时域分析方法时域分析方法

时域分析方法时域分析方法
时域分析方法时域分析方法

线性系统的时域分析法第七讲

第三章 线性系统的时域分析法 3.1 引言 分析控制系统的第一步是建立模型,数学模型一旦建立,第二步 分析控制性能,分析有多种方法,主要有时域分析法,频域分析法,根轨迹法等。每种方法,各有千秋。均有他们的适用范围和对象。本章先讨论时域法。 实际上,控制系统的输入信号常常是不知的,而是随机的。很难用解析的方法表示。只有在一些特殊的情况下是预先知道的,可以用解析的方法或者曲线表示。例如,切削机床的自动控制的例子。 在分析和设计控制系统时,对各种控制系统性能得有评判、比较的依据。这个依据也许可以通过对这些系统加上各种输入信号比较它们对特定的输入信号的响应来建立。 许多设计准则就建立在这些信号的基础上,或者建立在系统对初始条件变化(无任何试验信号)的基础上,因为系统对典型试验信号的响应特性,与系统对实际输入信号的响应特性之间,存在着一定的关系;所以采用试验信号来评价系统性能是合理的。 3.1.1 典型试验信号 经常采用的试验输入信号: ① 实际系统的输入信号不可知性; ② 典型试验信号的响应与系统的实际响应,存在某种关系; ③ 电压试验信号是时间的简单函数,便于分析。 突然受到恒定输入作用或突然的扰动。如果控制系统的输入量是随时间逐步变化的函数,则斜坡时间函数是比较合适的。 (单位)阶跃函数(Step function ) 0,)(1≥t t 室温调节系统和水位调节系统 (单位)斜坡函数(Ramp function ) 速度 0,≥t t ∝ (单位)加速度函数(Acceleration function )抛物线 0,2 12 ≥t t (单位)脉冲函数(Impulse function ) 0,)(=t t δ 正弦函数(Simusoidal function )Asinut ,当输入作用具有周期性变化时。 通常运用阶跃函数作为典型输入作用信号,这样可在一个统一的基础上对各种控制系统的特性进行比较和研究。本章讨论系统非周期信号(Step 、Ramp 、对正弦试验信号相应,将在第五章频域分析法,第六章校正方法中讨论)作用下系统的响应。 3.1.2 动态过程和稳态过程

第三章控制系统的时域分析法知识点

第三章 控制系统的时域分析法 一、知识点总结 1.掌握典型输入信号(单位脉冲、单位阶跃、单位速度、单位加速度、正弦信号)的拉氏变换表达式。 2.掌握系统动态响应的概念,能够从系统的响应中分离出稳态响应分量和瞬态响应分量;掌握系统动态响应的性能评价指标的概念及计算方法(对于典型二阶系统可以直接应用公式求解,非典型二阶系统则应按定义求解)。 解释:若将系统的响应表达成拉普拉氏变换结果(即S 域表达式),将响应表达式进行部分分式展开,与系统输入信号极点相同的分式对应稳态响应;与传递函数极点相同的分式对应系统的瞬态响应。将稳态响应和瞬态响应分式分别进行拉氏逆变换即获得各自的时域表达式。 性能指标:延迟时间、上升时间、峰值时间、调节时间、超调量 3.掌握一阶系统的传递函数形式,在典型输入信号下的时域响应及其响应特征;掌握典型二阶系统的传递函数形式,掌握欠阻尼系统的阶跃响应时域表达及其性能指标的计算公式和计算方法;了解高阶系统的性能分析方法,熟悉主导极点的概念,定性了解高阶系统非主导极点和零点对系统性能的影响。 tr tp ts td

