煤化工废水设计方案

煤化工废水设计方案
煤化工废水设计方案

煤化工废水设计方案

目录

1、概况 (1)

1.1煤气化废水的水质特性 (1)

1.2氨氮的处理工艺 (1)

1.3多种生物脱氮工艺的比较 (3)

2、设计规范、范围及原则 (4)

2.1设计规范 (4)

2.2设计范围 (6)

2.3设计原则 (7)

3、处理工艺流程 (8)

3.1设计水量与水质 (8)

3.2污水处理工艺流程 (10)

3.3污泥的处理与处置 (17)

4、处理工艺设计 (18)

4.1主要处理构(建)筑物 (18)

4.2主要处理设备一览表 (25)

4.3设备及管道选用原则 (25)

4.4处理效果预测表 (25)

5、电气设计 (26)

5.1设计描述 (26)

5.2装置供配电系统 (26)

5.3不间断电源(UPS)装置 (26)

5.4供配电系统电压 (26)

5.5主要设备选择 (26)

5.6装置的环境特征及配电材料选择 (27)

5.7动力用电设备的操作保护 (27)

5.8配电线路 (27)

5.9照明 (28)

5.10防静电、防雷及接地 (29)

6、分析化验 (31)

6.1分析室任务 (31)

6.2分析设备的选型原则 (31)

6.3分析室的组成及建筑面积 (31)

6.4采暖通风及空调要求 (31)

6.5分析室对水、电的要求和消耗量 (31)

6.6定员 (32)

7、总平面布置方案 (33)

7.1总平面布置 (33)

7.2竖向布置 (33)

7.3装置运输方案 (33)

8、控制、仪表方案 (34)

8.1PLC控制方案 (34)

8.2控制室设置 (34)

8.3安全技术措施 (35)

8.4仪表选型 (35)

8.5控制室监控系统 (35)

8.6现场仪表 (37)

8.7仪表电源 (38)

8.8仪表气源 (38)

9、土建方案 (39)

9.1建筑设计 (39)

9.2结构设计 (40)

9.3结构抗震设计 (41)

9.4主要结构材料的选用 (41)

10、防腐方案 (42)

11、给排水与消防方案 (43)

11.1防火措施 (43)

11.2灭火措施 (43)

12、采暖通风方案 (45)

13、电信方案 (47)

14、能耗及物耗指标 (48)

15、环保、水土保持、工业卫生、安全 (49)

16、定员 (51)

17、设备系统投资 (52)

1、概况

甲醇二甲醚项目废水处理装置的主要任务是处理各生产工艺装置、辅助设施产生的生产和生活污水。因水量大,污染程度较高(尤其是氨氮),需要进行无害化处理。污水来源包括:气化装置排水、低温甲醇洗废水、甲醇合成废水、甲醇精馏废水、二甲醚装置排水、生活及化验污水、初期雨水和污水回用设施排出的泥水等。根据买方设计院提供的《技术规格书》,确定废水处理站处理能力为260m3/h。

污水经处理后出水要求达到《污水综合排放标准》(GB8978-1996)的一级标准。

本公司买方委托和邀请,对本项目废水的达标处理工艺和设施进行设计和设备选型,以供各方决策、参考和批评、指正。

1.1煤气化废水的水质特性

目前在国内煤气化技术主要有三种:一为“德士古”工艺,采用水煤浆气化技术,废水特性为高氨氮(约500mg/L),由于采用高温气化工艺,水质相对洁净,有机污染程度较低;二为“壳牌”工艺,采用粉煤灰气化技术,废水特性为高氨氮(~300mg/L)、高氰化物(~50mg/L),其也采用高温气化工艺,水质相对洁净,有机污染程度低;三为“鲁奇”工艺,因气化温度低,废水成分复杂,污染程度高,特性为高氨氮(~400mg/L)、高COD(~4000mg/L)、高酚(~600mg/L)、高石油类(~200mg/L)。三种技术所产废水以“鲁奇”排水成分最为复杂、处理难度也最高。三类废水也有共性,即——高氨氮性。氨氮的达标处理是目前煤气化废水处理的重点和难点,已成为处理成败的决定因素。

1.2氨氮的处理工艺

废水氨氮的达标处理工艺多种多样,会因氨氮浓度的不同而存在巨大的差异。一般来说,大于500mg/L采用物化(主要有折点氯化

法、吹脱法、化学反应法等)结合生化的综合强化工艺居多,小于100mg/L则采用纯生化工艺,100~500mg/L时可采用物化结合生化工艺也可采用纯生化工艺。由于折点氯化法和化学反应法对监测、控制设备要求很高,目前国内很少采用,对氨氮的物化处理国内通常采用吹脱法,因此,物化结合生化的氨氮综合强化处理工艺在国内可简单地理解为“吹脱+生化”法。本项目废水氨氮平均浓度达到260mg/L,“吹脱+生化”法或纯生化工艺均适用,但本项目采用“吹脱+生化”法具有如下缺点:

◇溢出氨气,造成氨的二次污染。

◇反复调整PH值,酸碱消耗量大。

◇冬季废水温降大,影响后续生化效果。达到60%去除率需要交换风量500~2000m3·气/m3·水,低值对应PH值12,高

值对应PH值10。

◇规模不适用。吹脱法处理氨氮规模不大于50m3/h,否则不经济,也影响处理效果。本工程规模,空气流速按液泛速度的

60%(常规取值)计算,最小通风量条件下(PH值需调至12

以上)也需要8.8m直径的吹脱塔,布气和布水均无法均匀,

肯定造成短流,使吹脱效果大大下降。以多台并联形式弥补时

需要34台3m直径的吹脱塔,规模过大,结合后续工艺将出

现头重脚轻的味道。大通风量更甚,需要17.6m直径或并联

的136台3m直径的吹脱塔。

纯生化工艺处理气化废水已有多项成功先例,如“兖矿国泰化工有限公司”、“渭南煤化工有限公司”、“中石化金陵化肥厂”、“德州化肥厂”、“榆林神木甲醇有限公司”等。与本项目相同,其采用的气化工艺也为德士古工艺,废水组分和水质应与本项目相同或类似。这些工程均采用直接生化处理工艺,出水全部实现达标排放,其中出水氨氮指标长期维持在8mg/L以下。因此本项目直接采用生化处理工艺是完全可行的。

但是——不是所有的生化工艺均适用于气化废水的脱氮处理,同时——专用于脱氮的生化工艺也受适用性的限制,总体上说适用与处理气化废水的脱氮工艺选择空间不大。目前气化废水真正成功的先例多出自多段A/O的SBR生物脱氮工艺(新命名为:IMC工艺)。

生物脱氮是利用自然界的氮循环原理,采用人工控制的方法予以实现的。具体过程为:污(废)水中的有机氮在好氧条件下离解成氨氮,而后在硝化菌的作用下转化为硝酸盐氮(这个阶段称为好氧硝化);随后在缺氧条件下,反硝化菌作用并由碳源提供能量,使硝酸盐氮部分变成氮气逸出(这阶段称为缺氧反硝化)。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化与反硝化过程中,影响其脱氮效率的因素主要是温度、溶解氧、PH值、碱度以及反硝化所需碳源等。生物脱氮系统中硝化菌增长速度缓慢,所以要有足够长的污泥泥龄。反硝化菌的生长主要在缺氧条件下进行,并且要有充裕的碳源提供能量才可促使反硝化过程顺利进行。

以上比较可以看出基于多级A/O的SBR工艺(IMC)是唯一可以保证达标排放的处理工艺,同时在能耗、运行费用和产泥量上具有明显优势,工程投资方面具有相对优势。效果最差的是一级A/O和常规SBR工艺,多级A/O或多级A/O的生物滤池工艺要保证达标排放需要更多的基础性研究和试验。

国内十个煤化工污水处理项目案例

国内十个煤化工污水处理 项目案例 Final revision by standardization team on December 10, 2020.

