matlab线性插值

matlab线性插值
matlab线性插值

Matlab线性插值

已知离散点上的数据集,即已知在点集X上对应的函数值Y,构造一个解析函数(其图形为一曲线)通过这些点,并能够求出这些点之间的值,这一过程称为一维插值。

MATLAB命令:yi=interp1(X, Y, xi, method)

该命令用指定的算法找出一个一元函数,然后以给出xi处的值。xi可以是一个标量,也可以是一个向量,是向量时,必须单调,method可以下列方法之一:

'nearest':最近邻点插值,直接完成计算;

'spline':三次样条函数插值;

'linear':线性插值(缺省方式),直接完成计算;

'cubic':三次函数插值;

对于[min{xi},max{xi}]外的值,MATLAB使用外推的方法计算数值。下面是一个例子:t=1900:10:1990;

p=[75.995,91.972,105.711,123.203,131.669,150.697,179.323,203.212,226.505,249.633];

x=1900:0.01:1990;

%使用不同的方法进行一维插值

yi_linear=interp1(t,p,x); %线性插值

yi_spline=interp1(t,p,x,'spline');%三次样条插值

yi_cubic=interp1(t,p,x,'cubic');%三次多项式插值

yi_v5cubic=interp1(t,p,x,'v5cubic');%matlab5中使用的三次多项式插值

%绘制图像对比

%subplot是将多个图画到一个平面上的工具。其中,m表示是图排成m行,n表示图排成n列,也就是整个figure中有n个图是排成一行的,一共m行,如果第一个数字是2就是表示2行图。p是指你现在要把曲线画到figure中哪个图上,最后一个如果是1表示是从左到右第一个位置。

subplot(2,1,1);

plot(t,p,'ko');

hold on;

plot(x,yi_linear,'g','LineWidth',1.5);grid on;

plot(x,yi_spline,'y','LineWidth',1.5);

title('Linear VS Spline ')

subplot(2,1,2);

plot(t,p,'ko');

hold on

plot(x,yi_cubic,'g','LineWidth',1.5);grid on;

plot(x,yi_v5cubic,'y','LineWidth',1);

title('Cubic VS V5cubic ');

%创建新图形窗口

figure

yi_nearest=interp1(t,p,x,'nearest');%最邻近插值法plot(t,p,'ko');

hold on

plot(x,yi_nearest,'g','LineWidth',1.5);grid on;

title('Nearest Method');

%以下是根据拟合估计

msg='year Cubic Linear Nearest Spline';

for i=0:8

n=10*i;

year=1905+n;

pop(i+1,1)=year;

pop(i+1,2)=yi_cubic((year-1900)/0.01+1);

pop(i+1,3)=yi_linear((year-1900)/0.01+1);

pop(i+1,4)=yi_nearest((year-1900)/0.01+1);

pop(i+1,5)=yi_spline((year-1900)/0.01+1);

end

P=round(pop);

disp(msg)

disp(P)

由此可见,各种插值的优劣,在速度上,Nearest最快,然后是Linear再到Cubic,最慢的是Splic.但是精度和曲线的平滑度恰好相反,Nearest甚至不连续~~

系统默认的是Linear

lagrange插值分段线性插值matlab代码

Lagrange插值: x=0:3; y=[-5,-6,-1,16]; n=length(x); syms q; for k=1:n fenmu=1; p=1; for j=1:n if(j~=k) fenmu=fenmu*(x(k)-x(j)) p=conv(p,poly(x(j))) end end c(k,:)=p*y(k)/fenmu end a=zeros(1,n); for i=1:n for j=1:n a(i)=a(i)+c(j,i) end end 输出结果: fenmu = -1 p = 1 -1 fenmu = 2 p = 1 -3 2 fenmu = -6 p = 1 -6 11 -6 c = 0.8333 -5.0000 9.1667 -5.0000 fenmu = 1 p = 1 0 fenmu =

-1 p = 1 - 2 0 fenmu = 2 p = 1 -5 6 0 c = 0.8333 -5.0000 9.1667 -5.0000 -3.0000 15.0000 -18.0000 0 fenmu = 2 p = 1 0 fenmu = 2 p = 1 -1 0 fenmu = -2 p = 1 -4 3 0 c = 0.8333 -5.0000 9.1667 -5.0000 -3.0000 15.0000 -18.0000 0 0.5000 -2.0000 1.5000 0 fenmu = 3 p = 1 0 fenmu = 6 p = 1 -1 0 fenmu = 6 p = 1 -3 2 0 c = 0.8333 -5.0000 9.1667 -5.0000 -3.0000 15.0000 -18.0000 0 0.5000 -2.0000 1.5000 0 2.6667 -8.0000 5.3333 0 a =

