遗传规划和进化策略混合算法及应用

遗传规划和进化策略混合算法及应用
遗传规划和进化策略混合算法及应用

遗传算法的优缺点

遗传算法属于进化算法( Evolutionary Algorithms) 的一种, 它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子: 选择、交叉和变异. 。数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。 生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法( GA)。算法中称遗传的生物体为个体( individual ),个体对环境的适应程度用适应值( fitness )表示。适应值取决于个体的染色体(chromosome),在算法中染色体常用一串数字表示,数字串中的一位对应一个基因 (gene)。一定数量的个体组成一个群体(population )。对所有个体进 行选择、交叉和变异等操作,生成新的群体,称为新一代( new generation )。遗传算法计算程序的流程可以表示如下[3]:第一步准备工作 (i)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m。通常用二 进制编码。 (2 )选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm (3、确定适应值函数f (x、。f (x、应为正值。 第二步形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂 面组作为初始群体。 第三步对每一染色体(串)计算其适应值fi ,同时计算群体的总适应值。 第四步选择 计算每一串的选择概率Pi=fi/F 及累计概率。选择一般通过模拟旋转滚花轮 ( roulette ,其上按Pi大小分成大小不等的扇形区、的算法进行。旋转M次即可选出M个串来。在计算机 上实现的步骤是:产生[0,1]间随机数r,若rpc ,则该串参加交叉操作,如此选出参加交叉的一组后,随机配对。 (2)对每一对,产生[1 , m]间的随机数以确定交叉的位置。 第六步变异 如变异概率为Pm则可能变异的位数的期望值为Pm x mx M,每一位以等概率变异。具体为 对每一串中的每一位产生[0 , 1]间的随机数r,若r

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

粒子群算法和遗传算法比较

粒子群算法和遗传算法比较 优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法. 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。 粒子群算法 1. 引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究,PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2. 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容 1. 研究如何利用计算技术研究生物现象 2. 研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的. 现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信

基于博弈论的协同进化算法

基于博弈论的协同进化算法:一种新的计算方法 摘要:博弈论是数学分析的方法,用于开发研究决策过程的。1928年,冯·诺依曼在数学上证明,每两个人,在zero sum那个游戏里,许多每个玩家纯的有限的策略是确定性。在50年代早期,纳什提出了另一个概念,作为推广冯·诺依曼理论的基础。博弈论另外一个主要成就就是引入演化博弈论,即媒介可以在缺乏合理性的情况下,采用最优战略。根据达尔文选择过程,媒介的人口数可以进化到由梅纳德·史密斯在1982年提出的进化稳定策略。为了跟上游戏理论研究的步伐,希利斯试用了第一台计算机的模拟进化。此外,考夫曼提出了NK模型,分析不同物种之间的协同进化动力学。他展示了协同进化的现象如何达到静止状态,这些状态是在博弈论中不是纳什的论均衡亦是ESS。 由于涉及共同进化现象的研究已发起,因此,已经很有很多其他研究人员在进行协同进化算法的研究。在这篇文章中,我们提出了一个新的协同进化算法,它是基于协同进化算法(GCEA)的,那就是博弈论。我们认为,通过搜索EES, 这种算法可以解决进化问题。我们解决了几个测试多目标优化问题(MOPS)用以评估此新的方法。从这些评估的结果,我们可以证实,进化博弈可由共同进化算法来实施。而且,通过比较我们的算法与其他进化算法的性能,分析出我们的性能较优化。 第一部分简介 博弈论被分成两大类,合作与不合作。非合作博弈论的目的,是充分说明合作以及不合作。因此在本文中,我们将非合作博弈理论作为关注的焦点,在1928年,冯·诺依曼已经奠定了非合作博弈论。同时,在1951年,纳什提出了另一个概念,作为概括冯·诺依曼理论的基础。在他的文章中,双人游戏的解决方案对于战略的最低要求就是候选人,作为一个对战略的最低要求是对两个人的游戏解决方案的候选人,他建议每个策略都要给对方最好的答复。这样一对策略,这是纳什均衡,成为现代化的基础非合作博弈论。 由于纳什均衡提出的非合作博弈的解决方案,因此寻求博弈均衡的研究已经开始了。在这些研究中,演化博弈论被看作是当特殊表型取决于人口频率变化是,研究表型水平变化的一种方式。列万廷第一次明确地应用博弈论在进化生物学。他的做法是寻求尽量减少物种灭绝可能性的策略,但是,是一个图片物种游戏,违反了自然规律。Slobodkin和拉波波特也进行了类似的研究。同时,汉密尔顿寻求一个无与伦比的战略,这个战略与梅纳德·史密斯和普赖斯定义的进化稳定策略(ESS)基本相同。 紧跟这些研究中,我们将协同进化算法试用于研究不同物种之间的进化。希尔利斯演示了如何将模拟进化应用于实际优化问题中,而且特别是寄生虫进化如何能提高协同进化的过程。模拟进化是对生物系统某些方面的理想化。还有,汉密尔顿同时使用计算机模拟和数学论证提出怎么进化能够产生遗传多样性。这改善了进化过程增加在优化效率。 几个研究共同进化的研究人员研究了演化博弈论这种现象。考夫曼基于NK类统计模型介绍了协同进化。他表示,协同进化的生态系统如何实现纳什均衡,以及如何稳定扰动这种均衡。在他的论文中,他描述了一种新型的调查协同进化问题的模型。这个模型与梅纳德·史密斯和普赖斯提出的ESS息息相关。与此同时,罗辛和贝尔柳提出,进化是假设通过博弈理论模型的基础上的,例如梅纳德·史密斯的ESS和囚徒困境逻辑。他们声称,它也出现在的人工智能游戏战略的演变上,其中潜在对手的范围使得难以建立一个单一,固定的,外源的适应度函数为通常用在遗传算法。 第二部分