国内十个煤化工污水处理项目案例 时间:2016-01-08来源:工业水处理 我国煤化工行业在2005年以来得到国家相关部门的重视,国家相继批准了一些煤化工企业建设,但是由于废水污染环境和废水零排放工艺等原因,煤化工项目的审批受到限制。 技术决定效益 煤化工水资源消耗量和废水产生量都很大,因此,节水技术和污水处理技术成为行业发展的关键。而我国的煤炭资源和水资源呈反向分布,例如山西、陕西、宁夏、内蒙古和新疆五个省的煤炭保有储量约占全国的76%,但水资源总量仅占全国的%,煤化工废水的组分复杂并且含有固体悬浮颗粒、氨氮及硫化物等有毒、有害物质,若处理不当容易造成水污染并演变为水质型缺水,因此,废水处理是所有煤化工项目都需要考虑的问题,也在很大程度上决定了整个项目的效益。 十个煤化工项目污水处理案例 项目简介、项目规模、主要工艺、技术亮点 1云天化集团 项目名称:云天化集团呼伦贝尔金新化工有限公司煤化工水系统整体解决方案 关键词:煤化工领域水系统整体解决方案典范 项目简介: 呼伦贝尔金新化工有限公司是云天化集团下属分公司。该项目位于呼伦贝尔大草原深处,当地政府要求此类化工项目的环保设施均需达到“零排放”的水准。同时此项目是亚洲首个采用BGL炉(British Gas-Lurgi英国燃气-鲁奇炉)煤制气生产合成氨、尿素的项目,生产过程中产生的废水成分复杂、污染程度高、处理难度大。此项目也成为国内煤化工领域水系统整体解决方案的典范。 项目规模:

煤化工工艺流程

煤化工工艺流程 典型的焦化厂一般有备煤车间、炼焦车间、回收车间、焦油加工车间、苯加工车间、脱硫车间和废水处理车间等。 焦化厂生产工艺流程 1.备煤与洗煤 原煤一般含有较高的灰分和硫分,洗选加工的目的是降低煤的灰分,使混杂在煤中的矸石、煤矸共生的夹矸煤与煤炭按照其相对密度、外形及物理性状方面的差异加以分离,同时,降低原煤中的无机硫含量,以满足不同用户对煤炭质量的指标要求。 由于洗煤厂动力设备繁多,控制过程复杂,用分散型控制系统DCS改造传统洗煤工艺,这对于提高洗煤过程的自动化,减轻工人的劳动强度,提高产品产量和质量以及安全生产都具有重要意义。

洗煤厂工艺流程图 控制方案 洗煤厂电机顺序启动/停止控制流程框图 联锁/解锁方案:在运行解锁状态下,允许对每台设备进行单独启动或停止;当设置为联锁状态时,按下启动按纽,设备顺序启动,后一设备的启动以前一设备的启动为条件(设备间的延时启动时间可设置),如果前一设备未启动成功,后一设备不能启动,按停止键,则设备顺序停止,在运行过程中,如果其中一台设备故障停止,例如设备2停止,则系统会把设备3和设备4停止,但设备1保持运行。

2.焦炉与冷鼓 以100万吨/年-144孔-双炉-4集气管-1个大回流炼焦装置为例,其工艺流程简介如下:

100万吨/年焦炉_冷鼓工艺流程图 控制方案 典型的炼焦过程可分为焦炉和冷鼓两个工段。这两个工段既有分工又相互联系,两者在地理位置上也距离较远,为了避免仪表的长距离走线,设置一个冷鼓远程站及给水远程站,以使仪表线能现场就近进入DCS控制柜,更重要的是,在集气管压力调节中,两个站之间有着重要的联锁及其排队关系,这样的网络结构形式便于可以实现复杂的控制算法。

煤化工废水处理技术

煤化工废水处理流程 -------------------------------------------------------------------------------- 2009-9-22 一、煤化工废水的来源 煤化工(chemical processing of coal)是经化学方法将煤炭转换为气体、液体和固体产品或半产品,而后进一步加工成化工、能源产品的工业,主要包括煤的气化、液化、干馏,以及焦油加工和电石乙炔化工等。在煤化工可利用的生产技术中,炼焦是应用最早的工艺,并且至今仍然是化学工业的重要组成部分;煤的气化在煤化工中占有重要地位,用于生产各种气体燃料;煤气化生产的合成气是合成液体燃料等多种产品的原料;煤直接液化,即高压加氢液化,可以生产人造石油和化学产品。在石油短缺的今天,煤的液化产品将逐步替代目前的天然石油。 煤化工废水的来源主要有焦化废水、气化废水和煤液化废水。 焦化废水来自生产中用的大量洗涤水合冷却水,COD特别高,主要污染物是酚、氨、氰、硫化氢和油等。 气化废水主要来自发生炉煤气的洗涤和冷却过程,气化废水中的主要污染物的数量随着原料煤、操作条件和废水系统的不同而变化,在烟煤或褐煤做原料时,废水中含有大量的酚、焦油和氨,水质相当差;此外,废水水质还与气化工艺有关。 煤直接液化产生的废水数量不多,废水主要来自煤的间接液化,包括煤气化和气体合成,前者已经介绍,气体合成部分的主要污染物是产品分离过程产生的废水,主要有醇、酸、酮、醛及酯等有机氧化物。 二、煤化工废水的基本特点