实验5 双线性插值

实验五图像的空间变换 一、实验目的 1、学习图像空间变换,并通过实验体会空间变换的效果,对其作出分析。 2、掌握利用最邻近插值和双线性插值算法(灰度插值)实现图像的缩放。 3、掌握MATLAB编程环境中基本的图像处理函数。 二、实验要求 1.读入图像,对其利用最邻近插值和双线性插值法进行缩放变换,要求先使用IPT函数进行变换,然后自己编写函数实现; 2.对比上述得到的结果。 三、实验原理 图像的空间变换,也称几何变换或几何运算,包括图像的平移、旋转、镜像变换、转置、缩放等。几何运算可改变图像中各物体之间的空间关系,这种运算可以看成是将各物体在图像内移动。 空间变换可如下表示:设(u,v)为源图像上的点,(x,y)为目标图像上的点,则空间变换就是将源图像上(u,v)处的像素值与目标图像上(x,y)处的像素值对应起来,并具有以下关系: x=X(u,v),y=Y(u,v) (即由(u,v)计算对应(x,y))(1.1) 或u=U(x,y),v=V(x,y) (即由(x,y)计算对应(u,v))(1.2) 其中X(u,v)、Y(u,v)、U(x,y)、V(x,y)均为变换。由(1.1)对应的变换称作向前映射法也叫像素移交法,而由(1.2)对应的变换称作向后映射法也叫像素填充法,向后映射法是向前映射法的逆。 最简单的插值算法是最邻近插值,也称为零阶插值。最邻近插值算法简单,在许多情况

下都能得到令人满意的结果,但是当图像中包含像素之间灰度级有变化的细微结构时,最邻近算法会在图像中产生人为加工的痕迹。双线性插值算法计算量比零阶插值大,但缩放后图像质量高,不会出现像素值不连续的的情况,这样就可以获得一个令人满意的结果。最邻近点插值取插值点的4个邻点中距离最近的邻点灰度值作为该点的灰度值。设插值点(i,j)到周边4个邻点fk(i,j)(k =1,2,3,4)的距离为dk(k =1,2,3,4),则:g(i,j)=fk(i,j),dl =min{d1,d2,d3,d4},l=1,2,3,4 。 双线性插值是利用了需要处理的原始图像像素点周围的四个像素点的相关性,通过双线插值算法计算得出的。对于一个目的坐标,通过后映射法得到其在原始图像的对应的浮点坐标(i+u,j+v),其中i,j均为非负整数,u,v为[0,l]区间的浮点数,则这个像素的值f(i+u,j+v)可由原图像中坐标为(i,j)、(i+l,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:f(i+u,j+v)=(1-u)×(1-v)×f(i,j)+(1-u)×v×f(i,j+1)+u×(1-v)×f(i+l,j)+u×v×f(i+l,j+1),其中f(i,j)表示源图像(i,j)处的的像素值,以此类推,这就是双线性内插值法。 如下图所示,已知(0,0)、(0,1)、(1,0)、(1,1)四点的的灰度,可以由相邻像素的灰度值f(0,0)和f(1,0)在X方向上线性插值求出(x,0)的灰度f(x,0),由另外两个相邻像素f(0,1)和f(1,1)在X方向上线性插值可求出(x,1)的灰度f(x,1),最后由f(x,0),f(x,1)在Y 方向上进行线性插值就可以得到(x,y)的灰度f(x,y)。 四、实验代码