负荷建模和参数辨识的遗传进化算法

ISSN 1000-0054CN 11-2223/N 清华大学学报(自然科学版)J T singh ua Un iv (Sci &Tech ),1999年第39卷第3期 1999,V o l.39,N o.311/34 37~40   负荷建模和参数辨识的遗传进化算法* 朱守真, 沈善德, 郑宇辉, 李 力, 艾 芊, 曲祖义 清华大学电机工程与应用电子技术系,北京100084; 东北电力集团公司,沈阳110006 收稿日期:1998-06-23 第一作者:女,1950年生,副教授 *基金项目:国家攀登计划B(85-35) 文 摘 提出了一种用于电力系统负荷建模和参数辨识的遗传进化算法,该方法与传统的最小二乘法相比具有全局搜索优化特点,适用于非线性、不连续或微分不连续的各种负荷模型。该方法已成功用于工业负荷实测数据辨识及动态和静态负荷建模。在静态负荷建模上,辨识结果略优于传统的最小二乘法,且通用性更好,只需做极小的修改就可以用于各种形式的静态负荷模型。在动态负荷建模上算法不仅给出了更优秀的结果,而且表现出很好的稳健性。结果表明此方法在负荷建模中的优势。 关键词 遗传进化算法;负荷建模;参数辨识分类号 T M 761 电力负荷模型是电力系统分析、规划、运行和计算的基础,尤其在计算中对电力系统动态行为的模拟结果影响很大。不同的计算需要采用不同的负荷模型,常规采用以不同比例的恒定阻抗、恒定电流、恒定功率或考虑不同动静比例负荷模型的方式使计算结果相差很大,甚至会导致完全错误的结论[1,2]。研究表明建立符合实际的负荷模型是十分必要的。负荷特性具有时变、非线形、不确定等多种特点,且实际负荷的用电设备构成差别很大,尤其是当电压或电流变化时,负荷产生突变,这也增加了建模的难度和复杂性。参数辨识是负荷建模的核心,目前常用的有最小二乘法、辅助变量法、分段线性多项式等方法,其中传统的方法不能有效地克服负荷建模中的非线性和不连续性等问题,会产生多值性等误差。近年来ANN 方法在建模方面已取得成功,但该方法更侧重于模拟模型的动态过程,且形成的结果是非参数模型。 遗传进化算法是模拟自然界进化中优胜劣汰的 优化过程,原则上能以较大的概率找到全局的最优解,具有并行、通用、鲁棒性强,全局收敛性好等优 点。研究人员已在发电规划[3],发电调度[4],无功优化[5]中用算例证明了EP 方法比传统的梯度寻优技术更优越。 本文采用遗传进化算法对静态、动态负荷进行了实测建模。 1 电力负荷的数学模型 本文主要描述以负荷特性来分类的静态和动态模型的建模方法。1.1 静态负荷模型 静态负荷模型表示某一时刻负荷所吸收的有功功率和无功功率与同一时刻负荷母线电压和频率之间的函数关系。静态负荷模型一般以幂函数和多项式模型表示。 本文以幂函数模型为例进行计算,幂函数表示的静态负荷特性如下: P =P 0U a 1f a 2, Q =Q 0 U b 1 f b 2 . (1) 定义误差函数 E w = N i =1 [W m (i )-W c (i )] 2 N (2)式中:N 为测量点数,W m (i )分别表示第i 次有功或无功功率测量值,W c (i )表示利用第i 次采样U i ,f i 的值由式(1)得到的有功或无功计算值,X p 、X q 是待辨识参数的向量: X p =[P 0,a 1,a 2], X q =[Q 0,b 1,b 2]. (3) 辨识问题表述为极小值寻优问题,即搜索一组参数使误差E w 达到最小值。1.2 动态负荷的模型 动态负荷模型表示某一时刻负荷所吸收的有功

