紫外可见分光光度法基本原理

紫外可见分光光度法基本原理
紫外可见分光光度法基本原理

紫外可见分光光度法基本原理

紫外可见分光光度法基本原理透射比和吸光度当一束平行光通过均匀的溶液介质时光的一部分被吸收一部分被器皿反射。设入射光强度为I0吸收光强度为Ia 透射光强度为It反射光强度为Ir则在进行吸收光谱分析中被测溶液和参比溶液是分别放在同样材料及厚度的两个吸收池中让强度同为I0的单色光分别通过两个吸收池用参比池调节仪器的零吸收点再测量被测量溶液的透射光强度所以反射光的影响可以从参比溶液中消除则上式可简写为透射光强度It与入射光强度I0之比称为透射比亦称透射率用T表示则有: 溶液的T越大表明它对光的吸收越弱反之T 越小表明它对光的吸收越强。为了更明确地表明溶液的吸光强弱与表达物理量的相应关系常用吸光度A表示物质对光的吸收程度其定义为: 则A值越大表明物质对光吸收越强。T及A都是表示物质对光吸收程度的一种量度透射比常以百分率表示称为百分透射比T吸光度A为一个无因次的量两者可通过上式互相换算。朗伯-比耳定律朗伯-比耳定律Lambert-Beer是光吸收的基本定律俗称光吸收定律是分光光度法定量分析的依据和基础。当入射光波长一定时溶液的吸光度A是吸光物质的浓度C及吸收介质厚度l吸收光程的函数。朗伯和比耳分别于1760年和1852年研究了这三者的定量关系。朗伯的结论是当用适当波长的单色光照射一固定浓度的均匀溶液时A与l成正比其数学式为: A kl 此即称为朗伯定律k为比例系数而比耳的结论是当用适当波长的单色光照射一固定液层厚度的均匀溶液时A与C成正比其数学表达式为: 此即称为比耳定律k称为比例系数合并上述k的数值取决于吸光物质的特性外其单位及数值还与C和l所采用的单位有关。l通常采用cm为单位并用b表示。所以k的单位取决C采用的单位。当C采用重量单位g/L时吸收定律表达为: a称为吸光系数单位为当C采用摩尔浓度mol/L时吸收定律表达为: ε称摩尔吸光系数单位为有时在化合物的组成不明的情况下物质的摩尔质量不知道

因而物质的量浓度无法确定就不能用摩尔吸光系数而是采用比吸光系数其意义是指质量分数为1的溶液用1cm吸收池时的吸光度这时吸光度为 : c的质量百分浓度ε、a、三者的换算关系为 Mr为吸收物质的摩尔质量在吸收定律的几种表达式中在分析上是最常用的ε也是最常用的有时吸收光谱的纵坐标也用ε或lgε表示并以最大摩尔吸光系数表示物质的吸收强度。ε是在特定波长及外界条件下吸光质点的一个特征常数数值上等于吸光物质的浓度为1 mol/L液层厚度为1cm时溶液的吸光度。它是物质吸光能力的量度可作为定性分析的参考和估计定量分析的灵敏度。朗伯比耳定律朗伯比耳定律的推导如下根据量子理论光是由光子所组成其它能量为。因此吸收光的过程就是光子被吸光质点如分子或离子的俘获使吸光质点能量增加而处于激发状态光子被俘获的几率取决于吸光质点的吸光截面积。如图1所示图1 辐射吸收示意图如有一束强度为Io的单色平行光束垂直通过一横截面积为S的均匀溶液介质。在吸收介质中光的强度为IxIx在光束通过介质的过程中因光能量不断被吸收而逐渐变小当光束通过一个很薄的介质层db后光强减弱了dIx 则厚度为db的吸收层对光的吸收率为量子理论表明光束强度可以看作是单位时间内流过光子的总数于是可以看作是光束通过吸收介质是每个光子被吸光物质吸收的平均几率。另一方面由于液层厚度db为无限小所以在这个小体积单元中所以吸光质点所占的吸收截面积之和dS与横截面积S之比也可看作为该截面上光子被吸收物质吸收的几率。因此就有如果吸收介质中含有m种不同的吸光质点而且它们之间没有相互影响设ai为第I种吸光质点对指定波长的吸收截面积dni为第I种吸光质点在db小体积单元之中的数目则代入上式则得到: 当光束通过液层厚度为b时对上式两

边积分得到: 根据吸光度的定义截面积S是均匀介质的体积V与液层度b之比即SV/b代入上式得到式中NA为阿佛加德罗常数。为第I种质点在均匀介质中的浓度Ci当V的单位为L时Ci为摩尔浓度。将0.4343NAai合并为常数当Ci为摩

尔浓度时该常数εi则得到上式表明当一束平行单色光通过一个均匀吸收介质时总吸光度等于吸收介质懈魑馕镏饰舛戎图次舛染哂屑雍托哉馐墙卸嘧分光度分析的理论基础。当吸收介质中只含有单一种吸收物质时上式简化为——朗伯比耳定律的常用表达式与测量仪器有关的因素图2 分析谱带的选择从理论上来说朗伯比耳定律上适用于单色光即单一波长的光但是紫外可见分光光度计从光源发出的连续光经单色器分光为了满足实际测量中需要有足够光强的要求入射光狭缝必须有一定的宽度。因此由出射光狭缝投射到被测溶液的光束并不是理论要求的严格单色光而是由一小段波长范围的复合光由分子吸收光谱是一种带状光谱吸光物质对不同波长光的吸收能力不同在峰值位置吸收能力最强ε最大用表示其他波长处ε都变小因此当吸光物质吸收复合光时表现吸光度要比理论吸光度偏低因此导致比耳定律的负偏离。在所使用的波长范围内吸光物质的吸光系数变化越大这种偏离就越显著。例如按图2的吸收光谱选择宽度作为入射光时吸光系数变化较小测量造成的偏离就比较小若选择谱带?的波长宽度作为入射光时吸光系数的变化很大测量造成的偏离也就很大。所以通常选择吸光物质的最大吸收波长即吸收带峰所对应的波长作为分析的测量波长这样不仅保证有较高的测量灵敏度而且此处的吸收曲线往往较为平坦吸光系数变化比较小比耳定律的偏离也比较小。对于比较尖锐的吸收带在满足一定的灵敏度要求下尽量避免用吸收峰的波长作为测量波长。投射被测溶液的光束单色性即波长范围越差引起的比耳偏离也越大所以在保证足够的光强前提下采用窄的入射光狭缝以减小谱带宽度降低比耳定律的偏离。与样品溶液有关的因素 ? 当吸收物质在溶液中的浓度较高时由于吸收质点之间的平均距离缩小邻近质点彼此的电荷分布会产生相互影响以致于改变它们对特定辐射的吸收能力即改变了吸光系数导致比耳定律的偏离。通常只有当吸光物质的浓度小于0.01 mol/L 的稀溶液中吸收定律才成立。 ? 推导吸收定律时吸光度的加和性隐含着测定溶液中各组分之间没有相互作用的假设。但实际上随着浓度的增大各组分之间甚至同组分的吸光质点之间

的相互作用是不可避免的。例如可以发生缔合、离解、光化学反应、互变异构及配合物配位数的变化等等会使被测组分的吸收曲线发生明显的变化吸收峰的位置、强度及光谱精细结构都会有所不同从而破坏了原来的吸光度与浓度之间的函数关系导致比耳定律的偏离。 ? 溶剂及介质条件对吸收光谱的影响十分重要。溶剂及介质条件如pH值经常会影响被测物理的性质和组成影响生色团的吸收波长和吸收强度也会导致吸收定律的偏离。 ? 当测定溶液有胶体、乳状液或悬浮物质存在时入射光通过溶液时有一不忿光会因散射而损失造成“假吸收”使吸光度偏大导致比耳定律得正偏离。质点的散射强度与照射光波长的四次方成反比所以在紫外光区测量时散射光的影响更大。 ? 此外吸收定律的偏离还与溶液的折射率有关摩尔吸光系数ε是真实摩尔吸光系数和溶液折射率的函数当稀溶液时n基本不变ε也基本不变而当浓度高时n变大ε变小导致比耳定律的偏离。主要组成部件各种型号的紫外可见分光光度计就其基本结构来说都是由五个基本部分组成即光源、单色器、吸收池、检测器及信号指示系统如图3 。图3 紫外-可见分光光度计基本结构示意图 1. 光源辐射源 ? 对光源的要求在仪器操作所需的光谱区域内能够发射连续辐射应有足够的辐射强度及良好