煤化工企业排放废水以高浓度煤气洗涤废水为主,含有大量酚、氰、油、氨氮等有毒有害物质,综合废水中CODcr一般在5000mg/l左右、氨氮在200~500mg/l,废水所含有机污染物包括酚类、多环芳香族化合物及含氮、氧、硫的杂环化合物等,是典型的难降解有机化合物,主要有砒啶、咔唑、联苯、三联苯等。 目前国内处理煤化工废水的技术主要采用生化法,生化法对废水中的苯酚类及苯类物质有较好的去除作用,但对喹啉类、吲哚类、吡啶类、咔唑类等一些难降解有机物处理效果较差,使得煤化工行业外排水CODcr难以达到一级标准。 同时煤化工废水经生化处理后又存在色度和浊度很高的特点(因含各种生色团和助色团的有机物,如3-甲基-1,3,6庚三烯、5-降冰片烯-2-羧酸、2-氯-2-降冰片烯、2-羟基-苯并呋喃、苯酚、1-甲磺酰基-4-甲基苯、3-甲基苯并噻吩、萘-1,8-二胺等)。 因此,要将此类煤气化废水处理后达到回用或排放标准,主要进一步降低CODcr、氨氮、色度和浊度等指标 三、常见工艺 煤化工废水治理工艺路线基本遵行“物化预处理+A/O生化处理+物化深度处理”,以下做简单介绍。 1、物化预处理 预处理常用的方法:隔油、气浮等。 因过多的油类会影响后续生化处理的效果,气浮法煤化工废水预处理的作用是除去其中的油类并回收再利用,此外还起到预曝气的作用。 2、生化处理 对于预处理后的煤化工废水,国内外一般采用缺氧、好氧生物法处理(A/O工艺),但由于煤化工废水中的多环和杂环类化合物,好氧生物法处理后出水中的COD指标难以稳定达标。为了解决上述问题,近年来出现了一些新的处理方法,如PACT法、载体流动床生物膜法(CBR)、厌氧生物法,厌氧-好氧生物法等:

煤化工污水处理基本工艺流程

【知识】煤化工污水处理基本工艺流程 2014-05-02化化网煤化工 从煤化工气化炉气化温度分析污水产生的部位,对水质进行研究分析发现,气化炉温度高,有机物分解彻底,无有害气体排放,故此洗涤污水排放量少,污水中有害物质含量低,易于处理,达到污水零排放把握比较大。气化炉温度低,煤气化会产生较多含有焦油、轻油、酚、氨等物质的煤气水,煤气水的处理和达标排放难以稳定运行,是目前制约环境敏感地区煤化工工业发展的重要原因。分析判断国内上马工程的利弊,对污水处理难达标工程改造症结剖析,不断优化和完善煤化工污水的处理工艺流程,可以逐步获得以下合理实用的处理工艺技术基本思路和路线。 处理煤化工污水的技术主要采用生化法,生化法对废水中的苯酚类及苯类物质有较好的去除作用,但对喹啉类、吲哚类、吡啶类、咔唑类等一些难降解有机物处理效果较差,使得煤化工行业外排水CODcr难以达到排放标准。国内碎煤加压气化煤气水采用的是国内开发的酚回收、氨回收和污水处理技术,由于气化操作温度相对较低,煤中有机物质分解不彻底,随之而来的问题是煤气水量大且成分复杂。 虽然采取煤气水分离、酚回收、氨回收及生化处理等措施,若使废水达到排放标准仍非常困难,且污水处理过程中仍存在酚类物质挥发等问题,在建项目的废水处理流程长,波动大,处理效果稳定性也有待进一步验证。对于该类污水,目前国内主要采用以调节、除油、沉淀、气浮为主体的预处理工艺路线,以去除CODcr、提高可生化性、脱氮为目的的生物处理主流程,如酸化水解、A/O工艺、SBR 工艺等,采用以混凝、过滤、臭氧、高效生物滤池(BAF)、活性炭(焦)吸附及其组合的三级处理工艺,以及采用膜分离如UF、RO等技术组合的除盐处理 工艺。以下对各工艺进行叙述。 (一)预处理工艺 污水预处理的目的是去除生化不能去除的、对生化处理有影响的物质。煤化工污水中含有油,是预处理的重点。含油污水多采用平流隔油、斜板隔油、气浮的组合工艺。近年来,含油污水处理已实现了设备化,诸如调节罐、油水分离、高效气浮等除油;已形成了以调节匀质罐、油水分离器、气浮为主的预处理工艺。乳化油、溶解油和细分散油的去除需要加药,甚至多级气浮。 (二)生化处理工艺 生化处理工艺有多种,常规的活性污泥法处理工艺有氧化沟、SBR、A/O、普通活性污泥法、MBR等泥法处理工艺;生物膜法处理工艺主要有接触氧化法,BAF 等工艺。各处理工艺有其各自的特点,适合不同的水质场合。煤化工污水CODcr 高,属高浓度污水,选择的生化工艺应具有改善污水生化性能、高效脱氮功能,有利于长期稳定运行、操作方便的特点。

煤化工污水处理工艺综述

煤化工污水处理工艺综述 许明言 摘要:针对煤化工产生的废水特点及其处理难点进行了阐述。从煤化工废水处理的3个主要阶段,分别列举了目前国内煤化工水处理新工艺的应用情况及今后的发展方向。 关键词:煤化工污水处理工艺发展方向 煤炭是我国的主要化石能源之一,在我国能源生产结构中占据相当重要的地位,在目前各级能源消耗结构中,煤炭消耗占消耗总量的2/3。由于世界石油资源的紧缺,使得煤化工替代石油化工的发展趋势日益迅速。煤化工在我国是发展前途很大的一个产业,特别是新型煤化工将是“十二五”和更长时期的一个重要产业。 我国煤化工项目主要分布在内蒙古、陕西、新疆、山西、辽宁、河南等煤炭产地,而这些地区大多属于水资源匮乏的地区。水资源缺乏地区往往也面临地表水环境容量有限的问题,有些地区甚至没有纳污水体。但恰恰这些煤化工项目需水量巨大,也相应地产生了大量废水,且废水组成成分十分复杂。废水中主要含有焦油、苯酚、氟化物、氨氮、硫化物等对人体毒性极强的污染物,含量很高,且排放量巨大,对环境的污染十分严重。 目前,煤化工废水治理呈现“两高两难”的态势,即废水排放量大,处理难度大,污染物浓度高,运行成本高。为了促进工业经济与水资源及环境的协调发展,《国家环境保护“十二五”规划》在化学需氧量和二氧化硫两项约束性指标的基础上又增加了氨氮和氮氧化物两项新指标。同时,随着一些地方政府的更为严格的废水排放标准相继颁布、实施,无论是从经济效益还是环境效益、社会效益来考虑,寻求处理效果更好、工艺稳定性更强、运行成本更低的废水处理工艺都将成为大型煤化工企业创新和发展的必由之路。