遗传算法心得

最近在看遗传算法,查了很多资料,所以做了如下一些总结,也希望对后面研究的人有些帮助.因为初学GA,文中自己的见解,不一定全对,感兴趣的可以一起探讨. I简介 基本概念 遗传算法(Genetic Algorithms, GA)是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。 它模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。 GA的组成: (1)编码(产生初始种群) (2)适应度函数 (3)遗传算子(选择、交叉、变异) (4)运行参数 编码 基因在一定能够意义上包含了它所代表的问题的解。基因的编码方式有很多,这也取决于要解决的问题本身。常见的编码方式有: (1)二进制编码,基因用0或1表示(常用于解决01背包问题) 如:基因A:00100011010 (代表一个个体的染色体) (2)互换编码(用于解决排序问题,如旅行商问题和调度问题) 如旅行商问题中,一串基因编码用来表示遍历的城市顺序,如:234517986,表示九个城市中,先经过城市2,再经过城市3,依此类推。 (3)树形编码(用于遗传规划中的演化编程或者表示)

如,问题:给定了很多组输入和输出。请你为这些输入输出选择一个函数,使得这个函数把每个输入尽可能近地映射为输出。 编码方法:基因就是树形结构中的一些函数。 (4)值编码(二进制编码不好用时,解决复杂的数值问题) 在值编码中,每个基因就是一串取值。这些取值可以是与问题有关任何值:整数,实数,字符或者其他一些更复杂的东西。 适应度函数 遗传算法对一个个体(解)的好坏用适应度函数值来评价,适应度函数值越大,解的质量越好。适应度函数是遗传算法进化过程的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。 如TSP问题,遍历各城市路径之和越小越好,这样可以用可能的最大路径长度减去实际经过的路径长度,作为该问题的适应度函数。 遗传算子——选择 遗传算法使用选择运算来实现对群体中的个体进行优胜劣汰操作:适应度高的个体被遗传到下一代群体中的概率大;适应度低的个体,被遗传到下一代群体中的概率小。选择操作的任务就是按某种方法从父代群体中选取一些个体,遗传到下一代群体。 SGA(基本遗传算法)中采用轮盘赌选择方法。 轮盘赌选择又称比例选择算子,基本思想:各个个体被选中的概率与其适应度函数值大小成正比。设群体大小为n ,个体i 的适应度为Fi,则个体i 被选中遗传到下一代群体的概率为: 遗传算子——交叉 所谓交叉运算,是指对两个相互配对的染色体依据交叉概率按某种方式相互交换其部分基因,从而形成两个新的个体。交叉运算在GA中起关键作用,是产生新个体的主要方法。

