号经左边的二极管整流、电容滤波和三极管稳压或三端稳压电源稳压后输出各部分电路工作所需的直流电压。此电路由于采用了变压器并联耦合,而且比较放大电路反馈回脉冲调宽电路是利用光耦器件,即用光信号来传递信息,输入端与输出之间实现绝缘,是冷底盘机,其防触电的警告标志仅在电路板的右边。光耦跨接在有警告标志和无警告标志部分,起到传递信号而又能隔离前后级地线的作用。这种机型在维修主电路板时,由于主电路板与大地不相连,通常比较安全。但在测量后级电压时,不能使用前级的地线,否则所测电压将全部为0V。

电源芯片viper22a的工作原理参考word

viper22a工作原理 开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的DVD机大都使用开关电源。电源电路正常是DVD机正常工作的基本保障。 1.开关电源的基本工作原理 开关电源的结构框图如图1。由对输出电压“取样”,并对基准源进行“比较”后控制“调整管”或“开关管”,此时开关电源的“开关管”相当于一个开关,开通时间由比较结果而定;当开关电源输出的电压太低时,通过“比较放大”控制“开关时间控制电路”使“开关管”开通时间变长,从而使输出的电压提升。 开关电源的核心部分是“开关管”和“变换器”组成的开关式直流-直流变换器。它把直流电压Ui(一般由输入市电经整流、滤波后获得)经开关管后变为有一定占空比的脉冲电压Ua,然后经整流滤波后得到输出的电压Uo。

图2所示是电源电路的实物图。图中右上角输入220V交流市电,先经电源滤波电路后用右下角的二极管进行整流,再经大电容滤波后输出直流。由于是对220V 交流信号进行整流滤波,所以二极管的耐压值要高,而电容的容量也要大,所以实物图中右下角的电容体积很大。整流滤波后得到的直流信号再经右边居中的开关电源IC转换成高频的交流信号,再经变压器耦合输出各路低电压的交流信号。由于变压器是工作在高频状态,所以其体积较小。耦合输出的各组交流信号经左边的二极管整流、电容滤波和三极管稳压或三端稳压电源稳压后输出各部分电路工作所需的直流电压。此电路由于采用了变压器并联耦合,而且比较放大电路反馈回脉冲调宽电路是利用光耦器件,即用光信号来传递信息,输入端与输出之间实现绝缘,是冷底盘机,其防触电的警告标志仅在电路板的右边。光耦跨接在有警告标志和无警告标志部分,起到传递信号而又能隔离前后级地线的作用。这种机型在维修主电路板时,由于主电路板与大地不相连,通常比较安全。但在测量后级电压时,不能使用前级的地线,否则所测电压将全部为0V。

正激式变压器开关电源工作原理

正激式变压器开关电源工作原理 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R 是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充

开关电源各模块原理实图讲解

开关电源原理 一、 开关电源的电路组成: PWM

①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、 F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂 波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、 功率变换电路: 1、 MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS 管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以52、 常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS 管并接,使开关管电压应力减少,EMI 减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V 时,UC3842停止工作,开关管Q1立即关断 。