的稳定性辐射能量随波长的变化应尽可能小光源的使用寿命长操作方便。 ? 光源的种类分光光度计中常用的光源有热辐射光源和气体放电光源两类。前者用于可见光区如钨灯、卤钨灯等后者用于紫外光区如氢灯和氘灯等。 ? 钨灯和碘钨灯可使用的波长范围为340-2500nm。这类光源的辐射能量与施加的外加电压有关在可见光区辐射的能量与工作电压的4次方成正比光电流也与灯丝电压的n次方n1成正比。因此使用时必须严格控制灯丝电压必要时须配备稳压装置以保证光源的稳定。 ? 氢灯和氘灯可使用的波长范围为160-375nm由于受石英窗吸收的限制通常紫外光区波长的有效范围一般为200-375nm。灯内氢气压力为102Pa时用稳压

电源供电放电十分稳定光强度且恒定。氘灯的灯管内充有氢同位素氘其光谱分布与氢灯类似但光强度比同功率的氢灯大3-5倍是紫外光区应用最广泛的一种光源。 2. 单色器 ? 单色器的作用单色器是能从光源的复合光中分出单色光的光学装置其主要功能应该是能够产生光谱纯度高、色散率高且波长在紫外可见光区域内任意可调。单色器的性能直接影响入射光的单色性从而也影响到测定的灵敏度、选择性及校准曲线的线性关系等。 ? 单色器的组成单色器由入射狭缝、准光器透镜或凹面反射镜使入射光变成平行光、色散元件、聚焦元件和出射狭缝等几个部分组成。其核心部分是色散元件起分光作用。其他光学元件中狭缝在决定单色器性能上起着重要作用狭缝宽度过大时谱带宽度太大入射光单色性差狭缝宽度过小时又会减弱光强。 ? 色散元件的类型能起分光作用的色散元件主要是棱镜和光栅。 ? 棱镜有

玻璃和石英两种材料。它们的色散原理是依据不同波长的光通过棱镜时有不同的折射率而将不同波长分开。由于玻璃会吸收紫外光所以玻璃棱镜只适用于350-

3200nm的可见和近红外光区波长范围。石英棱镜适用的波长范围较宽为185-

4000nm即可用于紫外、可见、红外三个光谱区域。 ? 光栅是利用光的衍射和干涉

作用制成的。它可用于紫外、可见和近红外光谱区域而且在整个波长区域中具有良好的、几乎均匀一致的色散率且具有适用波长范围宽、分辨本领高、成本低、便于保存和易于制作等优点所以是目前用的最多的色散元件。其缺点是各级光谱会重叠而产生干扰。 3 .吸收池吸收池用于盛放分析的试样溶液让入射光束通过。吸收

池一般有玻璃和石英两个材料做成玻璃池只能用于可见光区石英池可用于可见光区及紫外光区。吸收池的大小规格从几毫米到几厘米不等最常用的是1厘米的吸收池。为减少光的反射损失吸收池的光学面必须严格垂直于光束方向。在离精度分析测定中尤其是紫外光区尤其重要吸收池要挑选配对使它们的性能基本一致因为吸收池材料本身及光学面的光学特性、以及吸收池光程长度的精确性等对吸光度的测量结果都有直接影响。 4. 光敏检测器 ? 检测器的作用检测器是一种光电转换元件

是检测单色光通过溶液被吸收后透射光的强度并把这种光信号转变为电信号的装置。 ? 对检测器的要求检测器应在测量的光谱范围内具有高的灵敏度对辐射能量的影响快、线性关系好、线性范围宽对不同波长的辐射响应性能相同且可靠有好的稳定性和低的噪音水平等。 ? 检测器的种类检测器有光电池、光电管和光电倍增管等。 ? 光电池主要是硒电池其灵敏度光区为310-800nm其中以500-600nm最为灵敏其特点是不必经放大就能产生可直接推动微安表或检流计的光电流。但由于它容易出现“疲劳效应”、寿命较短而只能用于低档的分光光度计中。 ? 光电管光电管在紫外可见分光光度计上应用很广泛。它以一弯成半圆柱且内表面涂上一层光敏材料的镍片作为阴极而置于圆柱形中心的一金属丝作为阳极密封于高真空的玻璃或石英中构成的当光照到阴极的光敏材

料时阴极发射出电子被阳极收集而产生光电流。结构如图4所示。图4 真空光电二极管随阴极光敏材料不同灵敏的波长范围也不同。可分为蓝敏和红敏两种光电管前者是阴极表面上沉积锑和铯可用于波长范围为210-625nm后者是阴极表面上沉积银和氧化铯可用波长范围为625-1000nm与光电池比较光电管灵敏度高、光敏范围宽、不易疲劳的优点。 ? 光电倍增管光电倍增管实际上是一种加上多级倍增电极的光电管其结构如图5所示。所示外壳由玻璃或石英制成阴极表面涂上光敏物质在阴极C和阳极A之间装有一系列次级电子发射极即电子倍增极D1、D2……等。阴极C和阳极A之间加直流高压约1000V当辐射光子撞击阴极时发射光电子该电子被电场加速并撞击第一倍增极D1撞出更多的二次电子依此不断进行像“雪崩”一样最后阳极收集到的电子数将是阴极发射电子的105-106倍。与光电管不同光电倍增管的输出电流随外加电压的增加而增加且极为敏感这是因为每个倍增极获得的增益取决于加速电压。因此光电倍增管的外加电压必须严格控制。光电倍增光的暗电流愈小质量愈好。光电倍增管灵敏度高是检测微弱光最常见的光电元件可以用较窄的单色器狭缝从而对光谱的精细结构有较好的分辨能力。图5 光电倍增管

工作原理图 5. 信号指示系统它的作用是放大信号并以适当的方式指示或记录。常用的信号指示装置有直流检流计、电位调零装置、数字显示及自动记录装置等。现在许多分光光度计配有微处理机一方面可以对仪器进行控制另一方面可以进行数据处理。紫外-可见分光光度计的类型 1. 单光束分光光度计其光路示意图如前面的图3所示经单色器分光后的一束平行光轮流通过参比溶液和样品溶液以进行吸光度的测定。这种简易型分光光度计结构简单操作方便维修容易适用于常规分析。国产722型、751 型、724型、英国SP500型以及Backman DU-8型等均属于此类光度计。 2. 双光束分光光度计其光路示意于图6。经单色器分光后经反射镜M1分解为强度相等的两束光一束通过参比池另一束通过样品池光度计能自动比较两束光的强度此比值即为试样的透射比经对数变换将它转换成吸光度并作为波长的函数记录下来。双光束分光光度计一般都能自动记录吸收光谱曲线。由于两束光同时分别通过参比池和样品池还能自动消除光源强度变化所引起的误差。这类仪器有国产710型、730型、740型等。图6 单波长双光束分光光度计原理图 3. 双波长分光光度计其基本光路如图7所示。由同一光源发出的光被分成两束分别经过两个单色器得到两束不同波长λ1和λ2的单色光利用切光器使两束光以一定的频率交替照射同一吸收池然后经过光电倍增管和电子控制系统最后由显示器显示出两个波长处的吸光度差值。对于多组分混合物、混浊试样如生物组织液分析以及存在背景干扰或共存组分吸收干扰的情况下利用双波长分光光度法往往能提高方法的灵敏度和选择性。利用双波长分光光度计能获得导数光谱。通过光学系统转换使双波长分光光度计能很方便的转化为单波长工作方式。如果能在λ1和λ2处分别记录吸光度随时间变化的曲线还能进行化学反应动力学研究。图7 双波长分光光度计光路示意图光度计的校正通常在实验室工作中验收新仪器或仪器使用过一段时间后都要进行波长校正和吸光度校正。建议采用下述的较为简便和实用的方法来进行校正。镨玻璃或钬玻璃都有若干特征的吸收峰可用来校正分光光度计的波长标尺前