介绍遗传算法的发展历程

介绍遗传算法的发展历程 遗传算法起源于对生物系统进行的计算机模拟研究。早在20世纪40年代,就有学者开始研究利用计算机进行生物模拟的技术,他们从生物学的角度进行了生物的进化过程模拟、遗传过程模拟等研究工作。 早期的研究特点是侧重于对一些复杂操作的研究。最早意识到自然遗传算法可以转化为人工智能算法的是J.H.Hnllaad教授。1965年,Holland教授首次提出了人工智能操作的重要性,并将其应用到自然系统和人工系统中。1967年,Holland教授的学生.J.D.Bagley在其博士论文中首次提出了“遗传算法”一词,并发表了遗传算法应用方面的第一篇论文,从而创立了自适应遗传算法的概念e J.D.Bagley发展了复制、交叉、变异、显性、倒位等遗传算子,在个体编码上使用了双倍体的编码方法。1970年,Cavicchio把遗传算法应用于模式识别。Holistien最早把遗传算法应用于函数优化。20世纪70年代初,Holland 教授提出了遗传算法的基本定理—模式定理,从而奠定了遗传算法的理论基础。模式定理揭示出种群中优良个体(较好的模式)的样本数将以指数级规律增长,因而从理论上保证了遗传算法是一个可以用来寻求最优可行解的优化过程。1975年,Holland教授出版了第一本系统论述遗传算法和人工自适应系统的专著《自然系统和人工系统的自适应性》。同年,K.A.De Song在博士论文《遗传自适应系统的行为分析》‘护结合模式定理进行了大量的纯数值函数优化计算实验,建立了遗传算法的工作框架,为遗传算法及其应用打下了坚实的基础,他所得

出的许多结论迄今仍具有普遍的指导意义。20世纪80年代,Hntland 教授实现了第一个基于遗传算法的机器学习系统—分类器系统(Classifier Systems,简称CS),提出了基于遗传算法的机器学习的新概念,为分类器系统构造出了一个完整的框架。1989年,D.J.Goldberg 出版了专著—《搜索、优化和机器学习中的遗传算法》。该书系统总结了遗传算法的主要研究成果,全面而完整地论述了遗传算法的基本原理及其应用。可以说这本书奠定了现代遗传算法的科学基础,为众多研究和发展遗传算法的学者所瞩目。1991年,L,Davis编辑出版了《遗传算法手册》一书,书中包括了遗传算法在科学计算、工程技术和社会经济中的大量应用样本,为推广和普及遗传算法的应用起到了重要的指导作用。1992年,J.R.Koza将遗传算法应用于计算机程序的优化设计及自动生成,提出了遗传规划(Genetic Programming,简称GP)的概念。