4.熟悉两种改善二阶系统性能的方法和结构形式(比例微分和测速反馈),了解两种方法改善系统性能的特点。 5.掌握系统稳定性分析方法:劳斯判据的判断系统稳定性的判据及劳斯判据表特殊情况的构建方法(首列元素出现0,首列出现无穷大,某一行全为0);掌握应用劳斯判据解决系统稳定裕度问题的方法。了解赫尔维茨稳定性判据。 6.掌握稳态误差的概念和计算方法;掌握根据系统型别和静态误差系数计算典型输入下的稳态误差的方法(可直接应用公式);了解消除稳态误差和干扰误差的方法;了解动态误差系数法。 二、相关知识点例题 例1. 已知某系统的方块图如下图1所示,若要求系统的性能指标为: δδ%=2222%,tt pp=1111,试确定K和τ的值,并计算系统单位阶跃输入下的特征响应量:tt,tt。 图1 解:系统闭环传递函数为:Φ(s)=CC(ss)RR(ss)=KK ss2+(1+KKKK)ss+KK 因此,ωnn=√KK,ζζ=1+KKKK2√KK, δ%=e?ππππ?1?ππ2?ζζ=0.46, t pp=ππωωdd=1ss?ωdd=ωnn?1?ζζ2=3.14 ?ωnn=3.54 K=ωnn2=12.53,τ=2ζζωnn?1KK=0.18 t ss=3ζζωωnn=1.84ss

第三章 时域分析法 习题

第三章时域分析法 3-1两相交流电动机,使用在简单位置控制系统中见习题3-1图。假设作误差检测器用的差动放大器增益为10,且它供电给控制磁场。 ω和阻尼系数ζ等于什么? 试问a)无阻尼自然频率n b)相对超调量和由单位阶跃输入引起峰值的时间等于什么? c)写出关于单位阶跃输入下的误差时间函数。 习题3-1图 3-2 差动放大器的增益增加至20,重做习题3-1。并问从你的结果中能得出什么结论? 3-3 两相交流感应电动机采用齿轮传动和负载链接,使用在简单位置系统中,见习题3-1图。假设作误差检测器用的差动放大器增益为20,且由它供电给控制磁场。试问 ω和阻尼系数ζ等于什么? a)无阻尼自然频率n b)相对超调量和由单位阶跃输入下的峰值的时间等于什么? c)写出关于单位阶跃输入下的误差时间函数。 3-4 差动放大器的增益增至40,重做习题3-3.并问从你的结果中能得出什么结论? 3-5 差动放大器的增益减至10,重做习题3-3.并从你的结果中可得出什么结论? 3-6 综合典型有翼可控导弹控制系统,可使用转矩作用于导弹弹体的方法。这些转矩由作用在离重心很远的控制翼面的偏斜来产生。这样做的结果可以用相对小的翼面负载,就能引起较大的转矩。对这一类型控制系统的设计,为使输入指令响应时间最小,就要求控制回路具有高增益。而又必须限制增益在不引起高频不稳定范围内。习题3-6图表示导弹加速度控制操纵系统。给定加速度与加速度计输出量比较,发出驱动控制系统的节本误差信号。由速度陀螺仪的输出作为阻尼。 试求出下列各式: a)确定这一系统的传递函数C(s)/R(s)。 b)对应一下的一组参数: 放大器增益= A k=16,飞行器增益系数=q=4,R k=4, ω和阻尼系数ζ。 确定该系统无阻尼自然频率n c)确定相对超调量和从加速度单位阶跃输入指令所引起的峰值时间。

第三章 时域分析

第3章 时域分析法 1.选择题 (1)一阶系统传递函数为 4 24 2++s s ,则其ξ,ωn 依次为( B ) A .2,1/2 B .1/2,2 C .2,2 D .1/2,1 (2)两个二阶系统的最大超调量δ相等,则此二系统具有相同的( B ) A .ωn B .ξ C .k D .ωd (3)一个单位反馈系统为I 型系统,开环增益为k ,则在r(t)=t 输入下系统的稳态误差为( A ) A . k 1 B .0 C .k +11 D .∞ (4)某系统的传递函数为) 16)(13(18 )(++= s s s G ,其极点是 ( D ) A .6,3-=-=s s B .6,3==s s C .61,31- =-=s s D .6 1,31==s s (5)二阶最佳系统的阻尼比ζ为( D ) A. 1 B. 2 C. 0.1 D. 0.707 (6)对于欠阻尼系统,为提高系统的相对稳定性,可以( C ) A .增大系统的固有频率; B. 减小系统固有频率 C. 增加阻尼 D. 减小阻尼 (7)在ζ不变的情况下,增加二阶系统的无阻尼固有频率,系统的快速性将( A ) A. 提高 B. 降低 C. 基本不变 D. 无法得知 (8)一系统对斜坡输入的稳态误差为零,则该系统是( C ) A.0型系统 B. I 型系统 C. II 型系统 D. 无法确定 (9)系统 ) )((b s a s s c s +++的稳态误差为0,它的输入可能是( A )