1煤化工污水的特点 煤化工建设项目产生的污水主要污染因子为COD和氨氮,其它污染物相对较低,主要产生来源为煤的气化、气体净化和产品合成。一般污水COD浓度为300mg/L 左右, 氨氮浓度为100 mg/L左右,由于生产工艺和控制环节的不同,污染物浓度上会有较大不同。焦化污水成分复杂多变,有机物含量高,其组成取决于原煤的性质、炭化温度及焦化产品回收的程序和方法,污水中主要含有油、酚、氰、氨氮、苯及衍生物等污染物。 2煤化工污水处理工艺的现状及发展方向 目前,国内相关行业中所设计的煤化工污水处理系统,大都沿袭了前人的经验,采用相类似的工艺,即“物化预处理→生物处理→物化深度处理”的流程。近年来各个企业、高校、研究院所在煤化工污水处理上做了大量的研究和生产性试验,在每个具体流程工艺的选择上发展出了较多的适用性较好的技术。 2.1 物化预处理工艺 煤气化废水中酚、氨的浓度远远超过了生化处理的可承受范围,因此预处理的主要目的是脱酚除氨,以减轻后续生化处理单元的负荷,并保证生化处理的效果。 2.1.1 萃取脱酚 脱酚的方法主要有2种:蒸汽循环法和溶剂萃取法。蒸汽循环法脱酚效率可达到80% 以上,但由于煤气化废水中含尘量较高,会给酚水的深度净化带来难度,同时酚水中的焦油类物质易造成换热器堵塞,金属填料受腐蚀,所以它的应用受到一定的限制。而有机溶剂萃取法脱酚则没有上述缺点,而且脱酚效果很好,脱酚率可达到90%~95%,但是选择溶剂较为关键。酚水的萃取溶剂应具有萃取效率高,不易乳化,油水易分离,不易挥发,不能对水质造成二次污染,且价格便宜,易于再生等特点。因此,当前大部分萃取脱酚工艺的研究都集中在针对各类水质应选取何种萃取剂上。比如,通过研究不同萃取剂浓度、温度、pH值和萃取比对煤气化废水萃取脱酚效率的影响,发现磷酸三丁酯(TBP)煤油溶液是一种可以长期循环使用的工业萃取剂,并建立了以其做萃取剂的萃取体系;通过研究NaOH溶液浓度和反萃取比对反萃取回收酚类效果的影响,建立了NaOH 反萃取

煤化工污水简介

煤化工污水处理 1 煤制油项目污水处理 本工程为煤直接液化项目年产油品100万吨装置包括煤液化煤制氢 溶剂加氢加氢改质催化剂制备等14套主要生产装置污水处理为其配套项目之一目前工程正在实施过程中 根据污水排水的水质差异本工程污水处理场共包括四个污水处理系统即低浓度含油污水处理系统高浓度污水处理系统含盐污水处理系统和催化剂污水处理系统各系统具体的废水防治措施分述如下 1.1 低浓度污水处理系统 1污水来源及水量水质 表1-1 低浓度污水来源及水量水质一览表 低浓度污水系统主要由各装置排出的低浓度含油污水及生活污水组成含油污水主要包括来自装置内塔容器等放空冲洗排水机泵填料函排水围堰内收集的雨水循环水场旁滤罐反洗水煤制氢装置变换洗涤塔污水和低温甲醇洗污水等自流进入污水处理场生活污水主要来自厂区生活设施排出的污水经化粪池后的排水自流进入污水处理场其具体的来源及水量水质情况见表1-1 2污水处理流程简述 低浓度污水处理采用隔油气浮推流鼓风曝气二级曝气生物流化床

3T-BAF加过滤工艺具体处理流程简述如下: 低浓度污水生活污水除外自流进入污水处理场含油污水吸水池用泵提升后进入5000m3含油污水调节罐对含油污水进行初步隔油调节罐出水自流 至油水分离器油水分离器出水自流进入一级气浮(采用部分回流多级溶气释放 工艺DAF)去除污水中的乳化油和细分散油出水中含油量控制小于50mg/L 一级气浮出水自流进入二级气浮(采用涡凹气浮工艺CAF)进行油水分离低浓度污水经过隔油两级气浮去除大部分分散油乳化油及部分COD值其出水 含油量要求小于20mg/L COD的总去除率在30%左右二级气浮出水自流进入一级生化处理(采用推流式鼓风曝气工艺)来自全厂的生活污水自流至污水处理场内生活污水吸水池经泵提升后与低浓度污水在一级生化池的选择段混合与二次沉淀池回流污泥在选择段充分接触混合再通过曝气区鼓风曝气混合液得到足够的溶解氧并使活性污泥和污水充分接触进行碳化和硝化反应污水中的可溶性有机污染物为活性污泥吸附并被存活在活性污泥上的微生物降解出水自流进二次沉淀池进行泥水分离污泥由回流泵提升回流至曝气池首端选择段回流量为100%二次沉淀池出水自流进入二沉池吸水池经泵提升至二级 生化池二级生化池出水自流进低浓度污水吸水池再由提升泵加压进入低浓度污水改性纤维球过滤+活性炭吸附设备经过滤器处理后的出水投加二氧化氯消毒灭菌后作为循环水场的补充水

煤化工废水处理工艺

煤化工废水处理工艺 发布时间:2010-3-16 10:38:20 中国污水处理工程网 煤化工是近几年来在全国发展最快的产业之一,为了使该产业走上可持续发展的道路,2006年国家发改委和国家环保总局下发了《关于加强煤化工项目建设管理促进产业健康发展的通知》,鼓励采用节水型工艺,大力提倡废水处理和中水回用。 1煤化工废水的基本特点 煤化工企业排放废水以高浓度煤气洗涤废水为主,(1)含有大量酚、氰化物、油、氨氮等有毒、有害物质。废水中COD一般在5000mg/l左右、氨氮在200~500mg/l,废水所含有机污染物包括酚类、多环芳香族化合物及含氮、氧、硫的杂环化合物等,是一种典型的含有难降解的有机化合物的工业废水。废水中的易降解有机物主要是酚类化合物和苯类化合物;砒咯、萘、呋喃、眯唑类属于可降解类有机物;难降解的有机物主要有砒啶、咔唑、联苯、三联苯等。 2煤化工废水的处理方法 2.1 预处理 预处理常用的方法:隔油、气浮等。因过多的油类会影响后续生化处理的效果,(2)气浮法在煤化工废水预处理中的作用是除去其中的油类并回收再利用,此外对后续的生化处理还起到预曝气的作用。 2.2 生化处理 对于预处理后的煤化工废水,一般采用缺氧-好氧生物法处理(A/O工艺或A2/O工艺),但由于煤化工废水中的多环和杂环类化合物,好氧生物法处理后出水中的COD和氨氮指标难以稳定达标。 因此,近年来出现了一些新的生物处理技术,如生物炭法(PACT)、生物流化床处理法(PAM)等。 2.2.1 生物炭法(PACT) 在生化进水中投加粉末活性炭与回流的含炭污泥一起在曝气池内混合,从污泥浓缩池中排出的剩余污泥进污泥脱水装置。在曝气池内,活性污泥附着于粉末活性炭的表面,由于粉末活性炭巨大的比表面积及其很强的吸附能力,提高了污泥的吸附能力,特别在活性污泥与粉末