插值算法与matlab代码

Matlab中插值函数汇总和使用说明 MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method') 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量,'method'表示采用的插值方法,MA TLAB提供的插值方法有几种:'method'是最邻近插值,'linear'线性插值;'spline'三次样条插值;'cubic'立方插值.缺省时表示线性插值 注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13, 推测中午12点(即13点)时的温度. x=0:2:24; y=[12 9 9 10 18 24 28 27 25 20 18 15 13]; a=13; y1=interp1(x,y,a,'spline') 结果为:27.8725 若要得到一天24小时的温度曲线,则: xi=0:1/3600:24; yi=interp1(x,y,xi, 'spline'); plot(x,y,'o' ,xi,yi) 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。 x:原始数据点 Y:原始数据点

xi:插值点 Yi:插值点 格式 (1)yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。 (2)yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3)yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4)yi = interp1(x,Y,xi,method,'extrap') 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5)yi = interp1(x,Y,xi,method,extrapval) 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1 1. 2.>>x = 0:10; y = x.*sin(x); 3.>>xx = 0:.25:10; yy = interp1(x,y,xx); 4.>>plot(x,y,'kd',xx,yy) 复制代码 例2 1. 2.>> year = 1900:10:2010; 3.>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 4.249.633 256.344 267.893 ]; 5.>>p1995 = interp1(year,product,1995) 6.>>x = 1900:1:2010; 7.>>y = interp1(year,product,x,'pchip'); 8.>>plot(year,product,'o',x,y) 复制代码 插值结果为: 1.

matlab旋转+双线性插值

自己写的Matlab旋转+双线性插值图像函数效果图: 源码: clear all; I = imread('original.jpg');

[Height,Width,RGB] = size(I); II = I;%当角度为0时直接输出 %本程序是以左上角为坐标原点 %angle_j是旋转角度,正值是按顺时针旋转,负值时按逆时针旋转 angle_j = 181; %angle是弧度 angle = 2*pi*angle_j/360; %将angle转成正值 while(angle < 0) angle = 2 * pi + angle; end %约束在0-2π内 while(angle > 2 * pi) angle = angle - 2 * pi; end %tag是判断下面的while循环有没有执行过 tag = 0; while(angle > 0) %超过90度的旋转,都先旋转90度,直到角度在0°-90°之间 %原理是旋转90度整数倍时,信息是不丢失的 if angle >= pi/2 a = pi/2; angle = angle - pi/2; elseif0 < angle < pi/2 a = angle; angle = 0; end if tag == 0 tag = 1; else I = II; [Height,Width,RGB] = size(I);%在旋转后的图像上继续旋转,从而实现大于90° 的旋转 end %正向变换用 sina = sin(a); cosa = cos(a); %逆向变换用_m == _minus sina_m = sin(-a); cosa_m = cos(-a); %旋转后图像的长度和宽度 II_height = round(sina * Width + cosa * Height); II_width = round(sina * Height + cosa * Width); II = ones(II_height,II_width,3); %先转成unit8。或者下面赋值0-1规划一下。否则imshow全是白色。 II = im2uint8(II); %%%%%%%%%%%%%%%%%%%%正向映射%%%%%%%%%%%%%%%%%%%%%%%%

数字图像处理(Matlab复习代码)

双线性插值法 I_=imread('test.jpg'); I=rgb2gray(I_); A=0.7;B=0.7;%失真像素坐标 [i,j]=size(I); m=round(i*A);n=round(j*B); temp=zeros(m,n);%产生m*n矩阵 G=[A0;0B]; for x=1:m for y=1:n ab=[x,y]/G;%取得x/A,y/B a=ab(1)-floor(ab(1));%权值 b=ab(2)-floor(ab(2)); %防溢出处理 if ab(1)<1 ab(1)=1; end if ab(1)>i ab(1)=i; end if ab(2)<1 ab(2)=1; end if ab(2)>j ab(2)=j; end %定义内插值坐标 ab11=[floor(ab(1))floor(ab(2))]; ab12=[floor(ab(1))ceil(ab(2))]; ab21=[ceil(ab(1))floor(ab(2))]; ab22=[ceil(ab(1))ceil(ab(2))]; temp(x,y)=(1-a)*(1-b)*I(ab11(1),ab11(2))+... a*(1-b)*I(ab12(1),ab12(2))+... (1-a)*b*I(ab21(1),ab21(2))+... a*b*I(ab22(1),ab22(2)); end end imshow(uint8(temp)),title('0.7倍双线性');最近邻法 I_=imread('test.jpg');%读入原始图像 I1=rgb2gray(I_); [i,j]=size(I1); m=round(i*1.5);n=round(j*1.5); m_=round(i*0.7);n_=round(j*0.7); %1.5倍最邻近 TEMP=zeros(m,n);%产生m*n矩阵 for i=1:m for j=1:n TEMP(i,j)=I1(round(i/1.5),round(j/1.5)); end end subplot(1,3,1),imshow(I1),title('原图') TEMP1_5=uint8(TEMP); subplot(1,3,2), imshow(TEMP1_5),title('1.5倍最邻近') 全局预测下的图像分割 I_=imread('test.jpg'); I=rgb2gray(I_); [m,n]=size(I); %统计直方图 zhifangtu=zeros(1,255);% for i=1:1:m for j=1:1:n zhifangtu(I(i,j)+1)= zhifangtu(I(i,j)+1)+1; end end plot(zhifangtu); %阈值处理 final=zeros(m,n); for x=1:1:m for y=1:1:n AA=I(x,y); if AA>120 final(x,y)=255; else final(x,y)=0; end end end imshow(uint8(final));