3844电源的原理及维修

变频器开关电源的原理及维修 维修部杨海涛 电源是每一个电路的重要组成部分,担负着为电路提供能量的重要作用,它是设备能够正常运行的重要保障。电源的种类很多,开关电源由于体积小、重量轻、效率高、动态稳压效果好,因此被广泛应用到了各种电子设备中。下面就以UC3844开关电源芯片为例讲述一下开关电源的基本原理和在变频电路中的作用。右图a-1所示为开关电源PWM波形调制芯片。该图为8脚双列直插封装。 7脚是芯片的电源输入端,该端在内部集成了稳压器和最低门限电压控制器,所以该芯片不用在外围设置稳压电路,只要接一只降压电阻即可。最低门限值为10V,当7脚输入电压低于10V,该芯片将禁止输出,处于保护状态。正常工作时该端电压约为12V—16V之间。 4脚是内部压控振荡器的定时端,通过接上合适的RC网络,使输出的PWM波控制在20KHZ—100KHZ之间。 a—1 2脚、3脚是输出取样反馈端,用于检测开关电源的输出,以便进行PWM调制控制,从而达到稳压的目的。在变频器系统中,开关电源需要输出:一组5V/DC、一组±12V/DC、四组20V/DC等多组电压。其中 5V/DC 主要用作主板及控制板的供电,±12V/DC用作霍尔检测器件的供电,四组20V/DC用作IGBT 的触发供电。变频器的型号及品牌不同,其开关电源的电压值也不尽相同,但基本构架是一样的,在此仅以下图为例讲一讲开关电源的工作原理。 a—2 如图a—2所示:电源经D1—D4、C1、C2整流滤波之后,通过降压电阻R3到了UC3844的7脚电源正端,为其供电,UC3844通过检测当7脚电压大于10V时,控制内部压控振荡器开始工作,通过R8、C5将PWM的频率控制在要求范围之内。此时6脚输出PWM信号去控制开关管Q1的通断,R10是开关管的电流检测电阻,通过检测R10的电压值来实时调整PWM的脉冲宽度,从而达到自动稳压的目的。在图中变压器的副绕组通过D6、C7、C8整流滤波之后到了UC3844的7脚,增强了UC3844的驱动能力。C9、R11、D5是开关管的滤波吸收网络,目的在于吸收变压器的反向脉冲,保护开关管。AC-1——AC-4是开关变压器的次级输出绕组,通过D7、D8、D9、D10、C10、C11---C17进行整流滤波后输出对后级电路进行供电。了解了开关电源的原理之后,让我们来看看如果开关电源出现问题应该怎样进行维修。开关电源的几个维修步骤如下: 1、检测整流电路D1—D4是否击穿或断路,滤波电路的电容是否损坏,平衡电阻R1、R2是否正常,降压电阻R3是否烧断或阻值增大失效(断电情况下测试)。 2、检测开关管b-e结、c-e结是否有击穿短路现象、测量开关变压器各个绕组是否有短路现象,以确定开关管、及开关变压器的好坏(断电情况下测试)。 3、检测次级输出绕组的整流滤波元件,重点察看滤波电容是否鼓包或损坏,以排除次级电路短路的可能。 4、检测吸收回路D5、R11、C9是否正常(断电情况下测试)。 5、在确定上述元件正常的情况下,我们可以把开关电源板从变频器上取下单独对其进行加电试验。用调压器缓缓地调至开关电源的额定电压值,此时应能听到变压器起振时的吱吱声,如没有听到起振的声音,用万用表检测UC3844的电源正、负级之间是否有12V—16V左右的直流电压。 6、在确定UC3844的供电端电压正常后,可用示波器察看一下UC3844的6脚是否有PWM波输出到开关管的触发端(根据电路设计的不同,PWM波的频率一般在20KHZ—100KHZ之间)。 7、如果没有PWM波输出,则更换定时元件C5、R 8、C6或UC3844。经过上述几个步骤的排除,开关电源应该可以正常工作了。在变频器中,开关电源的种类很多,但基本原理都是一样的,比如说每个PWM管理芯片都有供电端、定时元件RC网络、输出PWM波的端口等,只要我们了解了它们的工作原理,按照一定的方法步骤都能够把故障排除掉。下面就把实际维修中遇到的问题和解决办法列举出来,供大家参考一下。案例1:台达变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,因此确定为开关电源板故障。按照上述维修步骤对开关电源板进行测量。在进行第一步测量时,发现直流母线560V到PWM调制芯片之间的的330KΩ/2W的降压电阻损坏,标称330KΩ/2W的电阻,实际测量值达2MΩ以上,因此PWM调制芯片得不到启动的电源,所以无法起振工作。为谨慎起见又检测了开关管、变压器、整流二极管及滤波电容等关键器件,在确定没问题之后上电试验,OK!开关电源起振,输出各组电压正常,装回变频器后开机试验正常,此变频器修复完毕(注:维修人员在维修中,一定要养成习惯:发现坏元件后不要急于更换试机,一定要

开关电源工作原理解析

开关电源工作原理解析 个人PC所采用的电源都是基于一种名为研关模式旧勺技术,所以我们经常会将个 人PC电源称之为------ 开关电源(Switching Mode Power Supplies,简称SMPS),它还有一 个绰号一一DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ?线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching )。线性 电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V ,而且 经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的一3)11 ;下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的一4)11 ; 此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低 压DC直流电输出了(配图1和2中的一5)11

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、 PlayStati on/Wii/Xbox 等游戏 主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和 AC 市电的频率成反比:也 即说如果输入市电的频率越低时, 线性电源就需要越大的电容和变压器, 反之亦然。由于当 前一直采用的是 60Hz (有些国家是50Hz )频率的AC 市电,这是一个相对较低的频率,所 以其变压器以及电容的个头往往都相对比较大。此外, AC 市电的浪涌越大,线性电源的变 压器的个头就越大。 由此可见,对于个人PC 领域而言,制造一台线性电源将会是一件疯狂的举动, 因 为它的体积将会非常大、重量也会非常的重。所以说个人 PC 用户并不适合用线性电源。 ?开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言, AC 输入电压可以在进入变压器之前升压(升压前一般是 50-60 KHz )。随着输入电源的升 高,变压器以及电容等元器件的个头就不用像线性电源那么的大。 这种高频开关电源正是我 们的个人PC 以及像VCR 录像机这样的设备所需要的。需要说明的是,我们经常所说的 子 关电源I 其实是—高频开关电源I 的缩写形式,和电源本身的关闭和开启式没有任何关系的。

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充 电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电

(完整word版)开关电源工作原理超详细解析

开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC 直流电(配图1和2中的“4”);此时得到的低压直流电依

然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”)配图1:标准的线性电源设计图 配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也

相关文档
最新文档