协同进化数值优化算法及其应用分析

Vol.32No.9 Sep.2016 赤峰学院学报(自然科学版)JournalofChifengUniversity(NaturalScienceEdition)第32卷第9期(上) 2016年9月协同进化数值优化算法及其应用分析 梁树杰 (广东石油化工学院高州师范学院,广东 高州525200) 摘 要:探讨协同进化数值优化算法在无约束优化、约束优化、多目标优化问题及其在不同领域的应用情况,旨在充分发 挥协同进化数值优化算法的作用,进而为各领域的发展奠定基础. 关键词:协同进化算法;数值优化;应用中图分类号:O224;TP273.1 文献标识码:A 文章编号:1673-260X(2016)09-0006-02 协同进化作为一种自然现象,具有普遍性,超过两个种群间经相互影响,便会出现此现象,可用于解释种群间的适应性,将其用于生物学研究,促进了生物进化.在进化计算研究方面,协同进化算法作为一种快速发展的最优化算法,他是传统进化算法的一种扩展.这种算法的模型包含了两个和多个种群.不同的种群在生态系统中协同进化,并且相互作用,最终使得生态系统不断进化[1].协同进化算法在许多领域得到了广泛的应用[2].在许多非常困难的问题上,协同进化算法都证明了其作为优化算法的有效性.文章综述了国内外学者的研究内容,介绍了进化算法、协同进化算法等,重点阐述了其在各类问题中的应用,旨在为协同进化数值优化算法的推广提供可靠的理论保障.1协同进化数值优化算法的概况1.1进化算法 在人类生存与发展过程中涉及众多的优化问题,与分析问题相比,优化问题属于逆问题,在求解方面具有较大的难度,造成此情况的原因主要为优化问题的可行解为无穷多个,但要在可行解集合中获取最优化解,通常情况下,利用数学规划法可实现对相关问题的处理,但实际计算过于繁琐,进而难以保证计算的准确性与有效性.为了满足实际需求,进化算法随之出现,它作为算法工具具有创新性与高效性,适应了数值优化问题的求解奠定了坚实的基础. 进化计算技术属于人工智能技术,它主要是通过对自然界生物进化过程及机制的模拟,以此实现了对相关问题的求解,其具有自组织、自适应与自学习的特点.进化算法是由生物学知识逐渐发展而来的,即:生物种群的优胜劣汰、遗传变异等,在此过程中生命个体对环境的适应力不断在 增强.通过国内外学者的不断探索与研究,进化算法及其相关的计算智能方法日渐丰富,其中进化数值优化算法吸引了众多学者的目光[3]. 与传统优化算法相比, 进化算法具有一定的特殊性,其优势显著,主要表现在以下几方面:处理对象为编码,通过编码操作,使参数集成为个体,进而利于实现对结构对象的直接操作;便于获得全局最优解,借助进化算法,可对群体中的多个个体进行同时处理,从而提高了计算准确性,降低了计算风险性;不需要连续可微要求,同时可利用随机操作与启发式搜索,从而保证了搜索的明确性与高效性,在此基础上,它在各个领域的应用均取得了显著的成效,如:函数优化、自动控制、图像处理等.但进化算法也存在不足,主要表现为其选择机制仍为人工选择,在实际问题处理过程中,难以发挥指导作用;同时,局部搜索能力相对较差,难以保证解的质量[4]. 为了弥补进化算法的不足,相关学者通过研究提出了新型计算智能方法,具体包括免疫进化算法,它主要是利用自然免疫系统功能获得的,此方法在数据处理、故障诊断等方面均扮演着重要的角色;Memetic算法属于混合启发式搜索算法,其利用了不同的搜索策略,从而保证了其应用效果;群智能算法主要分为两种,一种为蚁群算法,另一种为粒子群算法,前者可用于多离散优化问题方面;后者主要利用迭代从而获取了最优解,由于其具有简便性与实用性,因此其应用较为广泛;协同进化算法作为新型进化算法,其分析了种群与环境二者间的关系,并对二者进化过程中的协调给予了高度关注[5].1.2协同进化算法 收稿日期:2016-05-23 基金项目:广东省教育研究院课题项目(GDJY-2015_F-b057);茂名市青年名师培养项目成果 传统优化算法 协同进化算法 简化问题无法简化复杂的问题.简化问题,利用分解分解问题等方式,对复杂问题的简化,从而实现求解.兼容性相对简单,算法相对独立.兼具了不同优点,发挥了不同搜索算法的作用,保证了种群间的有效协同进化. 应用领域 应用领域相对独立. 适应了各领域的需求,在各个领域均涉及协同思想. 表一 协同进化算法与传统优化算法的对比 在数值优化领域中应用协同进化算法,相关的研究成果主要体现在无约束优化、约束优化与多目标优化等方面. 在第一类问题方面.对于进化算法而言,其经典的应用领域 便是无约束数值优化,经过不断实际,此技术的应用日渐成 6-- DOI:10.13398/https://www.360docs.net/doc/588373687.html,ki.issn1673-260x.2016.17.003

遗传算法解释及代码(一看就懂)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。 一.进化论知识 作为遗传算法生物背景的介绍,下面内容了解即可: 种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。 个体:组成种群的单个生物。 基因 ( Gene ) :一个遗传因子。 染色体 ( Chromosome ):包含一组的基因。 生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。 遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。 简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。 二.遗传算法思想 借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。 举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中