煤化工废水处理方法

煤化工废水处理方法 1.引言 煤化工行业的环境保护问题主要包括二氧化碳排放、工业废气排放和工业废水的排放三个方面,其中污染治理的重点和难点是工业废水处理问题。煤化工行业废水可根据含盐量分为两类:一类是高含盐废水,主要来源于生产过程中循环水系统排水和化学水站排水等;另一类是有机废水,主要来源于生产工艺废水。本文以煤制气项目为例,对有机废水的来源进行分析,并对有机废水处理工艺进行探讨。 2. 有机废水来源及水质 煤制气项目有机废水的来源主要包括酚氨回收废水和有机含氨污水两部分。有机含氨污水包括粉煤气化、低温甲醇洗、硫回收、焦油加氢、天然气液化等工艺装置产生的污水,以及生活污水、地面冲洗水等。有机含氨污水包括粉煤气化、低温甲醇洗、硫回收、焦油加氢、天然气液化等工艺装置产生的污水,以及生活污水、地面冲洗水等。 3. 煤制气有机废水处理工艺选择 3.1 改进 SBR 工艺 SBR 生化处理系统又称序批式活性污泥法,它是在一个 SBR 反应池中完成进水、反应、沉淀、排水、静置等五个工序,具有管理简单、节省占地、耐冲击负荷强等特点,通过调节反应周期及各个阶段的反应时间,创造理想的生物反应条件,有利于去除氨氮和总氮。改进的 SBR 工艺目前已在金陵石化、山东兖矿、神木甲醇等煤气化废水治理工程中得到应用。 3.2 PACT/WAR 工艺 粉末活性碳/湿式氧化再生 (PACT/WAR) 是在活性污泥曝气池中投加活性炭粉末,利用活性炭粉末对有机物和溶解氧的吸附作用,为微生物的生长提供食物,从而加速对有机物的氧化分解能力。活性炭用湿空气氧化法再生。该工艺目前在福建炼化煤气化废水治理工程中得到应用。 3.3 多级生物处理工艺

煤化工废水处理方法(标准版)

煤化工废水处理方法(标准版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0085

煤化工废水处理方法(标准版) 摘要:文章以煤制气项目为例,介绍了煤化工项目生产中有机废水的来源及特性,探讨了三种常用的化工废水处理中煤化工废水的处理方法。总结出多级生物处理法在煤制气有机废水处理的实用性,对今后煤制气有机废水处理的工作起到一定的指导意义。 1.引言 煤化工行业的环境保护问题主要包括二氧化碳排放、工业废气排放和工业废水的排放三个方面,其中污染治理的重点和难点是工业废水处理问题。煤化工行业废水可根据含盐量分为两类:一类是高含盐废水,主要来源于生产过程中循环水系统排水和化学水站排水等;另一类是有机废水,主要来源于生产工艺废水。本文以煤制气项目为例,对有机废水的来源进行分析,并对有机废水处理工艺进行探讨。

2.有机废水来源及水质 煤制气项目有机废水的来源主要包括酚氨回收废水和有机含氨污水两部分。有机含氨污水包括粉煤气化、低温甲醇洗、硫回收、焦油加氢、天然气液化等工艺装置产生的污水,以及生活污水、地面冲洗水等。有机含氨污水包括粉煤气化、低温甲醇洗、硫回收、焦油加氢、天然气液化等工艺装置产生的污水,以及生活污水、地面冲洗水等。 3.煤制气有机废水处理工艺选择 3.1改进SBR工艺 SBR生化处理系统又称序批式活性污泥法,它是在一个SBR反应池中完成进水、反应、沉淀、排水、静置等五个工序,具有管理简单、节省占地、耐冲击负荷强等特点,通过调节反应周期及各个阶段的反应时间,创造理想的生物反应条件,有利于去除氨氮和总氮。改进的SBR工艺目前已在金陵石化、山东兖矿、神木甲醇等煤气化废水治理工程中得到应用。 3.2PACT/WAR工艺

煤化工废水处理工艺优化研究

煤化工废水处理工艺优化研究 摘要:煤化工生产主要使用煤炭作为原材料,煤化工生产期间形成大量工业废水,这些废水污染物成分复杂,很难通过污水处理设施处理污水。清除污水中的化学成分,需要通过处理技术的优化,提高废水处理效率,进一步提高废水处理质量,保护生态环境。因此,本文先对煤化工生产废水来源、种类及特征进行简单分析,然后进一步研究了废水处理技术的优化,以期能有效提高废水处理质量,为控制环境污染问题做贡献。 关键词:煤化工;废水处理;优化 1煤化工废水的主要来源及种类 1.1煤化工废水的产生 煤化工主要是以煤炭为原材料进行加工、生产的,生产的过程中则会产出工业废水,废水中含有许多复杂的化合物质,如酚类、含硫物质以及难降解物质等污染成分。因此,应该对煤化工生产废水采取科学、合理的处理技术,尽可能降低其对环境的污染程度。 1.2煤化工废水的种类 1.2.1煤液化废水 所谓煤液化废水,就是指煤炭原料在油品转化加工过程中产生的废水,主要来源于加氢裂化、加氢精制、液化等生产环节,煤液化工艺主要有两种:直接液化和间接液化。这样的废水中含有酚和

硫类成分,含盐量较少但COD值较高,容易乳化且难以生化,成分难以彻底降解。 1.2.2煤气化废水 所谓煤气化,就是指原料煤或煤焦经过特定的压力、温度等生产条件,将其通过水蒸气、氧气等反应催化剂,使煤或煤焦转变为水煤气的过程。煤气化产生的废水中主要含有硫化物、氨氮物、氰化物等,可见,煤气化废水含有的污染物成分复杂且难以降解彻底。煤气化流程操作涉及到的水煤浆气化、粉煤气化以及碎煤加压气化工艺,不同的煤气化操作产生的废水类型也不同,其中污染物的浓度也是存在差异的。 1.2.3煤制甲醇、烯烃废水 煤制甲醇废水来源于气化废水,该类型废水的主要特征是氨氮含量高、CODCr质量浓度适中、可生化性较好,但是含NH3-N量较高,随意排放会严重危害到生态环境的平衡性。煤制烯烃废水就是煤制甲醇在合成烯烃的环节中产生的废水,含有大量的有害物质,因生化或直接燃烧处理成本较高,所以处理难度系数较高。 1.2.4煤焦化废水 所谓煤焦化,就是指煤炭原料在真空、高温的条件下,经加热分解,转变成焦炭、焦油、煤气以及粗苯等物质的过程。该废水含有大量的氨氮成分、COD成分以及其他的有机污染物,成分十分复杂,废水处理很难达到标准。 2煤化工废水的主要特征