者用于可见光区后者则对紫外和可见光区都适用。可用K2CrO4标准溶液来校正吸光度标度。将0.0400 g K2CrO4溶解于1L的0.05 mol?L-1 KOH溶液中在1 cm光程的吸收池中在25oC时用不同波长测得的吸光度值列于表1。表1 铬酸钾溶液的吸光度λ/nm 吸光度A λ/nm 吸光度A λ/nm 吸光度A λ/nm 吸光度A 20 0.4559 310 0.1518 380 0.9281 460 0.0173 230 0.1675 310 0.0458 390 0.6841

470 0.0083 240 0.2933 320 0.0620 400 0.3872 480 0.0035 250 0.4962 330 0.1457 410

0.1972 490 0.0009 260 0.6345 340 0.3143 420 0.1261 500 0.0000 270

0.7447 350 0.5528

430 0.0841 280 0.7235 360 0.8297 440 0.535 290 0.4295 370 0.9914 450 0.0325 仪器测量条件的选择仪器测量条件的选择饬坎ǔぁ?室宋舛确段Ъ耙瞧飨练炜矶鹊难?瘛?1. 测量波长的选择通常都是选择最强吸收带的最大吸收波长作为测量波长称为最大吸收原则以获得最高的分析灵敏度。而且在附近吸光度随波长的变化一般较小波长的稍许偏移引起吸光度的测量偏差较小可得到较好的测定精密度。但在测量高浓度组分时宁可选用灵敏度低一些的吸收峰波长ε较小作为测量波长以保证校正曲线有足够的线性范围。如果所处吸收峰太尖锐则在满足分析灵敏度前提下可选用灵敏度低一些的波长进行测量以减少比耳定律的偏差。 2. 适宜吸光度范围的选择任何光度计都有一定的测量误差这是由于测量过程中光源的不稳定、读数的不准确或实验条件的偶然变动等因素造成的。由于吸收定律中透射比T 与浓度C是负对数的关系从负对数的关系曲线可以看出相同的透射比读数误差在不同的浓度范围中所引起的浓度相对误差不同当浓度较大或浓度较小时相对误差都比较大。因此要选择适宜的吸光度范围进行测量以降低测定结果的相对误差。根据吸收定律微分后得写成有限的小区间为即浓度的相对偏差为要使测定结果的相对

偏差Δc/c最小上式对T求导应有一极小值即解得或表明当吸光度A0.434时仪器的测量误差最小。这个结果也可以从图8表示即图中曲线的最低点。当A大或图8 浓度测量的相对误差Δc/c与溶液透射比T的关系小时误差都变大。在吸光分析中一般选择A的测量范围为0.2-0.8T为65-15此时如果仪器透射率读数误差ΔT为1时由此引起的测定结果相对误差Δc/c约为3。在实际工作中可通过调节待测溶液的浓度或选用适当厚度的吸收池的方法共獾玫奈舛嚷湓谒蟮姆段凇?3. 仪器狭缝宽度的选择狭缝的宽度会直接影响到测定的灵敏度和校准曲线的线性范围。狭缝宽度过大时入射光的单色光降低校准曲线偏离比耳定律灵敏度降低狭缝宽度过窄时光强变弱势必要提高仪器的增益随之而来的是仪器噪声增大于测量不利。选择狭缝宽度的方法是测量吸光度随狭缝宽度的变化。狭缝的宽度在一个范围内吸光度是不变的当狭缝宽度大到某一程度时吸光度开始减小。因此在不减小吸光度时的最大狭缝宽度即是所欲选取的合适的狭缝宽度。显色反应条件的选择显色反应条件的选择包括显色剂及其用量的选择、反应酸度、温度、时间等的选择。 1. 显色剂及其用量显色反应中的显色剂应该是它与待测离子显色反应的产物组成恒定、稳定性好、显色条件易于控制产物对紫外、可见光有较强的吸收能力即ε大显色剂与产物的颜色对照性好即吸收波长有明显的差别一般要求Δ60nm。表2列出了几种常见的显色剂。显色剂选定了以后还必须选择显色剂的用量。生成化合物的显色反应可用下式表示显色剂选定了以后还必须选择显色剂的用量。生成配合物的显色反应可用下式表示式中M代表待测金属离子R为配位体显色剂βn为配合物累积稳定常数。从上式可见当R的平衡浓度R 一定时M生成MRn的转化率才一定。对βn很大的稳定配合物来说只要显色剂适当过量时显色反应都会基本定量完成显色剂过量的多少影响不明显而对于βn小的不稳配合物或可行成逐级配合物时显色剂的用量关系较大一般就需过量较多或必须严格控制用量。如以CNS作为

显色剂测定钼时要求生成红色的MoCNS5配合物进行测定当CNS浓度过高时会生成而使颜色变浅ε降低而用CNS-测定Fe?时随CNS浓度增大

配合物逐渐增加颜色也逐步加深。因此必须严格控制CNS的用量才能获得准确的分析结果。显色剂用量可通过实验选择在固定金属离子浓度的情况下作吸光度随显色剂浓度的变化曲线选取吸光度恒定时的显色剂用量。表2 一些常用的显色剂试剂结构式离解常数测定离子无机显色剂硫氰酸盐 SCN pKa0.85 Fe2M? W? 钼酸盐 MoO42 pKa23.75 Si.

紫外可见分光光度法

1、什么是透光率?什么是吸光度?什么是百分吸光系数和摩尔吸光系数 2、举例说明生色团和助色团,并解释长移和短移。 4、电子跃迁有哪几种类型?跃迁所需的能量大小顺序如何?具有什么样结构的化合物产生紫外吸收光谱?紫外吸收光谱有什么特征? 5、以有机化合物的基团说明各种类型的吸收带,并指出各吸收带在紫外—可见吸收光谱中的大概位置和各吸收带的特征。 6、紫外吸收光谱中,吸收带的位置受哪些因素影响? 8、用紫外光谱法定量,测量最适宜的吸光度范围为0.2-0.7的依据是什么?为什么用高精度的仪器此范围可以扩大? 11、简述用紫外分光光度法定性鉴别未知物的方法。 13、说明双波长消去法的原理和优点。怎样选择λ1λ2? 15、为什么最好在λmax处测定化合物的含量? 2、Lambert-Beer定律是描述与和的关系,它的数学表达式是 3、紫外-可见分光光度法定性分析的重要参数是和;定量分析的依据是 4、在不饱和脂肪烃化合物分子中,共轭双键愈多,吸收带的位置长移愈多,这是由于 6、可见--紫外分光光度计的光源,可见光区用灯,吸收池可用材料的吸收池,紫外光区光源用灯,吸收池必须用材料的吸收池 10、分光光度法的定量原理是定律,它的适用条件是和,影响因素主要有、。 11、可见-紫外分光光度计的主要部件包括、、、、和5个部分。在以暗噪音为主的检测器上,设△T=0.5%,则吸收度A的测量值在间,由于测量透光率的绝对误差小,使结果相对误差△c/c的值较小。 15、在分光光度法中,通常采用作为测定波长。此时,试样浓度的较小变化将使吸光度产生变化 1、紫外-可见分光光度法的合适检测波长范围是( ) A.400-800 nm B.200-400nm C.200~800nm D.10~200nm 2、下列说法正确的是( )o A.按比尔定律,浓度C与吸光度A之间的关系是一条通过原点的直线 B.比尔定律成立的必要条件是稀溶液,与是否单色光无关 C.E称吸光系数,是指用浓度为1%(W/V)的溶液,吸收池厚度为lcm时所测得吸光度值 D.同一物质在不同波长处吸光系数不同,不同物质在同一波长处的吸光系数相同 3、在乙醇溶液中,某分子的K带λmax计算值为385nm, λmax测定值388nm,若改用二氧六环及水为溶剂,λmax计算值估计分别为( ) (已知在二氧六环和水中的λmax校正值分别为-5和+8) A .二氧六环中390nm,水中37 7nm B.二氧六环中380nm,水中393 nm C.二氧六环中383nm,水中396nm D.二氧六环中393nm,水中380nm 6、1,3-丁二烯有强紫外吸收,随着溶剂极性的降低,其λmax将( ) A.长移 B.短移 C.不变化,但ε增强D.不能断定 8、在紫外-可见光谱分析中极性溶剂会使被测物吸收峰()