matlab计算拉格朗日牛顿及分段线性插值的程序

《工程常用算法》综合实践作业二 完成日期: 2013年 4月 14 日 班级 学号 姓名 主要工作说明 自评成绩 0718 2010071826 崔洪亮 算式与程序的编写 18 0718 2010071815 侯闰上 流程图的编辑,程序的审查 0718 2010071809 赵化川 报告的整理汇总 一.作业题目:三次样条插值与分段插值 已知飞机下轮廓线数据如下: x 3 5 7 9 11 12 13 14 15 y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 飞机下轮廓线形状大致如下图所示: 要求分别用拉格朗日插值法、Newton 插值法、分段线性插值法和三次样条插值法计算x 每改变0.5时y 的值,即x 取 0.5, 1, 1.5, … , 14.5 时对应的y 值。比较采用不同方法的计算工作量、计算结果和优缺点。 二.程序流程图及图形 1.拉格朗日插值法 开始 x,y,x0 Length (x)==l Ength (y)? n=length (x) i=1:n,l=1。 j=1:i-1&j=i+1:n l=l.*(x0-x(j)/x(i)-x(j) f=f+l*y(i) 结束 否 是 机翼 下轮廓线

2.牛顿插值法 开始 x,y,xi Length(x)==l ength(y)? n=length(x)Y=zeros (n),Y (:1)=y,f=0 a=1:n-1,b=1:n-a,Y(b,a+1)=(Y (b+1,a)-Y(b,a))/(x (b+a)-x(b)) i=1:n,z=1 结束 j=1:i-1,z=z.*(xi-x(j)) f=f+Y(1,i)*z 否 是 3.分段线性插值法 开始 x ,y ,x0 length (x )==length(y)? k=1:n-1 x(k)<=x0&x0《=x(k+1) temp=x(k)-x(k+1) f=(x0-x(k+1))/temp*y(k)+(x0-x(k))/(-temp)*y(k+1) 结束 否否 是 是 三.matlab 程序及简要的注释(m 文件) 1.拉格朗日插值法 2.牛顿插值法 function f=newdun(x,y,xi) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量 function f=lang(x,y,x0) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量

双线性插值

双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。例如已知的红色数据点与待插值得到的绿色点如图1所示: 图1 假如我们想得到未知函数在点的值,假设我们已知函数 在, , , 及四个点的值。首先在 x 方向进行线性插值,得到 然后在 y 方向进行线性插值,得到 这样就得到所要的结果, 如果选择一个坐标系统使得的四个已知点坐标分别为(0, 0)、(0, 1)、(1, 0) 和(1, 1),那么插值公式就可以化简为

或者用矩阵运算表示为 这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会出现像素值 不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使 图像轮廓在一定程度上变得模糊。 双线性插值法的MATLAB源代码为: I=imread('lena.jpg'); %读入原图像 [nrows,ncols,z]=size(I); %读取图像矩阵大小,方便后面操作 K = str2double(inputdlg('please input scale factor (must between 0.2 - 5.0)', 'INPUT scale factor', 1, {'0.5'})); width = K * nrows; height = K * ncols; J = uint8(zeros(width,height,z)); widthScale = nrows/width; heightScale = ncols/height; for x = 5:width - 5 % 5是为了防止矩阵超出边界溢出 for y = 5:height - 5 for z=1:3 xx = x * widthScale; % xx, yy为原坐标,x,y为新坐标 yy = y * heightScale; if((xx/double(uint16(xx))==1.0)&&(yy/double(uint16(yy))==1.0)) J(x,y,z) = I(int16(xx),int16(yy),z); %若xx,yy为整数,直接赋值 else a = double(uint16(xx)); b = double(uint16(yy)); x11 = double(I(a,b,z)); % x11 <- I(a,b) x12 = double(I(a,b+1,z)); % x12 <- I(a,b+1) x21 = double(I(a+1,b,z)); % x21 <- I(a+1,b) x22 = double(I(a+1,b+1,z));% x22 <- I(a+1,b+1) J(x,y,z) = uint8((b+1-yy)*((xx-a)*x21+(a+1-xx)*x11)+(yy-b)* ((xx-a)*x22+(a+1-xx)*x12)); %用双线性插值计算公式计算 end end end end

matlab旋转实现(最近邻值,双线性,三次卷积插值实现插值)