A.单位阶跃 B.2t C.2 t D. 正弦信号 (10)系统开环传函为 ) 1)(1(1 32 +++s s s s ,则该系统为( B )系统 A.0型 B.I 型 C. II 型 D.III 型 2.为什么自动控制系统会产生不稳定现象?开环系统是不是总是稳定的? 答:在自动控制系统中,造成系统不稳定的物理原因主要是:系统中存在惯性或延迟环节,它们使系统中的信号产生时间上的滞后,使输出信号在时间上较输入信号滞后了r时间。当系统设有反馈环节时,又将这种在时间上滞后的信号反馈到输入端。 3.系统的稳定性与系统特征方程的根有怎样的关系?为什么? 答:如果特征方程有一个实根s=a ,则齐次微分方程相应的解为c(t)=Ce at 。它表示系统在扰动消失以后的运动过程中是指数曲线形式的非周期性变化过程。 若a 为负数,则当t →∞时,c(t)→0,则说明系统的运动是衰减的,并最终返回原平衡状态,即系统是稳定的。 则当t →∞时,c(t)→∞,则说明系统的运动是发散的,不能返回原平衡状态,即系统是不稳定的。 若a=0,c(t)→常数,说明系统处于稳定边界(并不返回原平衡状态,不属于稳定状态) 4.什么是系统的稳定误差? 答:自动控制系统的输出量一般都包含着两个分量,一个是稳态分量,另一个是暂态分量。暂态分量反映了控制系统的动态性能。对于稳定的系统,暂态分量随着时间的推移。将逐渐减小并最终趋向于零。稳态分量反映系统的稳态性能,即反映控制系统跟随给定量和抑制扰动量的能力和准确度。稳态性能的优劣,一般以稳态误差的大小来衡量。 5.已知传递函数 )12.0/(10)(+=s s G 。 今欲采用加负反馈的办法,将过渡过程时间ts 减小为原来的0.1倍,并保证总放大系数不变。试确定参数Kh 和K0的数值。 解:首先求出系统传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。 一阶系统的过渡过程时间ts 与其时间常数成正比。根据要求,总传递函数应为 ) 110/2.0(10 )(+= s s φ 即 H H K s K s G K s G K s R s C 1012.010)(1)()() (00++= +=

【自动控制原理经典考试题目整理】第三章-第四章

自动控制原理经典考试题目整理 第三章-第四章 第三章时域分析法 一、自测题 1.线性定常系统的响应曲线仅取决于输入信号的______________和系统的特性,与输入信号施加的时间无关。 2.一阶系统1/(TS+1)的单位阶跃响应为。 3.二阶系统两个重要参数是,系统的输出响应特性完全由这两个参数来描述。4.二阶系统的主要指标有超调量MP%、调节时间ts和稳态输出C(∞),其中MP%和ts是系统的指标,C(∞)是系统的指标。 5.在单位斜坡输入信号的作用下,0型系统的稳态误差ess=__________。 6.时域动态指标主要有上升时间、峰值时间、最大超调量和__________。 7.线性系统稳定性是系统__________特性,与系统的__________无关。 8.时域性能指标中所定义的最大超调量Mp的数学表达式是__________。 9.系统输出响应的稳态值与___________之间的偏差称为稳态误差ess。 10.二阶系统的阻尼比ξ在______范围时,响应曲线为非周期过程。 11.在单位斜坡输入信号作用下,Ⅱ型系统的稳态误差ess=______。 12.响应曲线达到超调量的________所需的时间,称为峰值时间tp。 13.在单位斜坡输入信号作用下,I型系统的稳态误差ess=__________。 14.二阶闭环控制系统稳定的充分必要条件是该系统的特征多项式的系数_____________。15.引入附加零点,可以改善系统的_____________性能。 16.如果增加系统开环传递函数中积分环节的个数,则闭环系统的稳态精度将提高,相对稳定性将________________。 17.为了便于求解和研究控制系统的输出响应,输入信号一般采用__________输入信号。