紫外可见分光光度法练习题

紫外-可见分光光度法 一、单项选择题 1.可见光的波长范围是 A、760~1000nm B、400~760nm C、200~400nm D、小于400nm E、大于760nm 2.下列关于光波的叙述,正确的是 A、只具有波动性 B、只具有粒子性 C、具有波粒二象性 D、其能量大小于波长成正比 E、传播速度与介质无关 3.两种是互补色关系的单色光,按一定的强度比例混合可成为 A、白光 B、红色光 C、黄色光 D、蓝色光 E、紫色光 4.测定Fe3+含量时,加入KSCN显色剂,生成的配合物是红色的,则此配合物吸收了白光中的 A、红光 B、绿光 C、紫光 D、蓝光 E、青光 5.紫外-可见分光光度计的波长范围是 A、200~1000nm B、400~760nm C、1000nm 以上 D、200~760nm E、200nm以下 6.紫外-可见分光光度法测定的灵敏度高,准确度好,一般其相对误差在 A、不超过±% B、1%~5% C、5%~20%

D 、5%~10% E 、%~1% 7.在分光光度分析中,透过光强度(I t )与入射光强度(I 0)之比,即I t / I 0称 为 A 、吸光度 B 、透光率 C 、吸光系数 D 、光密度 E 、 消光度 8.当入射光的强度(I 0)一定时,溶液吸收光的强度(I a )越小,则溶液透过光的 强度(I t ) A 、越大 B 、越小 C 、保持不变 D 、等于0 E 、以 上都不正确 9.朗伯-比尔定律,即光的吸收定律,表述了光的吸光度与 A 、溶液浓度的关系 B 、溶液液层厚度的关系 C 、波长的关系 D 、溶液的浓度与液层厚度的关系 E 、溶液温度的关系 10.符合光的吸收定律的物质,与吸光系数无关的因素是 A 、入射光的波长 B 、吸光物质的性质 C 、溶 液的温度 D 、溶剂的性质 E 、在稀溶液条件下,溶液的浓度 11.在吸收光谱曲线上,如果其他条件都不变,只改变溶液的浓度,则最大吸收波长的位置和峰的 高度将 A 、峰位向长波方向移动,逢高增加 B 、峰位向短波方向移 动,峰高增加

紫外可见分光光度法含量测定

【含量测定】照紫外-可见分光光度法(附录V A)测定。 1.仪器与测定条件:室温:____℃相对湿度:____% 分析天平编号:;水浴锅编号:; 紫外可见分光光度计编号:; 2.对照品溶液的制备: 取西贝母碱对照品适量,精密称定,加三氯甲烷制成每1ml含_______mg的溶液,即得。 3. 供试品溶液的制备: 取本品粉末(过三号筛)约______g,精密称定,置具塞锥形瓶中,加浓氨试液3ml,浸润1小时。加三氯甲烷-甲醇(4:1)混合溶液40ml,置80℃水浴加热回流2小时,放冷,滤过,滤液置50ml量瓶中,用适量三氯甲烷-甲醇(4:1)混合溶液洗涤药渣2~3次,洗液并入同一量瓶中,加三氯甲烷-甲醇(4:1)混合溶液至刻度,摇匀,即得。 4.标准曲线的制备: 精密量取对照品溶液0.1ml、0.2ml、0.4ml、0.6ml、1.0ml,置25ml具塞试管中,分别补加三氯甲烷至10.0ml,精密加水5ml、再精密加0.05%溴甲酚绿缓冲液(取溴甲酚绿0.05g,用0.2mol/L氢氧化钠溶液6ml使溶解,加磷酸二氢钾1g,加水使溶解并稀释至100ml,即得)2ml,密塞,剧烈振摇,转移至分液漏斗中,放置30分钟。取三氯甲烷液,用干燥滤纸滤过,取续滤液,以相应的试剂为空白。 5.测定法: 照紫外-可见分光光度法(附录ⅤA),在nm波长处测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。依法测定吸光度,从标准曲线上读出供试品溶液中含西贝母碱的重量,计算,即得。 6.结果与计算 6.1 标准曲线制备:

对照品批号 纯 度 S 对照品来源 干燥条件 对照品称重W 对(mg) 各浓度点稀释倍数f 对 溶液浓度C 对(ug/ml) 吸光度A 对 线性回归方程 A=( )C +/-( ) r =( ) 计算公式: W S C f ?= 对对对 C 对= 6.2 样品测定: 水分Q 取样量W 样(g ) 样品稀释倍数f 样 样品吸光度A 样 样品平均吸光度A 样 浓度C(ug/ml) 含量X (%) 平均含量X (%) 计算公式:() %100Q 110W f C X 6 ?-???= 样样 样 X 1= X 2= 7.本品按干燥品计算,含总生物碱以西贝母碱(C 27H 43NO 3)计,不得少于0.050%。 结果: 规定 检验人: 检验日期: 复核人: 复核日期:

紫外可见分光光度法习题答案

第十一章紫外-可见分光光度法 思考题和习题 1.名词解释:吸光度、透光率、吸光系数(摩尔吸光系数、百分吸光系数)、发色团、助色团、红移、蓝移。 2.什么叫选择吸收?它与物质的分子结构有什么关系? 物质对不同波长的光吸收程度不同,往往对某一波长(或波段)的光表现出强烈的吸收。这时称该物质对此波长(或波段)的光有选择性的吸收。 由于各种物质分子结构不同,从而对不同能量的光子有选择性吸收,吸收光子后产生的吸收光谱不同,利用物质的光谱可作为物质分析的依据。 3.电子跃迁有哪几种类型?跃迁所需的能量大小顺序如何?具有什么样结构的化合物产生紫外吸收光谱?紫外吸收光谱有何特征? 电子跃迁类型有以下几种类型:σ→σ*跃迁,跃迁所需能量最大;n →σ*跃迁,跃迁所需能量较大,π→π*跃迁,跃迁所需能量较小;n→ π*跃迁,所需能量最低。而电荷转移跃迁吸收峰可延伸至可见光区内,配位场跃迁的吸收峰也多在可见光区内。 分子结构中能产生电子能级跃迁的化合物可以产生紫外吸收光谱。 紫外吸收光谱又称紫外吸收曲线,是以波长或波数为横坐标,以吸光度为纵坐标所描绘的图线。在吸收光谱上,一般都有一些特征值,如最大吸收波长(吸收峰),最小吸收波长(吸收谷)、肩峰、末端吸收等。 4.Lambert-Beer定律的物理意义是什么?为什么说Beer定律只适用于单色光?浓度C 与吸光度A线性关系发生偏离的主要因素有哪些? 朗伯-比耳定律的物理意义:当一束平行单色光垂直通过某溶液时,溶液的吸光度A 与吸光物质的浓度c及液层厚度l成正比。 Beer定律的一个重要前提是单色光。也就是说物质对单色光吸收强弱与吸收光物质的浓度和厚度有一定的关系。非单色光其吸收强弱与物质的浓度关系不确定,不能提供准确的定性定量信息。 浓度C与吸光度A线性关系发生偏离的主要因素 (1)定律本身的局限性:定律适用于浓度小于0.01 mol/L的稀溶液,减免:将测定液稀释至小于0.01 mol/L测定 (2)化学因素:溶液中发生电离、酸碱反应、配位及缔合反应而改变吸光物质的浓度等导致偏离Beer定律。减免:选择合适的测定条件和测定波长 (3)光学因素: 非单色光的影响。减免:选用较纯的单色光;选max的光作为入射光 杂散光的影响。减免:选择远离末端吸收的波长测定 散射光和反射光:减免:空白溶液对比校正。 非平行光的影响:减免:双波长法 (4)透光率测量误差:减免:当±0.002<ΔT< ±0.01时,使0.2