对图像进行旋转,使用最近邻插值法,双线性插值,三次卷积插值三种方法进行插值。 源码: clc;clear all;close all; Img=imread('test1.bmp'); Img=double(Img); [h w]=size(Img); alpha=pi/6; %逆时针旋转的角度 wnew=w*cos(alpha)+h*sin(alpha); %新图像的宽width hnew=w*sin(alpha)+h*cos(alpha); %新图像的高heighth wnew=ceil(wnew); %取整 hnew=ceil(hnew); u0=w*sin(alpha); %平移量 T=[cos(alpha),sin(alpha);-sin(alpha),cos(alpha)]; %变换矩阵 Imgnew1=zeros(hnew,wnew); Imgnew2=zeros(hnew,wnew); Imgnew3=zeros(hnew,wnew); for u=1:hnew %u和v是新图像坐标,变换到原图像坐标x和y中。 for v=1:wnew

tem=T*([u;v]-[u0;0]); x=tem(1); y=tem(2); if x>=1 & x<=h & y>=1 & y<=w %若变换出的x和y在原图像范围内 x_low=floor(x); x_up=ceil(x); y_low=floor(y); y_up=ceil(y); if (x-x_low)<=(x_up-x) %采用最近点法,选取距离最近点的像素赋给新图像x=x_low; else x=x_up; end if (y-y_low)<=(y_up-y) y=y_low; else y=y_up; end p1=Img(x_low,y_low); %双线性插值,p1到p4是(x,y)周围的四个点p2=Img(x_up,y_low); p3=Img(x_low,y_low); p4=Img(x_up,y_up); s=x-x_low; t=y-y_low; Imgnew1(u,v)=Img(x,y); Imgnew2(u,v)=(1-s)*(1-t)*p1+(1-s)*t*p3+(1-t)*s*p2+s*t*p4; end if x>=2 & x<=h-2 & y>=2 & y<=w-2 %若变换出的x和y在原图像范围内x_1=floor(x)-1; x_2=floor(x); x_3=floor(x)+1; x_4=floor(x)+2; y_1=floor(y)-1; y_2=floor(y); y_3=floor(y)+1; y_4=floor(y)+2; A=[sw(1+x-x_2),sw(x-x_2),sw(1-(x-x_2)),sw(2-(x-x_2))]; C=[sw(1+y-y_2),sw(y-y_2),sw(1-(y-y_2)),sw(2-(y-y_2))]; B=[ Img(x_1,y_1),Img(x_1,y_2),Img(x_1,y_3),Img(x_1,y_4); Img(x_2,y_1),Img(x_2,y_2),Img(x_2,y_3),Img(x_2,y_4); Img(x_3,y_1),Img(x_3,y_2),Img(x_3,y_3),Img(x_3,y_4); Img(x_4,y_1),Img(x_4,y_2),Img(x_4,y_3),Img(x_4,y_4)]; Imgnew3(u,v)=A*B*C'; end

用MATLAB实现拉格朗日插值和分段线性插值

用M A T L A B实现拉格朗 日插值和分段线性插值 The Standardization Office was revised on the afternoon of December 13, 2020