零排放技术在煤化工污水处理中的应用研究

零排放技术在煤化工污水处理中的应用研究 发表时间:2018-06-06T15:42:41.843Z 来源:《科技新时代》2018年3期作者:陈超肖文双 [导读] 摘要:煤化工生产企业的水处理问题一直是企业高速发展的制擎,想要获得持久的竞争力就必须提升废水的处理工艺,使其处理稳定性更强,成本更低。本文围绕零排放技术在煤化工污水处理的应用做了探讨,阐述了煤化工污水的来源和分类,摘要:煤化工生产企业的水处理问题一直是企业高速发展的制擎,想要获得持久的竞争力就必须提升废水的处理工艺,使其处理稳定性更强,成本更低。本文围绕零排放技术在煤化工污水处理的应用做了探讨,阐述了煤化工污水的来源和分类,分析了目前我国煤化工企业污水零排放的处理技术和工艺状况,论述了当下零排放技术在煤化工企业污水处理中的有效应用,供业内相关人士参考。 关键词:零排放技术、煤化工废水、处理工艺 1引言 煤化工企业一直都是用水大户和排水大户,在新的政策和时代环境下,水资源的高效利用以及水环境保护问题是煤化工企业面临的全新挑战。近年来,化工企业纷纷探索各种处理效果更好、工艺更稳定、成本更低的处理技术。其中零排放技术受到业内人士的认可并得到越来越普遍的应用。所谓污水零排放,即指工业污水中的污染物最终不是以废水的形式排放到自然水体环境中,而是在工业生产及处理的不同阶段采取各种处理技术和手段来使污染物的形态进行转移,形成各种污泥、结晶固体、氮气、二氧化碳或其他无害气体的形式进行外排或外运处理。 2煤化工污水来源及分类 煤化工污水主要有两大类,一类是生产生活类污水,主要包括汽化炉污水、化工运行装置的污水、储运和罐区的冲洗污水以及各种生活污水和雨水等;另一类是清净下水,主要包括处理后的生产生活污水、循环系统排污水、脱盐系统的高浓度盐水、锅炉排水等。污水零排放处理工艺的示意图如(图1)。 图1 3煤化工污水零排放处理技术现状 目前,我国煤化工企业的污水主要污染源来自于气化炉,气化炉的工艺形式和生产流程不同也造成了污染物的不同。煤气化技术主要有三大类:一个是“壳牌”工艺,如果采用粉煤灰气化技术,其污水具有高氨氮、高氰化物的特点;而如果采用高温气化技术,则污水中有机污染物浓度较低。第二类是“德士古”工艺,主要采用水煤浆气化技术,其污水具有高氨氮、高硬度、高悬浮物、高二氧化硅的特点。第三类是“鲁奇”工艺,主要采用碎煤气化技术,由于气化温度较低,因此污染程度较高,具有高氨氮、高酚、高COD、高油污的特点。这类污水的污染物成分最为复杂,因此处理难度也最高。 4零排放技术在煤化工污水处理中的应用 (一)污水处理 污水处理主要包含预处理工艺、生化处理工艺以及深度处理工艺。在预处理过程中,德士古工艺的污水大多采用化学软化技术和沉淀技术相结合的工艺来去除污水中的悬浮物以及二氧化硅,有效降低水的硬度。而壳牌工艺的污水大多采用漂水破氰技术来去除污水中的氰化物。鲁奇工艺的污水大多采用浮动收油技术和隔油技术再加上气浮技术来去除污水中的油污和悬浮物。生化处理工艺是污水处理的关键工艺,在很大程度上决定了出水各项指标是否达标。目前煤化工企业中常见的生化处理工艺主要有A/O工艺、SBR工艺以及各种升级变形工艺等。 SBR处理工艺具有抗冲击性强、抗污堵能力强和抗结垢能力强的优点,因此得到企业的普遍应用。典型的SBR工艺可以设置四个或四个以上的工序系列,一旦系列受到冲击可以灵活调整步骤和顺序,保证污水处理系统的正常使用。A/O处理工艺相较于SBR工艺,占地面积更小、投资成本更低,运行和维护也更简便。但是由于这种处理工艺普遍采用推流式,因此其不足之处在于抗冲击能力和恢复性能力较弱。深度处理工艺主要包括氧化工艺、曝气生物滤池工艺。其中氧化工艺过程中由于参与反应的是臭氧,不添加药剂,因此不会引入其他

煤化工废水处理的十个经典案例

煤化工废水处理的十个 经典案例 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

煤化工废水处理的十个经典案例 的组分复杂并且含有固体悬浮颗粒、氨氮及硫化物等有毒、有害物质,若处理不当容易造成水污染并演变为水质型缺水,因此,是所有煤化工项目都需要考虑的问题,也在很大程度上决定了整个项目的效益。煤化工水资源消耗量和废水产生量都很大,因此,节水技术和技术成为行业发展的关键。 今天分享神华包头煤制烯烃、神华鄂尔多斯煤直接液化、陕煤化集团蒲城清洁能源化工、兖矿集团陕西未来能源化工兖矿榆林项目、久泰能源甲醇深加工项目等10个煤化工废水处理项目,从项目介绍、项目规模、主要工艺、技术亮点等多个角度进行分析,看看国内大型环保企业是如何对这些煤化工废水进行处理的。 十个煤化工项目污水处理案例项目简介、项目规模、主要工艺、技术亮点1云天化集团 项目名称:云天化集团呼伦贝尔金新化工有限公司煤化工水系统整体解决方案 关键词:煤化工领域水系统整体解决方案典范 项目简介:

呼伦贝尔金新化工有限公司是云天化集团下属分公司。该项目位于呼伦贝尔大草原深处,当地政府要求此类化工项目的环保设施均需达到“零排放”的水准。同时此项目是亚洲首个采用BGL炉(BritishGas-Lurgi英国燃气-鲁奇炉)煤制气生产合成氨、尿素的项目,生产过程中产生的废水成分复杂、污染程度高、处理难度大。此项目也成为国内煤化工领域水系统整体解决方案的典范。 项目规模: 煤气水:80m3/h污水:100m3/h 回用水:500m3/h除盐水:540m3/h 冷凝液:100m3/h 主要工艺: 煤气水:除油+水解酸化+SBR+混凝沉淀+BAF+机械搅拌澄清池+砂滤 污水:气浮+A/O 除盐水:原水换热+UF+RO+混床 冷凝水:换热+除铁过滤器+混床 回用水:澄清器+多介质过滤+超滤+一级反渗透+浓水反渗透 技术亮点: 1、煤气化废水含大量油类,含量高达500mg/L,以重油、轻油、乳化油等形式存在,项目中设置隔油和气浮单元去除油类,其中气浮采用纳米气泡技术,纳米级微小气泡直径30-500nm,与传统溶气气浮相比,气泡数量更多,停留时间更长,气泡的利用率显着提升,因此大大提高了除油效果和处理效率。 2、煤气化废水特性为高COD、高酚、高盐类,B/C比值低,含大量难降解物质,采用水解酸化工艺,不产甲烷,利用水解酸化池中水解和产酸微生物,将污水在后续的生化处理单元比较少的能耗,在较短的停留时间内得到处理。 3、煤气废水高氨氮,设置SBR可同时实现脱氮除碳的目的。 4、双膜法在除盐水和回用水处理工艺上的成熟应用,可有效降低吨水酸碱消耗量,且操作方便。运行三年以后,目前的系统脱盐率仍可达到98%。 2陕西煤业化工集团