遗传算法学习心得体会

遗传算法 概念 遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种高效、并行、全局搜索的方法,它既能在搜索中自动获取和积累有关空间知识,并自适应地控制搜索过程以求得最优解遗传算法操作使用适者生存的原则,在潜在的解决方案种群中逐次产生一个近视最优方案。在遗传算法的每一代中,根据个体在问题域中的适应度值和从自然遗传学中借鉴来的再造方法进行个体选择,产生一个新的近视解。这个过程导致种群中个体的进化,得到的新个体比原个体更适应环境,就像自然界中的改造一样。 应用 遗传算法在人工智能的众多领域具有广泛应用。例如,机器学习、聚类、控制(如煤气管道控制)、规划(如生产任务规划)、设计(如通信网络设计、布局设计)、调度(如作业车间调度、机器调度、运输问题)、配置(机器配置、分配问题)、组合优化(如tsp、背包问题)、函数的最大值以及图像处理和信号处理等等。遗传算法多用应与复杂函数的优化问题中。 原理 遗传算法模拟了自然选择和遗传中发生的复制、交叉、和变异等现象,从任一初始种群出发,通过随机选择、交叉、变异操作,产生一群更适合环境的个体,使群体进行到搜索空间中越来越好的区域,这样一代一代地不断繁衍进化,最后收敛到一群最适合环境的个体求得问题的最优解。 算法流程 1. 编码:解空间中的解数据x,作为作为遗传算法的表现型形式。从表现型到基本型的映射称为编码。遗传算法在进行搜索之前先将解空间的解数据表示成遗传空间的基本型串结构数据,这些串结构数据的不同的组合就构成了不同的点。 2. 初始种群的形成:随机产生n个初始串数据,每个串数据称为一个个体, n个串数据构成了一个群体。遗传算法以这n个串结构作为初始点开始迭代。设置进化代数计数器t 0;设置最大进行代数t;随机生成m个个体作为初始群体p(0)。 3. 适应度检测:适应度就是借鉴生物个体对环境的适应程度,适应度函数 就是对问题中的个体对象所设计的表征其优劣的一种测度。根据具体问题计算p(t)的适应度。 4. 选择:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到 下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。 5. 交叉:将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结 构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。 6. 变异:将变异算子作用于群体。即是对群体中的个体串的某些基因座上 的基因值作变动。 群体p(t)经过选择、交叉、变异运算之后得到下一代群体p(t+1)。 7. 终止条件判断:若t<=t,则t=t+1,转到第3步,否则以进化过程中所得 到的具有最大适应度个体作为最优解输出,终止计算。 遗传算法流程图如下图所示: 遗传算法 下几种:适应度比例方法、随机遍历抽样法、局部选择法。 其中轮盘赌选择法是最简单也是最常用的选择方法。在该方法中,各个个体的选择概率和其适应度值成比例。设群体大小为n,其中个体i的适应度为,则i 被选择的概率,为遗传算法