紫外-可见分光光度法

紫外-可见分光光度法 紫外-可见分光光度法是在190~800nm波长范围内测定物质的吸收度,用于鉴别、杂质检查和定量测定的方法。当光穿过被测物质溶液时,物质对光的吸收程度随光的波长不同而变化。因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被测物质的吸收光谱。从吸收光谱中,可以确定最大吸收波长λmax和最小吸收波长λmim。物质的吸收光谱具有与其结构相关的特征性。因此,可以通过特定波长范围内样品的光谱与对照光谱或对照品光谱的比较,或通过确定最大吸收波长,或通过测量两个特定波长处的吸收比值而鉴别物质。用于定量时,在最大吸收波长处测量一定浓度样品溶液的吸光度,并与一定浓度的对照溶液的吸光度进行比较或采用吸收系数法求算出样品溶液的浓度。 仪器的校正和检定 1.波长由于环境因素对机械部分的影响,仪器的波长经常会略有变动,因此除应定期对所用的仪器进行全面校正检定外,还应于测定前校正测定波长。常用汞灯中的较强谱线237.83nm、253.65nm、275.28nm、296.73nm、313.16nm、334.15nm、365.02nm、404.66nm、435.83nm、546.07nm与576.96nm,或用仪器中氘灯的486.02nm与656.10nm谱线进行校正,钬玻璃在波长279.4nm、287.5nm、333.7nm、360.9nm、418.5nm、460.0nm、484.5nm、536.2nm与637.5nm处有尖锐吸收峰,也可作波长校正用,但因来源不同或随着时间的推移会有微小的变化,使用时应注意;近年来,尝试由高氯酸狄溶液校正双光束仪器,以10%高氯酸溶液为溶剂,配置含氧化狄(Ho2O3)4%的溶液,该溶液的吸收峰波长为241.13nm,278.10nm,287.18nm,333.44nm,345.47nm,361.31nm,416.28nm,451.30nm, 485.29nm,536.64nm和640.52nm。 仪器波长的允许误差为:紫外光区±1nm,500nm附近±2nm 2.吸光度的准确度可用重铬酸钾的硫酸溶液检定。取在120℃干燥至恒重的基准重铬酸钾约60mg,精密称定,用0.005mol/L硫酸溶液溶解并稀释至1000ml,在规定的波长处测定并计算其吸收系数,并与规定的吸收系数比较,

实验一-紫外分光光度法测定苯甲酸

实验一紫外分光光度法测定苯甲酸 一、实验目的 学习、了解紫外分光光度法原理 了解紫外分光光度计的结构和使用方法 二、实验原理 当辐射能(光)通过吸光物质时,物质的分子对辐射能选择性的吸收而得到的光谱称为分子吸收光谱。分子吸收光谱的产生与物质的分子结构、物质所在状态、溶剂和溶液的PH等因素有关。分子吸收光谱的强度与吸光物质的浓度有关。表示物质对光的吸收程度,通常采用“吸光度”这一概念来量度。 根据朗伯-比尔定律,在一定的条件下,吸光物质的吸光度A 与该物质的浓度C和液层厚度成正比。即A= LC 因此,只要选择一定的波长测定溶液的吸光度,即可求出该溶液浓度,这就是紫外-可见分光光度计的基本原理。 在碱性条件下,苯甲酸形成苯甲酸盐,对紫外光有选择性吸收,其吸收光谱的最大吸收波长为225nm。因此,采用紫外分光光度计测定苯甲酸在225nm处的吸收度就能进行定量分析。 三、仪器与主要试剂 TU-1810紫外可见分光光度计1cm石英比色皿 0.1M氢氧化钠溶液 苯甲酸(AR) 四、实验步骤 1、苯甲酸标准溶液的制备 称取苯甲酸(105℃烘干)100mg,用0.1M氢氧化钠溶液100ml溶解后,转入1000ml容量瓶中,用蒸馏水稀释至刻度.此溶液1ml含0.1mg 苯甲酸. 2、制作苯甲酸吸收曲线,选择最大吸收波长 ①移取苯甲酸标准溶液4.00ml于50ml容量瓶中,用0.01M氢氧化钠溶液定容,摇匀,此溶液1ml含苯甲酸8ug. 以氘灯为光源,用0.01M氢氧化钠溶液作为参比,改变测量波长(从210-240nm)测量8ug/ml苯甲酸的吸光度. ②以波长为横坐标,吸光度为纵坐标,绘制苯甲酸的紫外吸收曲线,并找出最大的吸收波长 (是否是225nm). 3﹑样品的测定 ①取10.00ml苯甲酸样品,放入50ml容量瓶中,用0.01M氢氧化钠

紫外可见分光光度法试题

一、选择题(18分) 1.在紫外-可见分光光度计中,强度大且光谱区域广的光源是:( ) A、钨灯 B、氢灯 C、氙灯 D、汞灯 2.紫外-可见吸收光谱曲线呈高斯分布的是:( ) A、多普勒变宽 B、自吸现象 C、分子吸收特征 D、原子吸收特征 3.某化合物的浓度为1.0×10-5mol/L,在l max=380nm时,有透射比为50%,用1.0cm吸收池,则在该波长处的摩尔吸收系数e /[L/(mol×cm)]为 ( ) max A、5.0×104 B、2.5×104 C、1.5×104 D、3.0×104 5.按一般光度法用空白溶液作参比溶液,测得某试液的透射比为10%,如果更改参比溶液,用一般分光光度法测得透射比为20%的标准溶液作参比溶液,则试液的透光率应等于: ( ) A、8% B、40% C、50% D、80% 6.在310nm时,如果溶液的百分透射比是90%,在这一波长时的吸收值是:( ) A、1 B、0.1 C、0.9 D、0.05 7.化合物中CH3--Cl在172nm有吸收带,而CH3--I的吸收带在258nm处,CH3--Br的吸收带在204nm,三种化合物的吸收带对应的跃迁类型 是 ( ) A、s→s* B、np* C、n→s* D、各不相同→ 若此二种物质的某溶液在l1时在1.00cm吸收池中测得A=0.754,在l2时于10.0cm吸收池中测得A=0.240,问B的浓度是多少?() A、0.64×10-5mol/L B、0.80×10-5 mol/L C、0.64×10-4mol/L D、 0.80×10-4mol/L 9.双波长分光光度计和单波长分光光度计的主要区别是() A、光源的个数 B、单色器的个数 C、吸收池的个数 D、单色器和吸收池的个数 10.对某特定的仪器,其透射比的标准偏差为0.006,当测得溶液的吸光度A=0.334时,则浓度的相对标准偏差是() A、+0.6% B、+1.7% C、+3.5% D、+7.6% 11.比较下列化合物的UV-VIS光谱λmax大小()