第四章 时域分析1

第四章时域分析 完称设计后,可以验证设计在时域内的响应。Saber用瞬态分析来验证设计在时域内的响应,过程如下: 1、指定首个瞬态数据点 2、如果驱动源(Driving Source)是振荡器,要使用初始点文件(Initial Point File) 3、执行瞬态分析 4、查看瞬态分析结果 5、测量分析结果 6、制定下一步 ? 指定首个瞬态数据点 由于瞬态分析在分析运行时,使用初始点作为首个数据点,所以在瞬态分析之前,必须找到系统的工作点,可以用下列方法: ● 在瞬态分析面板内,指定Run DC Analysis First处为yes,该选择让Saber执行DC分 析来找到工作点,然后用计算的工作点作为首个数据点来进行瞬态分析。 ● 选择Analysis>Operating Point>Operating Point下拉菜单项,单独运行DC分析。大多 数情况下,Saber用DC Operating Point框中默认值就能找到合适的工作点。 ? 如果驱动源是振荡器 由于振荡器依赖噪声放大来启动的,而噪声又不是模拟器内在的,所以在瞬态分析运行开始时,必须改变初始点文件中的一些节点值以启动振荡器,详细情况看本章后边叙述。? 执行瞬态分析 1、显示瞬态分析对话框(Analysis>Time-domain>Transient)。 2、指定瞬态分析所要求的信息 瞬态分析设置面板如图4-1所示,要执行瞬态分析,必须指定下列信息: ● End Time(Basic标签):定义瞬态分析结束点。例如:如果驱动源是周期为10μS的 正弦函数,要查看前五个周期的瞬态响应,可以在该处键入50μ。 ● Start Time(Basic标签):定义瞬态分析开始点。默认情况下,该时间取决于初始点, 如果初始点被DC分析创建,该时间为0。 ● Time Step(Basic标签):作为瞬态分析中相邻计算点间重复的标尺,可以按下面的情 况设置其数值: ▲ 设计中有关时间常数的1/10 ▲ 驱动源方波最小的上升沿或下降沿 ▲ 正弦驱动源输入周期的1/100 3、指定要分析其波形的信号 Time-domain Transient Analyses面板提供下列两处来指定波形数据怎样被保存,用来画图和分析: ● Plot File(Input/Output标签):指定画图文件的名称,该文件包含了Signal List处定义 的信号的模拟结果。默认情况下,Saber为每个瞬态分析创建名为tr的画图文件,如果不想让Saber创建画图文件,在该处填入“_” ● Signal List(Input/Output标签):指定要保存模拟结果的信号,用于Saber画图。默认 情况下,信号列表只包含层次中顶级电路中的信号,如果要查看内层电路信号,必须将信号名称加入Signal List处。下列表格列出Signal List处语法的例子,在同一个Signal List处填加多个信号,用空格隔开。

第四章 测试系统特性

第四章测试系统特性 4.1 测试系统概述 测试系统是执行任务的传感器、仪器和设备的总称。现在习惯把具有自动化、智能化、可编程化等功能的测试系统称为现代测试系统。 这些装置和仪器对被测物理量进行传感、转换与处理、传送、显示、记录以及存储。测试系统的复杂程度取决于被测信息的难以程度以及所采用的试验方法。 典型测试系统的组成 研究测试系统的特性,就是研究系统的输入量x(t)、输出量y(t)和系统的传输特性h(t)三者之间的关系 系统分析中的三类问题: 1)当输入、输出是可测量的(已知),可以通 过它们推断系统的传递特性(系统辨识) 2)当系统的传递特性已知、输出可测量,可以通过它们推断导致该输出的输入量(反求) 3)如果输入和系统特性已知,则可以推断和估计系统的输出量(预测) 理想的测试系统应该具有单值的、确定的输入—输出关系。对于每一输入量都应该只有单一的输出量与之对应。知道其中一个量就可以确定另一个量。其中输入和输出成线性关系最佳。 测试装置能否实现准确测量,取决于其特性:

注:测试系统各特性是统一的,相互关联的。如动态特性方程一般可视为线性方程,但考虑静态特性的非线性、迟滞等因素,就成为了非线性方程。 1、静态特性:测量时,测试系统的输入和输出信号不随时间变化(或变化缓慢)。如温度测量、体重测量。静态测量时,测试系统表现出的响应特性称为静态响应特性。静态标准是一个试验过程,这一过程是在只改变测量系统的一个输入量,测量对应的输出量,由此得到输入与输出间的关系,作为静态特性。 静态特性包括线性度、灵敏度(Δy/Δx )、分辨力(能够测量的最小变化量)、回程误差(也称为迟滞)、零点漂移和灵敏度漂移等 2、动态特性:当被测量(输入)随时间快速变化时,测量输入与相应输出之间动态关系的数学描述。如心电图测量测量,热处理过程的温度测量、铸造过程的流量测量。动态测量:输入随时间变化,输出也随输入而变化。对迅速变化的物理量进行测定,要求动态测试仪器具有较高的动态响应特性 测试系统的(动态)数学模型主要有三种形式:①时域分析用的微分方程;②频域方程用的频率特性;③复频域用的传递函数 测量系统的微分方程(常系数微分方程、线性时不变系统) 传递函数 0 1110111)()()(a s a s a s a b s b s b s b s X s Y s H n n n n m m m m ++++++==---- 频响函数 ) ()()(ωωωj X j Y j H = 3、负载特性 当传感器安装到被测物体上或进入被测介质,要从物体与介质中吸收能量或产生干扰,使被测物理量偏离原来的量值,从而不可能实现理想的测量,这种现象称为负载效应。这种效应不仅发生在传感器和被测物体之间,还存在于测量系统的各个环节。对于电路间的级联来说,负载效应的程度决定于前级的输出阻抗和后级的输入阻抗。测量系统的负载特性是其固有特性,在进行测量或组成测量系统时,要考虑这种特性并将其影响降到最小。

三线性系统的时域分析法

第三章线性系统的时域分析法 一、教学目的与要求: 对本章的讲授任务很重,要使学生通过本章的学习建立起分析系统特性的概念及方法,围绕控制系统要解决的三大问题,怎样从动态性能、稳态性能及稳定性三方面衡量控制系统,要求学生掌握一阶、二阶系统的典型输入信号响应,参数变化对系统性能的影响,尤其是二阶系统参数与特征根的关系,系统稳定性的概念与判据方法,精度问题,即稳态误差的分析与求法。 二、授课主要内容: 本章着重讨论标准二阶系统的阶跃响应,明确系统的特征参数与性能指标的关系。通过对系统阶跃响应的分析,明确系统稳定的充要条件,掌握时域判稳方法。 1.系统时间响应的性能指标 1)典型输入信号 2)动态过程与稳态过程 3)动态性能与稳态性能 2.一阶系统的时域分析 3.二阶系统的时域分析 1)二阶系统数学模型的标准形式 2)二阶系统的瞬态响应和稳态响应 3)系统参数与特征根及瞬态响应的关系 4.高阶系统的时域分析 1)高阶系统的单位阶跃响应

2)闭环主导极点 5.性系统的稳定性分析 1)系统稳定的充分必要条件 2)劳斯—赫尔维茨稳定判据 6.线性系统的稳态误差计算 1)误差与稳态误差 2)系统类型与静态误差系数 (详细内容见讲稿) 三、重点、难点及对学生的要求(掌握、熟悉、了解、自学) 重点:二阶系统的特点,劳斯稳定判据,稳态误差。 难点:二阶系统阶跃响应与特征根及参数ζ和ωn的关系。 要求: 1.掌握一阶系统对典型试验信号的输出响应的推导,理解系统参数T和K的物 理意义。 2.重点掌握不同二阶系统阶跃响应的特点,及阶跃响应与特征根在根平面位置 之间的关系;理解系统参数ζ和ωn的物理意义。 3.掌握控制系统阶跃响应性能指标的含义,以及计算二阶欠阻尼系统性能指标 的方法。 4.掌握劳斯稳定判据判别系统稳定性的方法。 5.理解系统稳态误差与系统的“型”及输入信号的形式之间的关系。 6.理解高阶系统主导极点的概念,以及高阶系统可以低阶近似的原理。 7.了解根据系统的阶跃和脉冲响应曲线获得系统数学模型的方法。

第三章-连续时间线性定常系统时域分析-修订版-646302069word版本

第三章:连续时间线性定常系统时域分析 §3.1 系统的数学模型 LTI 系统中各参量之间的相互关系及其随时间的演化,可以由下列四种模型描述。 R 、L 、C 上的电压与电流关系——()()~e t i t 关系模型 ? 电阻: ()()1 i t e t R = (3-1) 或 ()()e t Ri t = (3-2) 图3-1 电阻 图3-2 电压作用于电阻产生电流 图3-3 电流作用于电阻产生电压 ? 电感: ()()()11 d p t i t e e t L L ττ-∞= =? (3-3) 或: ()()()d p d e t L i t L i t t == (3-4) 图3-4 电感上的直流不产生电压