用MATLAB实现拉格朗日插值和分段线性插值 1、实验内容: 用MATLAB实现拉格朗日插值和分段线性插值。 2、实验目的: 1)学会使用MATLAB软件; 2)会使用MATLAB软件进行拉格朗日插值算法和分段线性 差值算法; 3、实验原理: 利用拉格朗日插值方法进行多项式插值,并将图形显式出来。 4、实验步骤及运行结果 (1)实现lagrange插值 1)定义函数: f = 1/(x^2+1) 将其保存在文件中,具体程序如 下: function y = f1(x) y = 1./(x.^2+1); 2)定义拉格朗日插值函数:将其保存在文件中,具体实现程序 编程如下: function y = lagrange(x0,y0,x) m = length(x); /区间长度/

n = length(x0); for i = 1:n l(i) = 1; end for i = 1:m for j = 1:n for k = 1:n if j == k continue; end l(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j); end end end y = 0; for i = 1:n y = y0(i) * l(i) + y; end 3)建立测试程序,保存在文件中,实现画图: x=-5::5; y=(1+x.^2).^-1; p=polyfit(x,y,n); py=vpa(poly2sym(p),10) plot_x=-5::5; f1=polyval(p,plot_x); figure pl ot(x,y,‘r',plot_x,f1) 输入n=6,出现下面的图形:

matlab插值计算

插值方法 晚上做一个曲线拟合,结果才开始用最小二乘法拟合时,拟合出来的东西太难看了! 于是尝试用其他方法。 经过一番按图索骥,终于发现做曲线拟合的话,采用插值法是比较理想的方法。尤其是样条插值,插完后线条十分光滑。 方法付后,最关键的问题是求解时要积分,放这里想要的时候就可以直接过来拿,不用死去搜索啦。呵呵 插值方法的Matlab实现 一维数据插值 MATLAB中用函数interp1来拟合一维数据,语法是YI = INTERP1(X,Y,XI,方法) 其中(X,Y)是已给的数据点,XI 是插值点, 其中方法主要有 'linear' -线性插值,默认 'pchip' -逐段三次Hermite插值 'spline' -逐段三次样条函数插值 其中最后一种插值的曲线比较平滑 例: x=0:.12:1; x1=0:.02:1;%(其中x=0:.12:1表示显示的插值点,x1=0:.02:1表示插值的步长) y=(x.^2-3*x+5).*exp(-5*x).*sin(x);

plot(x,y,'o'); hold on; y1=interp1(x,y,x1,'spline'); plot(x1,y1,':') 如果要根据样本点求函数的定积分,而函数又是比较光滑的,则可以用样条函数进行插值后再积分,在MATLAB中可以编写如下程序: function y=quadspln(x0,y0,a,b) f=inline('interp1(x0,y0,x,''spline'')','x','x0','y0'); y=quadl(f,a,b,1e-8,[],x0,y0); 现求sin(x)在区间[0,pi]上的定积分,只取5点 x0=[0,0.4,1,2,pi]; y0=sin(x0); I=quadspln(x0,y0,0,pi) 结果得到的值为2.01905,精确值为2 求一段matlab插值程序 悬赏分:20 - 解决时间:2009-12-26 19:57 已知5个数据点:x=[0.25 0.5 0.75 1] y=[0 0.3104 0.6177 0.7886 1] ,求一段matlab插值程序,求过这5个数据点的插值多项式,并在x-y坐标中画出y=f(x)图形,并且求出f (x)与x轴围成图形的面积(积分),不胜感激! 使用Lagrange 插值多项式的方法: 首先把下面的代码复制到M文件中,保存成lagran function [C,L]=lagran(X,Y) % input - X is a vector that contains a list of abscissas % - Y is a vector that contains a list of ordinates

matlab实现插值法和曲线拟合电子教案

m a t l a b实现插值法和 曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟 合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点 上取值为0。 2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

实验四用MATLAB实现拉格朗日插值、分段线性插值

实验四用MATLAB实现拉格朗日插值、分段线性插值一、实验目的: 1)学会使用MATLAB软件; 2)会使用MATLAB软件进行拉格朗日插值算法和分段线性差值算法; 二、实验内容: 1用MATLAB实现y = 1./(x.^2+1);(-1<=x<=1)的拉格朗日插值、分段线性 2.选择以下函数,在n个节点上分别用分段线性和三次样条插值的方法,计算m个插值点的函数值,通过数值和图形的输出,将插值结果与精确值进行比较,适当增加n,再作比较,由此作初步分析: (1).y=sinx;( 0≤x≤2π) (2).y=(1-x^2)(-1≤x≤1) 三、实验方法与步骤: 问题一用拉格朗日插值法 1)定义函数:y = 1./(x.^2+1);将其保存在f.m 文件中,程序如下: function y = f1(x) y = 1./(x.^2+1); 2)定义拉格朗日插值函数:将其保存在lagrange.m 文件中,具体实现程序编程如下:function y = lagrange(x0,y0,x) m = length(x); /区间长度/ n = length(x0); for i = 1:n l(i) = 1; end for i = 1:m for j = 1:n for k = 1:n if j == k continue; end

l(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j); end end end y = 0; for i = 1:n y = y0(i) * l(i) + y; end 3)建立测试程序,保存在text.m文件中,实现画图:x=-1:0.001:1; y = 1./(x.^2+1); p=polyfit(x,y,n); py=vpa(poly2sym(p),10) plot_x=-5:0.001:5; f1=polyval(p,plot_x); figure plot(x,y,‘r',plot_x,f1)