紫外分光光度法原理

紫外分光光度法原理,使用范围,仪器的校正,测定方法和注意事项 紫外分光光度法 一、原理 可见光、紫外线照射某些物质,主要是由于物质分子中价电子能级跃迁对辐射的吸收,而产生化合物的可见紫外吸收光谱。基于物质对光的选择性吸收的特性而建立分光光度法或称吸收光谱法的分析方法。它是以朗伯──比耳定律为基础。 1 朗伯—比耳定律 A = lg—- = ECL T 式中 A为吸收度; T为透光率; E为吸收系数,采用的表示方法是(E1%1cm),其物理意义为当溶液浓度为1%(g/ml),液层厚度为1cm时的吸收度数值; C为100ml溶液中所含被测物质的重量(按干燥品或无水物计算),g; L为液层厚度,cm。 二、使用范围 凡具有芳香环或共轭双键结构的有机化合物,根据在特定吸收波长处所测得的吸收度,可用于药品的鉴别、纯度检查及含量测定。 三、仪器 可见-紫外分光光度计。其应用波长范围为200~400nm的紫外光区、400~850nm的可见光区。主要由辐射源(光源)、色散系统、检测系统、吸收池、数据处理机、自动记录器及显示器等部件组成。 本仪器是根据相对测量的原理工作的,即先选定某一溶剂(或空气、试样)作为标准(空白或称参比)溶液,并认为它的透光率为100%(或吸收度为0),而被测的试样透光率(或吸收度)是相对于标准溶液而言,实际上就是由出射狭缝射出的单色光,分别通过被测试样和标准溶液,这两个光能量之比值,就是在一定波长下对于被测试样的透光率(或吸收度)。 本仪器可精密测定具有芳香环或共轭双键结构的有机化合物、有色物质或在适当条件下能与某些试剂作用生成有色物的物质。 使用前应校正测定波长并按仪器说明书进行操作。 四、仪器的校正 1.波长的准确度试验 以仪器显示的波长数值与单色光的实际波长值之间误差表示,应在±1.0nm 范围内。 可用仪器中氘灯的486.02nm与656.10nm谱线进行校正。 2.吸收度的准确度试验

紫外-分光光度法原理

紫外分光光度计的使用原理和方法 紫外-可见分光光度法(ultraviolet-visible spectrophotometry, UV-VIS) 1定义: 它是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析, 所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。 2分类: 按所吸收光的波长区域不同:分为紫外分光光度法和可见分光光度法,合称为紫外-可见分光光度法。 3、紫外-可见分光光度法的特点: (1) 其仪器设备和操作都比较简单,费用少,分析速度快;(与其它光谱分析方法相比)(2)灵敏度高; (3)选择性好; (4)精密度和准确度较高; (5)用途广泛。 §1. 紫外-可见吸收光谱 1. 物质对光的选择性吸收 物质对光的吸收是选择性的,利用被测物质对某波长的光的吸收来了解物质的特性,这就是光谱法的基础。通过测定被测物质对不同波长的光的吸收强度(吸光度),以波长为横坐标,吸光度为纵坐标作图,得出该物质在测定波长范围的吸收曲线。在吸收曲线中,通常选用最大吸收波长λmax进行物质含量的测定。 2.有机化合物的紫外-可见吸收光谱 2.1 有机化合物的电子跃迁 与紫外-可见吸收光谱有关的电子有三种,即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。跃迁类型有:σ→σ*、n→σ* 、π→π*、n→π* 四种。 饱合有机化合物的电子跃迁类型为σ→σ*,n→σ*跃迁, 吸收峰一般出现在真空紫外区,吸收峰低于200nm,实际应用价值不大。 不饱合机化合物的电子跃迁类型为n→π*,π→π*跃迁,吸收峰一般大于200nm。 生色团:是指分子中可以吸收光子而产生电子跃迁的原子基团。人们通常将能吸收紫外、可见光的原子团或结构系统定义为生色团。 助色团:是指带有非键电子对的基团,如-OH、-OR、-NHR、-SH、-Cl、-Br、-I等,它们本身不能吸收大于200nm的光,但是当它们与生色团相连时,会使生色团的吸收峰向长波方向移动,

紫外-可见分光光度法-答案

第二章 紫外-可见分光光度法 一、选择题 1 物质的紫外 – 可见吸收光谱的产生是由于 (B ) A. 原子核内层电子的跃迁 B. 原子核外层电子的跃迁 C. 分子的振动 D. 分子的转动 2 紫外–可见吸收光谱主要决定于 (C ) A.原子核外层电子能级间的跃迁 B. 分子的振动、转动能级的跃迁 C. 分子的电子结构 D. 原子的电子结构 3 分子运动包括有电子相对原子核的运动(E 电子)、核间相对位移的振动(E 振动)和转 动(E 转动)这三种运动的能量大小顺序为 (A ) A. E 电子>E 振动>E 转动 B. E 电子>E 转动>E 振动 C. E 转动>E 电子>E 振动 D. E 振动>E 转动>E 电子 4 符合朗伯-比尔定律的一有色溶液,当有色物质的浓度增加时,最大吸收波长和吸光度分别是 (C ) A. 增加、不变 B. 减少、不变 C. 不变、增加 D. 不变、减少 5 吸光度与透射比的关系是 (B ) A. T A 1= B. T A 1lg = C. A = lg T D. A T 1lg = 6 一有色溶液符合比尔定律,当浓度为c 时,透射比为T 0,若浓度增大一倍时,透光率的对数为 (D ) A. 2T O B. 021T C. 0lg 2 1T D. 2lg T 0 7 相同质量的Fe 3+和Cd 2+ 各用一种显色剂在相同体积溶液中显色,用分光光度法测定,前者用2cm 比色皿,后者用1cm 比色皿,测得的吸光度值相同,则两者配合物的摩尔吸光系数为 (C ) 已知:A r(Fe) = ,A r(Cd) = A. Cd Fe 2εε≈ B. e d F C 2εε≈

10紫外可见分光光度法课后习题答案

第十一章紫外--可见分光光度法 思考题和习题 1.名词解释:吸光度、透光率、吸光系数(摩尔吸光系数、百分吸光系数)、发色团、助色团、红移、蓝移。 2.什么叫选择吸收?它与物质的分子结构有什么关系? 物质对不同波长的光吸收程度不同,往往对某一波长(或波段)的光表现出强烈的吸收。这时称该物质对此波长(或波段)的光有选择性的吸收。 由于各种物质分子结构不同,从而对不同能量的光子有选择性吸收,吸收光子后产生的吸收光谱不同,利用物质的光谱可作为物质分析的依据。 3.电子跃迁有哪几种类型?跃迁所需的能量大小顺序如何?具有什么样结构的化合物产生紫外吸收光谱?紫外吸收光谱有何特征? 电子跃迁类型有以下几种类型:σ→σ*跃迁,跃迁所需能量最大;n →σ*跃迁,跃迁所需能量较大,π→π*跃迁,跃迁所需能量较小;n→ π*跃迁,所需能量最低。而电荷转移跃迁吸收峰可延伸至可见光区内,配位场跃迁的吸收峰也多在可见光区内。 分子结构中能产生电子能级跃迁的化合物可以产生紫外吸收光谱。 紫外吸收光谱又称紫外吸收曲线,是以波长或波数为横坐标,以吸光度为纵坐标所描绘的图线。在吸收光谱上,一般都有一些特征值,如最大吸收波长(吸收峰),最小吸收波长(吸收谷)、肩峰、末端吸收等。 4.Lambert-Beer定律的物理意义是什么?为什么说Beer定律只适用于单色光?浓度C 与吸光度A线性关系发生偏离的主要因素有哪些? 朗伯-比耳定律的物理意义:当一束平行单色光垂直通过某溶液时,溶液的吸光度A 与吸光物质的浓度c及液层厚度l成正比。 Beer定律的一个重要前提是单色光。也就是说物质对单色光吸收强弱与吸收光物质的浓度和厚度有一定的关系。非单色光其吸收强弱与物质的浓度关系不确定,不能提供准确的定性定量信息。 浓度C与吸光度A线性关系发生偏离的主要因素 (1)定律本身的局限性:定律适用于浓度小于0.01 mol/L的稀溶液,减免:将测定液稀释至小于0.01 mol/L测定 (2)化学因素:溶液中发生电离、酸碱反应、配位及缔合反应而改变吸光物质的浓度等导致偏离Beer定律。减免:选择合适的测定条件和测定波长 (3)光学因素: 非单色光的影响。减免:选用较纯的单色光;选 max的光作为入射光 杂散光的影响。减免:选择远离末端吸收的波长测定 散射光和反射光:减免:空白溶液对比校正。 非平行光的影响:减免:双波长法 (4)透光率测量误差:减免:当±0.002<ΔT< ±0.01时,使0.2