图3-5 电流作用于电感产生电压 图3-6 电压作用于电感产生电流 ? 电容: ()()()d p d i t C e t C e t t == (3-5) 或: ()()()11 d p t e t i i t C C ττ-∞= =? (3-6) 图3-7 电容上的恒压不产生电流 图3-8 电压作用于电容产生电流 图3-9 电流作用于电容产生电压 ? 求和(相加): ()()()12y t f t f t =± (3-7) 图3-10 信号汇聚流图 ? 分支: ()()()123f t f t f t == (3-8) i(t)e(t)Cp i(t)e(t)Cp e(t)i(t)1Cp e(t)i(t)1Cp

图3-11 信号分支流图 须注意,信息可以拷贝,可以无限复制;而物质则只能被瓜分式共享。 LTI 连续时间系统的状态空间模型: 例1:如图3-12电路 求:(1)()()y t v t :,(2)()()()12:x t x t v t 、 解:列回路电流、电压方程: ()()()()()()()()()()()()()()()()()12122231221233421 220 302v t i t i t x t i t x t i t i t x t x t i t i t x t i t y t i t =-? ? =? ?=-?? ?++-=? -=? ?=? && 消去i 1、i 2、i 3,得下列方程: ()()()()()()()()()11221211122203200 3x t x t v t x t x t x t y t v t x t ?--?????????????=+?????????-????????????????????=+????????????? &L L &L L L L 状态方程观测方程 图3-12 例1电路图 ? 定义(状态):能够表征系统时域动力学行为的一组最小内部变量组。 ? 物理上,状态的维数dim (t ) = 系统中独立储能元件的个数 ? 状态的选取可以不唯一 ? 状态空间模型:

第四章 频域分析

第4章频域分析 前面三章中,我们已介绍了信号处理技术的理论基础。从本章开始,我们将具体介绍信号分析的方法。 信号分析和处理的目的是要提取或利用信号的某些特征。而信号既可以从时域描述,也可以从频域描述,因此,按分析域的不同,信号分析方法可分为时域分析法和频域分析法。在多数情况下,信号的频域表示比起其时域表示更加简单明了,容易解释和表征。因此,我们首先介绍信号的频域分析法。 4.1概述 一、频域分析法 1.定义 所谓信号的频域分析 .......,就是根据信号的频域描述(如DFT、FFT等)对信号的组成及特征量进行分析和估计。 2.频域分析的目的 (1)确定信号中含有的频率组成成份(幅值、能量、相位)和频率分布范围; (2)分析各信号之间的相互关系; (3)通过系统的输入与输出频谱,求得系统的传递函数,识别系统的动力学参数;(4)通过频谱分析,寻找系统的振动噪声源和进行故障诊断; 二、频谱 1.定义 所谓频谱,也就是信号的频域描述。 2.分类 对于不同的信号和分析参数,我们可以用不同类型的频谱来表示。 (1)周期信号:离散的 ...幅值谱、相位谱或功率谱 (2)非周期信号:连续的 ...幅值谱密度、相位谱密度或功率谱密度 (3)随机信号:具有统计特征 ....的功率谱密度 3.功率谱 (1)自功率谱:一个信号的能量(功率)沿频率轴的分布; (2)互功率谱:分析两个信号的互相关情况; 注意:由于互谱是从互相关的角度来描述信号的,所以互谱本身并不含有信号功率的意义。 .....................................4.倒频谱 所谓倒频谱,是指对功率谱再作一次“谱分析”以研究功率谱中的周期现象(如谐波引起的周期性功率谱峰值)。 5.相干分析 所谓相干分析,是指通过求解两个频谱的相干函数来研究它们之间的相关程度(如系统输出频谱与输入频谱的相关程度)。 三、谱估计 1.定义 由于我们所研究的实际信号通常是含有确定性信号的随机信号,且信号的测试只能在有限时间内进行,因此,我们不可能按定义从无限区间求得真实的频谱,而只能在有限域中进行计算(比如,由有限长的离散采样序列来求得频谱)。这种频谱实际上只是真实频谱的一种估计值,故称为谱估计。 2.分类

相关文档
最新文档