基于云推理的协方差矩阵自适应进化策略算法

第33卷第8期2016年8月 计算机应用与软件 Computer Applications and Software Vol.33 No.8 Aug.2016基于云推理的协方差矩阵自适应进化策略算法 乔帅续欣莹阎高伟 (太原理工大学信息工程学院山西太原〇3〇〇24) 摘要针对协方差矩阵自适应进化策略(C M A-E S)在求解某些问题时存在早熟收敛、精度不高等缺点,通过利用云模型良好的不确定性问题处理能力对C M A-E S的步长控制过程进行改进,得到一种基于云推理的改进C M A-E S算法。该算法通过建立步长控 制的云推理模型,采用云模型的不确定性推理来实现步长的控制,避免了原算法采用确定的函数映射进行步长伸缩变化而忽视进化 过程中不确定性的不足。最后通过测试函数验证了改进算法具有较高的寻优性能。 关键词协方差矩阵自适应进化策略云推理步长控制全局优化 中图分类号T P306.1文献标识码A D01:10. 3969/j. issn.1000-386x. 2016. 08. 054 IMPROVED CMA-ES ALGORITHM BASED ON CLOUD REASONING Qiao Shuai Xu Xinying Yan Gaowei (College of Information Engineering, Taiyuan University of Technology, Taiyuan 030024 , Shanxi, China) Abstract In order to overcome the shortcom ings o f covariance m a trix adaptation evo lu tion strategy (C M A-E S)such as prem ature conver-gence and low precision when being used in some o p tim isation p ro b le m s,b y m a kin g use o f the good a b ility o f cloud m odel in dealing w ith u n-ce rta in ty p ro b le m s,w e im prove the step-size control process o f C M A-E S and fin d a cloud reasoning-based im proved C M A-E S a lg o rith m.A fte r b u ild in g the cloud reasoning m odel o f step-size c o n tro l,the im proved a lgo rithm achieves step-size con trol by using u n ce rta in ty reasoning of cloud m o d e l,a n d avoids the d e ficie n cy o f o rig in a l a lgo rithm that it uses d e te rm in istic fu n c tio n m apping fo r step-size scale b u t ignores the u n-ce rta in ty in evo lu tio n process.F in a lly,through test fu n ctio n s we v e rify th a t the im proved a lgo rithm has h ig h e r o p tim isation perform ance. Keywords Covariance m a trix adaptation evo lu tion strategy (C M A-E S)C loud reasoning Step-size con trol G lobal op tim isation 〇引言 协方差矩阵自适应进化策略(C M A-E S)是一种高效的群体 随机搜索进化策略算法,具有不依赖种群大小、收敛速度快、全 局性能好等优点,以其优良的寻优性能在实值优化领域备受关 注[1]。同其他进化类算法一样,其在求解某些复杂的多峰函数 问题时仍存在易早熟收敛、求解精度不高等缺点。 目前,许多学者从不同的角度对算法进行了改进。文献 [2]为算法设置重启,通过动态地增大种群规模来获得较强的 全局搜索性能;文献[3]通过正交设计构造正交试验向量来引 导算法跳出局部最优;文献[4]通过限制协方差矩阵为对角阵 来降低算法的时空复杂度。 云模型具有良好的不确定性建模与处理能力W。近年来,众多学者将云模型应用于进化算法领域,取得了一定的成果。其中,文献[6]提出云遗传算法(C G A),利用Y条件云实现交叉 操作,基本云实现变异操作,最后证明了算法的有效性,具有一 定的参考价值。文献[7]提出了基于云模型的进化算法,在定 性知识的控制下自适应地控制遗传和变异的程度,较好地避免 了传统G A易陷人局部和早熟收敛等问题。文献[8]将云模型 与粒子群算法(PS0)结合,通过将粒子分群,利用X条件云自适 应地控制普通粒子的惯性权重,具有较高的计算精度和较快的收敛速度。 进化过程充满了不确定性,C M A-E S中种群进化的步长采 用确定函数映射进行伸缩变化,其不能很好地反映进化过程的 不确定性。本文基于云模型对不确定性问题良好的处理能力,通过利用云模型的不确定推理对C M A-E S步长控制进行改进, 得到了一种基于云推理的C M A-E S改进算法。该算法利用云模 型对不确定性问题良好的建模和推理能力来克服C M A-E S中步 长确定性控制过程的不足,通过建立求解问题的步长控制云推 理模型,来更好地处理和利用进化过程中的不确定性。最后通 过测试函数的数值优化实验,验证了算法在求解成功率、求解精 度、稳定性和收敛速度等方面的良好性能。 1 CMA-ES 算法 C M A-E S算法是在进化策略(E S)算法的基础上发展起来的 一种算法,其继承了基本E S的优点,并与高引导性的协方差矩 阵结合起来。C M A-E S的主要操作是变异,变异操作通过采样 多维正态分布来实现,算法的实现过程为: 算法1 C M A-E S算法 收稿日期:2015 -03 - 27。国家自然科学基金项目(61450011);山西省自然科学基金项目(2011011012 - 2)。乔帅,硕士生,主研领域:智能信息处理与进化计算。续欣莹,副教授。阎高伟,教授。