紫外可见分光光度法基本原理

紫外可见分光光度法基本原理 紫外可见分光光度法基本原理透射比和吸光度当一束平行光通过均匀的溶液介质时光的一部分被吸收一部分被器皿反射。设入射光强度为I0吸收光强度为Ia 透射光强度为It反射光强度为Ir则在进行吸收光谱分析中被测溶液和参比溶液是分别放在同样材料及厚度的两个吸收池中让强度同为I0的单色光分别通过两个吸收池用参比池调节仪器的零吸收点再测量被测量溶液的透射光强度所以反射光的影响可以从参比溶液中消除则上式可简写为透射光强度It与入射光强度I0之比称为透射比亦称透射率用T表示则有: 溶液的T越大表明它对光的吸收越弱反之T 越小表明它对光的吸收越强。为了更明确地表明溶液的吸光强弱与表达物理量的相应关系常用吸光度A表示物质对光的吸收程度其定义为: 则A值越大表明物质对光吸收越强。T及A都是表示物质对光吸收程度的一种量度透射比常以百分率表示称为百分透射比T吸光度A为一个无因次的量两者可通过上式互相换算。朗伯-比耳定律朗伯-比耳定律Lambert-Beer是光吸收的基本定律俗称光吸收定律是分光光度法定量分析的依据和基础。当入射光波长一定时溶液的吸光度A是吸光物质的浓度C及吸收介质厚度l吸收光程的函数。朗伯和比耳分别于1760年和1852年研究了这三者的定量关系。朗伯的结论是当用适当波长的单色光照射一固定浓度的均匀溶液时A与l成正比其数学式为: A kl 此即称为朗伯定律k为比例系数而比耳的结论是当用适当波长的单色光照射一固定液层厚度的均匀溶液时A与C成正比其数学表达式为: 此即称为比耳定律k称为比例系数合并上述k的数值取决于吸光物质的特性外其单位及数值还与C和l所采用的单位有关。l通常采用cm为单位并用b表示。所以k的单位取决C采用的单位。当C采用重量单位g/L时吸收定律表达为: a称为吸光系数单位为当C采用摩尔浓度mol/L时吸收定律表达为: ε称摩尔吸光系数单位为有时在化合物的组成不明的情况下物质的摩尔质量不知道

分光光度法基本原理简介

1.物质的颜色与吸收光的关系 电磁波谱: X射线 0.1~100 nm 远紫外光 10~200 nm 近紫外光 200~400 nm 可见光 400~760 nm 近红外光 750~2500 nm 中红外光 2500~5000 nm 远红外光 5000~10000 nm 微波 0.1~100 cm 无线电波 1~1000 m 2 日光:紫蓝青绿黄橙红

2014-11-33 ?复合光:由各种单色光组成的光。如白光(太阳光) ?单色光:只具有一种波长的光。 要求:?λ=±2nm 。 ?互补色光:如果把两种适当颜色的光按一定的强度比例混合也可以得到白光,这两种光就叫互补色光。 ?物质的颜色是由于物质对不同波长的光具有选择性的吸收作用而产生的。如:CuSO 4呈兰色。 ?物质呈现的颜色和吸收的光颜色之间是互补关系。 光的互补:蓝 黄日 光

7 ? (1)不同物质吸收曲线的形状和吸收波长不同。 MnO 4- 531吸收曲线2014-11-38?(2)同一物质对不同波长光的吸光度不同;同一物质不同浓度,其吸收曲线形状相似。 ?吸收曲线是特性的,可以提供物质的结构信息,作为物质定性分析的依据之一;吸收曲线是定量分析中选择入射光波长的 重要依据。

3.光的吸收定律——朗伯-比耳定律 λ 吸光度A:物质对光的吸收程度。 定义:A=lg(I0/I t) A越大,表示对光的吸收越大,透过光越弱。 9 λ 1760年朗伯(Lambert)阐明了光的吸收程度和吸收层厚度的关系:A∝b ?1852年比耳(Beer)又提出了光的吸收程度和吸收物浓度之间也具有类似的关系:A∝c 二者的结合称为朗伯—比耳定律,A∝bc 10

(完整word版)紫外-可见分光光度法

紫外-可见分光光度法 1简述 紫外-可见分光光度法是在190-80Onm波长范围内测定物质的吸光度,用于鉴别、杂质检查和含量测定的方法。 定量分析通常选择物质的最大吸收波长处测出吸光度,然后用对照品或吸收系数求算出被测物质的含量,多用于制剂的含量测定;对已知物质定性可用吸收峰波长或吸光度比值作为鉴别方法;若该物质本身在紫外光区无吸收,而其杂质在紫外光区有相当强度的吸收,或杂质的吸收峰处该物质无吸收,则可用本法作杂质检查。 物质对紫外辐射的吸收是由于分子中原子的外层电子跃迁所产生,因此,紫外吸收主要决定于分子的电子结构,故紫外光谱又称电子光谱。有机化合物分子结构中如含有共轭体系、芳香环等发色基团,均可在紫外区(200~400nm)或可见光区(400~850nm)产生吸收。通常使用的紫外-可见分光光度计的工作波长范围为 190~900nm。 紫外吸收光谱为物质对紫外区辐射的能量吸收图。朗伯-比尔(Lambert-Beer) 定律为光的吸收定律,它是紫外-可见分光光度法定量分析的依据,其数学表达式为: 1 A=log =ECL 式中A为吸光度; T为透光率; E为吸收系数; C为溶液浓度; L为光路长度。 如溶液的浓度(C)为1%(g/ml),光路长度(L)%lcm,相应的吸光度即为吸收系数以E;Cm表示。如溶液的浓度(C)为摩尔浓度(mol/L),光路长度为lcm 时,则相应有吸收系数为摩尔吸收系数,以表示。 2仪器 紫外-可见分光光度计主要由光源、单色器、样品室、检测器、记录仪、显示系

统和数据处理系统等部分组成。 为了满足紫外-可见光区全波长范围的测定,仪器备有二种光源,即氘灯和碘钨灯,前者用于紫外区,后者用于可见光区。 单色器通常由进光狭缝、出光狭缝、平行光装置、色散元件,聚焦透镜或反射镜等组成。色散元件有棱镜和光栅二种,棱镜多用天然石英或熔融硅石制成,对200~400nm波长光的色散能力很强,对600nm以上波长的光色散能力较差,棱镜色散所得的光谱为非匀排光谱。光栅系将反射或透射光经衍射而达到色散作用,故常称为衍射光栅,光栅光谱是按波长作线性排列,故为匀排光谱,双光束仪器多用光栅为色散元件。 检测器有光电管和光电倍增管二种。 紫外-可见分光光度计依据其结构和测量操作方式的不同可分为单光束和双光束分光光 度计二类。单光束分光光度计有些仍为手工操作,即固定在某一波长,分别测量比较空白、样品或参比的透光率或吸收度,操作比较费时,用于绘制吸收光谱图时很不方便,但适用于单波长的含量测定。双光束分光光度计藉扇形镜交替切换光路使分成样品(S)和参比(R)两光束,并先后到达检测器,检测器信号经调制分离成两光路对应信号,信号的比值可直接用记录仪记录,双光束分光光度计操作简单,测量快速,自动化程度高,但作含量测定时,为求准确起见,仍宜用固定波长测量方式。 3 紫外-可见分光光度计的检定 3.1 波长准确度 3.1.1 波长准确度的允差范围紫外-可见分光光度计波长准确度允许误差,紫外区为 ±1.0nm,500nm处吃.0nm,700nm处±4.8nm。 3.1.2 波长准确度检定方法 3.1.2.1 用低压汞灯检定关闭仪器光源,将汞灯(用笔式汞灯最方便)直接对准进光狭缝,如为双光束仪器,用单光束能量测定方式,采用波长扫描方式,扫描速度慢”(如 I5nm/min )、响应快”、最小狭缝宽度(如0.1 nm)、量程0~100%,在200~800nm范围内单方向重复扫描3次,由仪器识别记录各峰值(若仪器无峰检测” 功能,必要时可对指定波长进行“单峰”扫描)。 单光束仪器以751G型为例,可将选择开关放在X).1位置,透光率读数放在100 (或选择开关放在X,透光率放在10),关小狭缝,打开光闸门,缓缓转动波长盘,寻找汞灯546.07nm峰出现的位置,若与波长读数不符,应调节仪器左侧准直镜的波长调整螺丝,如