Matlab求解插值问题

Matlab求解插值问题 在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。 实例:海底探测问题 某公司用声纳对海底进行测试,在5×5海里的坐标点上测得海底深度的值,希望通过这些有限的数据了解更多处的海底情况。并绘出较细致的海底曲面图。 1、一元插值 一元插值是对一元数据点(x i,y i)进行插值。 线性插值:由已知数据点连成一条折线,认为相临两个数据点之间的函数值就在这两点之间的连线上。一般来说,数据点数越多,线性插值就越精确。 调用格式:yi=interp1(x,y,xi,’linear’) %线性插值 zi=interp1(x,y,xi,’spline’) %三次样条插值 wi=interp1(x,y,xi,’cubic’) %三次多项式插值说明:yi、zi、wi为对应xi的不同类型的插值。x、y为已知数据点。 例:已知数据: 求当x i=0.25时的y i的值。 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1 .6 .4 .8 1.5 2]; yi0=interp1(x,y,0.025,'linear') xi=0:.02:1; yi=interp1(x,y,xi,'linear'); zi=interp1(x,y,xi,'spline'); wi=interp1(x,y,xi,'cubic'); plot(x,y,'o',xi,yi,'r+',xi,zi,'g*',xi,wi,'k.-') legend('原始点','线性点','三次样条','三次多项式') 结果:yi0 = 0.3500

分段线性插值函数的编程实现

1 问题的提出 对2 1 ()1f x x = +在(-5,5)上进行分段线性插值,取不同节点个数n ,得到不同分段线性插值函数. 虽然MATLAB 里有直接分段线性插值的函数,但为了对分段插值算法有更明确的理解,编写该程序是有必要的. 需要解决的问题: 1、 由已知数据节点编写程序,实现分段线性插值函数,从而能由所编函数得到非节点的函数值. 2、 比较用不同节点数所得插值函数与真实函数的误差,从而得出节点数与插值效果的关系. 2 理论基础 分段线性插值适用于计算简单、光滑性要求不高的插值问题,且其整体逼近 )(x f 的效果较好. 从几何意义上看,分段线性插值就是用折线近似代替曲线错误!未找到引用源。. 设在区间[a,b]上取n+1个点 .a 110b x x x x n n =<<<<=- 函数)(x f 在上述节点处的函数值为 )(y i i x f = ,,2,1,0)(n i = 于是得到n+1个点

). , (, ), , (, , 1 1 0n n y x y x y x ) ( 连接相邻两点错误!未找到引用源。和) , ( 1 1+ +i i y x, , 2,1,0) (n i =,得一折线函数) (x ?,若满足: (1)) (x ?在[a,b]上连续; (2)错误!未找到引用源。) , ,2,1,0 (n i =; (3)) (x ?在每个小区间错误!未找到引用源。上是线性函数, 则称折线函数) (x ?为分段线性插值函数. 模型一: 由分段线性插值函数的定义可知,) (x ?在每个小区间错误!未找到引用源。上可表为 , ) ( 1 1 1 1 + + + + - - + - - = i i i i i i i i y x x x x y x x x x x ? 错误!未找到引用源。)1- , ,2,1,0 (n i =. ) (x ?是一分段函数,若用基函数表示,只需对1 , ,2,1,0- =n i 令 ? ? ? ? ? ? ? ? ? = ≤ ≤ - - = ≤ ≤ - - = + + + - - - ,其他 略去 略去 ) ( , ) ( , ) ( 1 1 1 1 1 1 n i x x x x x x x i x x x x x x x x l i i i i i i i i i i i 显然,() i l x是分段的线性连续函数,且满足 ? ? ? ≠ = = k i k i x l k i,0 ,1 ) ( 于是 ∑ = = n i i i x l y x ), ( ) (?b x a≤ ≤ 模型二:

用MATLAB实现拉格朗日插值和分段线性插值

用MATLAB实现拉格朗日插值和分段线性插值 1、实验内容: 用MATLAB实现拉格朗日插值和分段线性插值。 2、实验目的: 1)学会使用MATLAB软件; 2)会使用MATLAB软件进行拉格朗日插值算法和分段线性 差值算法; 3、实验原理: 利用拉格朗日插值方法进行多项式插值,并将图形显式出来。 4、实验步骤及运行结果 (1)实现lagrange插值 1)定义函数:f = 1/(x^2+1) 将其保存在f.m 文件中,具体程序 如下: function y = f1(x) y = 1./(x.^2+1); 2)定义拉格朗日插值函数:将其保存在lagrange.m 文件中, 具体实现程序编程如下: function y = lagrange(x0,y0,x) m = length(x); /区间长度/ n = length(x0);

for i = 1:n l(i) = 1; end for i = 1:m for j = 1:n for k = 1:n if j == k continue; end l(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j); end end end y = 0; for i = 1:n y = y0(i) * l(i) + y; end 3)建立测试程序,保存在text.m文件中,实现画图: x=-5:0.001:5; y=(1+x.^2).^-1; p=polyfit(x,y,n); py=vpa(poly2sym(p),10) plot_x=-5:0.001:5; f1=polyval(p,plot_x); figure plo t(x,y,‘r',plot_x,f1) 输入n=6,出现下面的图形: 通过上图可以看到当n=6是没有很好的模拟。

双线性插值-matlab实现

双线性插值算法 张俊飞一、算法简介 假设c[a]到c[a+1]之间是线性变化的,那么对于浮点数 x( a <= x < a+1) c(x) = c[a+1]*( x - a) + c[a]*( 1 + a - x); c(x) = c[a] + [ (c[a+1]-c[a])/(b-a)]*( x - a); b = a+1; c(x) = c[a] + [ c[a+1] - c[a]]*( x - a); 把这种插值方式扩展到二维情况:对于一个二维数组c, 我们假设对于任意一个浮点数i,c(a,i)到c(a+1,i)之间是线性变化的,c(i,b)到c(i,b+1)之间也是线性变化的(a,b都是整数) , 那么对于浮点数的坐标(x,y)满足(a <= x < a+1, b <= y < b+1),可以先分别求出c(x,b)和c(x,b+1): c(x,b) = c[a+1][b]*( x - a) + c[a][b]*( 1 + a - x); c(x,b+1) = c[a+1][b+1]*( x - a) + c[a][b+1]*( 1 + a - x); 现在已经知道c(x,b)和c(x,b+1)了,而根据假设c(x,b)到c(x,b+1)也是线性变化的,所以: c(x,y) = c(x,b+1)*( y - b) + c(x,b)*( 1 + b - y) 二、matlab实现 在command窗口输入chahzi('cameraman.tif',2),这里cameraman.tif为灰度图片,得到结果如下: origin image

result image 在command窗口输入chahzi('a.jpg',0.5),这里a.jpg为彩色图片,得到结果为: origin image

Matlab插值与拟合教程

MATLAB插值与拟合 §1曲线拟合 实例:温度曲线问题 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1. 1.线性拟合函数:regress() 调用格式:b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X处y的最小二乘拟合值。该函数求解线性模型: y=Xβ+ε β是p?1的参数向量;ε是服从标准正态分布的随机干扰的n?1的向量;y为n?1的向量;X为n?p矩阵。 bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε;求线性拟合方程系数。 程序:x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1) [b,bint]=regress(y,x,0.05) 结果:x = 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 y = 10.9567 11.8334

13.0125 14.0288 14.8854 16.1191 17.1189 17.9962 19.0327 20.0175 b = 9.9213 1.0143 bint = 9.7889 10.0537 0.9930 1.0357 即回归方程为:y=9.9213+1.0143x 2. 2.多项式曲线拟合函数:polyfit( ) 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval) 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2] n=3; p=polyfit(x,y,n) xi=linspace(0,1,100); z=polyval(p,xi); %多项式求值 plot(x,y,’o’,xi,z,’k:’,x,y,’b’) legend(‘原始数据’,’3阶曲线’) 结果: p = 16.7832 -25.7459 10.9802 -0.0035 多项式为:16.7832x3-25.7459x2+10.9802x-0.0035 曲线拟合图形:

相关文档
最新文档