煤化工示范项目废水处理工艺分析

煤化工示范项目废水处理工艺分析 2015.3 煤液化对石油具有替代作用,在油价高涨的时代,这些领域的发展对我国的能源安全具有非常重要的意义。而煤制甲醇和二甲醚目前成为发展热点的理由则更加充分:首先,甲醇可以代替部分汽油,二甲醚可以代替部分柴油和液化气做民用燃料。其次,甲醇是除了烯烃和芳烃外的第三大基本有机化工原料,用途广泛,二甲醚也是一种有机化工原料。再次,甲醇和二甲醚的生产技术成熟,在我国以煤为原料生产甲醇和二甲醚与以石油和天然气为原料相比,产品成本更具竞争力。从国家战略意义上,煤化工进入了快速发展时期。 1煤化工废水的特点 煤化工企业排放废水以高浓度煤气洗涤废水为主,含有大量酚、氰、油、氨氮等有毒、有害物质。综合废水中CODcr一般在5000mg/l左右、氨氮在200~500mg/l,废水所含有机污染物包括酚类、多环芳香族化合物及含氮、氧、硫的杂环化合物等,是一种典型的含有难降解有机化合物的工业废水。废水中的易降解有机物主要是酚类化合物和苯类化合物;砒咯、萘、呋喃、眯唑类属于可降解类有机物;难降解的有机物主要有砒啶、咔唑、联苯、三联苯等。 目前国内处理煤化工废水的技术主要采用生化法。生化法对废水中的苯酚类及苯类物质有较好的去除作用,但对喹啉类、吲哚类、吡啶类、咔唑类等

一些难降解有机物处理效果较差,使得煤化工行业外排水CODcr难以达到一级标准。 2工程概况 大唐内蒙古多伦煤化工有限公司污水处理站是我国第一个真正实现工业废水“零排放”的污水处理工程。各工艺装置排放的污水经处理达标后全部回用于循环水装置,脱水污泥及结晶盐外运填埋。由于煤化工废水成分复杂、污染物浓度较高、污水可生化性差、难于生物降解、含有多种抑制生化反应的毒有害物质,处理难度极大。本工程将污水分类为浓盐污水和低盐污水两类进行分类处理。新增污水处理站包括三个系统:(1)低盐污水处理系统;(2)浓盐污水处理系统;(3)蒸发结晶系统。 因低盐污水处理系统投产、试运行的时间最长,效果最显著,就以低盐污水处理系统的设计、运行数据,浅谈MBR工艺在煤化工废水处理中的应用。低盐污水处理系统主要包括甲醇废水、MTP废水、生活污水以及污染雨水等。进水水质、水量见表1。 表1 进水水质及水量表 3污水处理工艺介绍

最新煤化工废水处理的十个经典案例资料

煤化工废水处理的十个经典案例 煤化工废水的组分复杂并且含有固体悬浮颗粒、氨氮及硫化物等有毒、有害物质,若处理不当容易造成水污染并演变为水质型缺水,因此,废水处理是所有煤化工项目都需要考虑的问题,也在很大程度上决定了整个项目的效益。煤化工水资源消耗量和废水产生量都很大,因此,节水技术和污水处理技术成为行业发展的关键。 今天分享神华包头煤制烯烃、神华鄂尔多斯煤直接液化、陕煤化集团蒲城清洁能源化工、兖矿集团陕西未来能源化工兖矿榆林项目、久泰能源甲醇深加工项目等10个煤化工废水处理项目,从项目介绍、项目规模、主要工艺、技术亮点等多个角度进行分析,看看国内大型环保企业是如何对这些煤化工废水进行处理的。 十个煤化工项目污水处理案例项目简介、项目规模、主要工艺、技术亮点1云天化集团 项目名称:云天化集团呼伦贝尔金新化工有限公司煤化工水系统整体解决方案 关键词:煤化工领域水系统整体解决方案典范 项目简介:

呼伦贝尔金新化工有限公司是云天化集团下属分公司。该项目位于呼伦贝尔大草原深处,当地政府要求此类化工项目的环保设施均需达到“零排放”的水准。同时此项目是亚洲首个采用BGL炉(BritishGas-Lurgi英国燃气-鲁奇炉)煤制气生产合成氨、尿素的项目,生产过程中产生的废水成分复杂、污染程度高、处理难度大。此项目也成为国内煤化工领域水系统整体解决方案的典范。 项目规模: 煤气水:80m3/h污水:100m3/h 回用水:500m3/h除盐水:540m3/h 冷凝液:100m3/h 主要工艺: 煤气水:除油+水解酸化+SBR+混凝沉淀+BAF+机械搅拌澄清池+砂滤 污水:气浮+A/O 除盐水:原水换热+UF+RO+混床 冷凝水:换热+除铁过滤器+混床 回用水:澄清器+多介质过滤+超滤+一级反渗透+浓水反渗透 技术亮点: 1、煤气化废水含大量油类,含量高达500mg/L,以重油、轻油、乳化油等形式存在,项目中设置隔油和气浮单元去除油类,其中气浮采用纳米气泡技术,纳米级微小气泡直径30-500nm,与传统溶气气浮相比,气泡数量更多,停留时间更长,气泡的利用率显著提升,因此大大提高了除油效果和处理效率。 2、煤气化废水特性为高COD、高酚、高盐类,B/C比值低,含大量难降解物质,采用水解酸化工艺,不产甲烷,利用水解酸化池中水解和产酸微生物,将污水在后续的生化处理单元比较少的能耗,在较短的停留时间内得到处理。 3、煤气废水高氨氮,设置SBR可同时实现脱氮除碳的目的。 4、双膜法在除盐水和回用水处理工艺上的成熟应用,可有效降低吨水酸碱消耗量,且操作方便。运行三年以后,目前的系统脱盐率仍可达到98%。 2陕西煤业化工集团 项目名称:陕煤化集团蒲城清洁能源化工有限责任公司水处理装置EPC项目关键词:新型煤化工领域合同额最大水处理EPC项目

煤化工废水处理方法(新编版)

煤化工废水处理方法(新编版) Safety is the prerequisite for enterprise production, and production is the guarantee of efficiency. Pay attention to safety at all times. ( 安全论文) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

煤化工废水处理方法(新编版) 摘要:文章以煤制气项目为例,介绍了煤化工项目生产中有机废水的来源及特性,探讨了三种常用的化工废水处理中煤化工废水的处理方法。总结出多级生物处理法在煤制气有机废水处理的实用性,对今后煤制气有机废水处理的工作起到一定的指导意义。 1.引言 煤化工行业的环境保护问题主要包括二氧化碳排放、工业废气排放和工业废水的排放三个方面,其中污染治理的重点和难点是工业废水处理问题。煤化工行业废水可根据含盐量分为两类:一类是高含盐废水,主要来源于生产过程中循环水系统排水和化学水站排水等;另一类是有机废水,主要来源于生产工艺废水。本文以煤制气项目为例,对有机废水的来源进行分析,并对有机