遗传算法及其发展状况研究

关于遗传算法的文献综述 班级:13级机械(4)班学号:913101140439 姓名:元志斌 关键词:遗传算法,编码,搜索,优化,交叉,遗传 摘要:遗传算法是一种基于生物进化自然选择和群体遗传机理的,适合于复杂系统优化的自适应概率优化技术,近年来,因为遗传算法求解复杂优化问题的巨大潜力和在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注,本文介绍了遗传算法研究现状和发展的前景,概述了它的理论和技术,并对遗传算法的发展情况发表了自己的看法。Abstract:Genetic algorithm is a kind of natural selection and based on biological evolution of gen etic mechanism, group suitable for complex system optimization adaptive probability optimizatio n technique, in recent years, because genetic algorithm for solving complex optimization problem in the huge potential and the successful application of industrial engineering, this algorithm was wide attention of scholars at home and abroad, this paper introduces the current research status and development of genetic algorithm, summarizes the prospect of its theory and technology of genetic algorithm and the development of published opinions of his own. 1.引言 遗传算法Genetic Algorithm(GA)是由美国密歇根大学的John H. Holland教授及其学生于20世纪60年代末到70年代初提出的。它是以达尔文的自然进化论“适者生存、优胜劣汰”和孟德尔遗传变异理论为基础,模拟生物进化过程。它具有大范围快速全局搜索能力,能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求的最优解。正是遗传算法的诸多特点,使得它在求解组合优化、机器学习、并行处理等问题上得到了广泛的应用。普通遗传算法是通过模拟染色体群的选择、交叉和变异等操作,不断迭代,最终收敛到高适应度值的染色体,从而求得问题的最优解。但是随着问题规模的扩大,组合优化问题的搜索空间急剧扩大,普通遗传算法的收敛速度慢、易陷入局部最优的缺点就暴露了。而佳点集遗传算法正是通过佳点集的方法改进交叉算子,加快算法收敛到全局最优解的速度,降低发生早熟的概率,提高整个算法的计算效率。 2.国内外相关研究现状 遗传算法的鼻祖是美国Michigan大学的Holland教授及其学生。他们受到生物模拟技术的启发,创造了一种基于生物遗传和进化机制的适合于复杂系统优化的自适应概率优化技术

求矩阵特征值特征向量的进化策略算法

求解矩阵特征值及特征向量的进化策略新方法 夏慧明周永权 (广西民族大学数学与计算机科学学院,南宁,530006) 摘要:提出了一种基于进化策略求解矩阵特征值及特征向量的新方法。该方法可用于求解任意实矩阵的特征值及特征向量。实验结果表明,这种基于进化策略求解矩阵特征值及特征向量的方法,相比传统方法,收敛速度较快,并且求解精度提高了10倍。该算法能够快速有效地获得任意矩阵对应的特征值及特征向量。 关键词:实矩阵;特征值;特征向量;进化策略 中图法分类号:TP183 A New Evolution Strategy Method for Solving Matrix Eigenvalues and Eigenvectors Xia huiming Zhou Yongquan (College of math and computer science, Guangxi University for Nationalities, Nanning 530006) Abstract:In this paper, a new Evolution Strategy method for solving matrix eigenvalues and eigenvectors was proposed. Any real matrix’s eigenvalues and eigenvectors can be solved by this method. Several experimental results show that the proposed Evolution Strategy method is more efficient and feasible in solving the matrix’s eigenvalues and eigenvectors of arbitrary matrix than the tradition method. It was found that the accuracy is ten times higher than the old method and the speed convergent quickly. Keywords: real matrix; eigenvalues; eigenvectors; evolution strategy 1 引言 在科学和工程计算中,求解矩阵的特征值及特征向量,是最普遍的问题之一。在许多应用领域,经常使用矩阵的特征值及特征向量,如主成分分析、因子分析等都必须计算相

相关文档
最新文档