废水处理工艺进行探讨。 2.有机废水来源及水质 煤制气项目有机废水的来源主要包括酚氨回收废水和有机含氨污水两部分。有机含氨污水包括粉煤气化、低温甲醇洗、硫回收、焦油加氢、天然气液化等工艺装置产生的污水,以及生活污水、地面冲洗水等。有机含氨污水包括粉煤气化、低温甲醇洗、硫回收、焦油加氢、天然气液化等工艺装置产生的污水,以及生活污水、地面冲洗水等。 3.煤制气有机废水处理工艺选择 3.1改进SBR工艺 SBR生化处理系统又称序批式活性污泥法,它是在一个SBR 反应池中完成进水、反应、沉淀、排水、静置等五个工序,具有管理简单、节省占地、耐冲击负荷强等特点,通过调节反应周期及各个阶段的反应时间,创造理想的生物反应条件,有利于去除氨氮和总氮。改进的SBR工艺目前已在金陵石化、山东兖矿、神木甲醇等煤气化废水治理工程中得到应用。

论煤化工污水处理工艺选择

论煤化工污水处理工艺选择 随着社会经济与科学技术的迅速发展,人们对能源的需求与日俱增,尤其是我国的煤炭资源,是我国重要的化石能源之一。由煤炭燃料为主的煤化工企业占据着能源行业的大头,不仅可以提取焦炭、低级醇、低级醚等产品,还可以制取油品,丰富多彩的煤化工建设项目,在给企业带来丰厚利润的同时,还给生态环境造成了负担,煤化工污水治理工艺的选择十分关键。本文首先对煤化工污水的预处理工作做了简析,深入分析了煤化工污水的生化处理方式以及深度处理工艺,总结研讨了煤气化污水处理典例,希望能够为相关工作者提供一定的帮助。 标签:煤化工;污水处理;工艺 煤化工企业产生的废水主要是工序清洗、冷却高炉煤气所产生的一种废水量最大、成分最为复杂、危害最大的化工废水,含有大量氰、氨氮等有毒物质,以及许多难降解的悬浮物。煤化工污水治理的效果取决于煤化工污水处理工艺的选择,主要涵盖煤化工污水预处理、生化处理、深度处理三种工艺和方式,要想取得良好的污水治理效果,首先应该充分了解煤化工污水处理工艺,其次采用合理的技术,将其运用在煤化工企业的实际作业以及治理当中,最大限度上使得企业废水符合污水的排放标准,实现贯彻落实可持续发展道路。 1 煤化工污水的预处理 煤化工企业排放的废水包含许多漂浮物、胶体、颗粒以及大量的有机化合物,倘若企业不赞同对化工废液进行预处理工作,后期的废水治理工作繁重并且复杂,工作效率以及治理效果都得不到提高,煤化工污水治理过程应当加强对预处理作业的重视,来保障煤化工废液治理的高效性、完全性、科学性。预处理工作能够有效实现煤化工污水分离、去脂,以废液进行分离过滤为主,让煤化工废液依照次序经过除油池、气浮池和沉淀池,确保废液完全实现油脂类以及部分有机物的分离,与此用时,还要事先对废液实行曝气工作,能够有效使得煤化工废液中较大的固体颗粒含量在一定的范围之内,有利于提高废液各向同性。 2 煤化工污水的生化处理 2.1 煤化工污水的需氧生物处理技术 需氧生物處理技术顾名思义与需氧型生物的基本生存方式有着密切联系,该技术以生物的对有机物的加工、分解、氧化过程为核心,以此来实现废液的治理。需氧生物处理技术首先让煤化工污水分别与活性炭、生物被膜以及流动床等物质相互接触,将悬浮物以及少量有机物实现分层、过滤,其次吸附并溶解煤化工废液中的有机物,为需氧型生物以及细菌提供一定的有机物,以确保生物的基本生存,从而完成煤化工废液的治理,达到净化的效果。 2.2 煤化工污水的厌氧生物处理技术

SBR工艺处理高COD、高氨氮煤化工工业废水的研究

SBR工艺处理高COD、高氨氮煤化工工业废水的研究 摘要在采用SBR工艺处理煤化工工业废水时,通过考察研究废水的不同投加方式,跟踪分析了COD、NH3-N、NO2--N、NO3--N、PH、DO、碱度及碳源消耗。通过对比确定了最佳废水的投加方式达到了节约碱度、碳源消耗的目的,大大降低了运行成本。 关键词SBR;煤化工工艺废水;碱度;碳源 中图分类号X703 文献标识码 A 文章编号1673-9671-(2012)111-0178-02 SBR(Sequencing Batch Reactor Activated Sludge Process)是序批间歇式活性污泥法污水处理工艺的简称,是一种按照时间顺序改变活性污泥生长环境的污水处理技术,又称序批式活性污泥法,是一种比较成熟的污水处理工艺。它的主要特征是在时间上的有序和空间上的无序,各阶段的运行工况可以根据具体的污水性质和出水功能要求等灵活变化。SBR工艺一个运行周期中进水、反应、沉淀、出水和闲置5个基本工序都在一个设有曝气或搅拌的反应器内依次完成的。进水时间、曝气方式、搅拌时间可以根据具体的进水水质、污泥状况灵活改变。 笔者通过试验研究了在一个运行周期内分别采用不同的进水方式下PH、COD、NH3-N、NO2--N、NO3--N、DO的变化规律,通过对比确定了最佳废水的投加方式,达到了节约碱度消耗、减少外加碳源,降低处理成本的目的。 1 试验部分 1.1 废水的来源与水质 某煤化工工业,以煤为原料采用鲁奇气化工艺将煤加压气化为煤气,供企业和居民使用。在煤气洗涤过程中产生大量污水。污水水质见表1: 1.2 试验装置 试验装置由一组四个尺寸相同的SBR反应器组成,反应器为长55.5米、宽14米、有效水深5.6米。在反应器内装有微孔曝气器及潜水推流搅拌器;采用鼓风机曝气,离心泵进水,滗水器出水,进水由电磁流量计计量,整个系统由一套PLC自动程序控制装置操作运行。每一工作阶段,如进水、缺氧搅拌、曝气、沉淀和排水等工艺参数可根据需要设定。 1.3 分析项目及方法 进水和出水水样的分析项目及分析方法见表2。 2 试验结果与讨论 2.1 冲击性进水非限制性曝气方式 一次性快速向SBR反应池中加入200 m3原污水,好氧曝气去除有机物并进行硝化反应,硝化完成后投加甲醇进行反硝化,跟踪分析一个周期内水中残余COD、NH3-N、NO2--N、NO3--N、PH、DO变化情况见图1。 图1 由图1可以看出: 1)Do的变化规律:在进水阶段,因去除有机物的反应,异养菌的耗氧速率大于供氧速率,因此DO呈下降趋势。当COD接近其难去除浓度时,异养菌的耗氧速率迅速降低,供氧远远大于异养菌的耗氧速率,因此DO急剧上升,随着COD的降低及DO浓度的升高,异养菌因缺少底物而失去竞争力,系统内的硝化菌开始大量的进行新陈代谢。在氨氮去除的过程中,虽然自养菌的耗氧速率较

相关文档
最新文档