紫外分光光度法测定蛋白质含量(精)

教材1 紫外分光光度法测定蛋白质含量 一、实验目的 学习紫外分光光度法测定蛋白质含量的原理; 掌握紫外分光光度法测定蛋白质含量的实验技术; 掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构造。 二、实验原理 紫外-可见吸收光谱法又称紫外-可见分光光度法,它是研究分子吸收190nm~750nm波长范围内的吸收光谱,是以溶液中物质分子对光的选择性吸收为基础而建立起来的一类分析方法。紫外-可见吸收光谱的产生是由于分子的外层价电子跃迁的结果,其吸收光谱为分子光谱,是带光谱。 进行定性:利用紫外-可见吸收光谱法进行定性分析一般采用光谱比较法。即将未知纯化合物的吸收光谱特征,如吸收峰的数目、位置、相对强度以及吸收峰的形状与已知纯化合物的吸收光谱进行比较。 定量分析:紫外-可见吸收光谱法进行定量分析的依据是朗伯-比尔定律:A=lgI0/I=εbc,当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比,即物质在一定波长处的吸光度与它的浓度成线形关系。因此,通过测定溶液对一定波长入射光的吸光度,就可求出溶液中物质浓度和含量。由于最大吸收波长λmax处的摩尔吸收系数最大,通常都是测量λmax的吸光度,以获得最大灵敏度。 光度分析时,分别将空白溶液和待测溶液装入厚度为b的两个吸收池中,让一束一定波长的平行单色光非别照射空白和待测溶液,以通过空白溶液的透光强度为I0,通过待测溶液的透光强度为I,根据上式,由仪器直接给出I0与I之比的对数值即吸光度。 紫外-可见分光光度计:紫外-可见吸收光谱法所采用的仪器称为分光光度计,它的主要部件有五个部分组成,即 I0I 光源单色器吸收池检测器信号显示器由光源发出的复合光经过单色器分光后即可获得任一所需波长的平行单色光,该单色光通过样品池静样品溶液吸收后,通过光照到光电管或光电倍增管等检测器上产生光电流,产生的光电流由信号显示器直接读出吸光度A。可见光区采用钨灯光源、玻璃吸收池;紫外光区采用氘灯光源、石英吸收池。 本实验采用紫外分光光度法测定蛋白质含量。蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280 nm 附近(不同的蛋白质吸收波长略有差别)。在最大吸收波长处,吸光度与蛋白质溶液的浓度的关系服从朗伯-比耳定律。该测定法具有简单灵敏快速高选择性,且稳定性

紫外可见分光光度法

<501> 紫外-可见分光光度法1
紫外-可见分光光度法是在 190~800nm 波长范围内测定物质的吸光度,用于鉴别、杂质 检查和定量测定的方法。 当光穿过被测物质溶液时, 物质对光的吸收程度随光的波长不同而 变化。因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被 测物质的吸收光谱。从吸收光谱中,可以确定最大吸收波长λmax 和最小吸收波长λmin。物质的 吸收光谱具有与其结构相关的特征性。 因此, 可以通过特定波长范围内样品的光谱与对照光 谱或对照品光谱的比较, 或通过确定最大吸收波长, 或通过测量两个特定波长处的吸收比值 而鉴别物质。用于定量时,在最大吸收波长处测量一定浓度样品溶液的吸光度,并与一定浓 度的对照溶液的吸光度进行比较或采用吸收系数法求算出样品溶液的含量。 仪器的校正和检定 1.波长 由于环境因素对机械部分的影响,仪器的波长经常会略有变动,因此除应定期 对所用的仪器进行全面校正检定外,还应于测定前校正测定波长。常用汞灯中的较强谱线 237.83nm,253.65nm,275.28nm,296.73nm,313.16nm,334.15nm,365.02nm,404.66nm, 435.83nm, 546.07nm 与 576.96nm; 或用仪器中氘灯的 486.02nm 与 656.10nm 谱线进行校正; 钬玻璃在波长 279.4nm, 287.5nm, 333.7nm, 360.9nm, 418.5nm, 460.0nm, 484.5nm, 536.2nm 与 637.5nm 处有尖锐吸收峰, 也可作波长校正用, 但因来源不同或随着时间的推移会有微小 的变化,使用时应注意;近年来,常使用高氯酸钬溶液校正双光束仪器,以 10%高氯酸溶 液为溶剂, 配制含氧化钬 (Ho2O3) 4%的溶液, 该溶液的吸收峰波长为 241.13nm, 278.10nm, 287.18nm,333.44nm,345.47nm,361.31nm,416.28nm,451.30nm,485.29nm,536.64nm 和 640.52nm。 仪器波长的允许误差为:紫外光区±1nm,500nm 附近±2nm。 2.吸光度的准确度 可用重铬酸钾的硫酸溶液检定。取在 120℃干燥至恒重的基准重铬 酸钾约 60mg,精密称定,用 0.005mol/L 硫酸溶液溶解并稀释至 1000ml,在规定的波长处测 定并计算其吸收系数,并与规定的吸收系数比较,应符合表中的规定。 波长/nm 吸收系数( E1cm )的规定值 吸收系数( E1cm )的许可范围
1% 1%
235(最小) 257(最大) 313(最小) 350(最大) 124.5 144.0 48.6 106.6 105.5~108.5
123.0~126.0 142.8~146.2 47.0~50.3
3.杂散光的检查 可按下表所列的试剂和浓度,配制成水溶液,置 1cm 石英吸收池中, 在规定的波长处测定透光率,应符合表中的规定。 试剂 碘化钠 亚硝酸钠 浓度/%(g/ml) 测定用波长/nm 1.00 5.00 220 340 透光率/% <0.8 <0.8
对溶剂的要求 含有杂原子的有机溶剂,通常均具有很强的末端吸收。因此,当作溶剂使用时,它们的 使用范围均不能小于截止使用波长。例如甲醇、乙醇的截止使用波长为 205nm。另外,当溶 剂不纯时,也可能增加干扰吸收。因此,在测定供试品前,应先检查所用的溶剂在供试品所 用的波长附近是否符合要求,即将溶剂置 1cm 石英吸收池中,以空气为空白(即空白光路
1
新增简述。
1

紫外可见分光光度法基本原理

紫外可见分光光度法基本原理 透射比和吸光度 当一束平行光通过均匀的溶液介质时,光的一部分被吸收,一部分被器皿反射。设入射光强度为I0,吸收光强度为I a,透射光强度为I t,反射光强度为I r,则 在进行吸收光谱分析中,被测溶液和参比溶液是分别放在同样材料及厚度的两个吸收池中,让强度同为I0的单色光分别通过两个吸收池,用参比池调节仪器的零吸收点,再测量被测量溶液的透射光强度,所以反射光的影响可以从参比溶液中消除,则上式可简写为 透射光强度(I t)与入射光强度(I0)之比称为透射比(亦称透射率),用T表示,则有: 溶液的T越大,表明它对光的吸收越弱;反之,T越小,表明它对光的吸收越强。为了更明确地表明溶液的吸光强弱与表达物理量的相应关系,常用吸光度(A)表示物质对光的吸收程度,其定义为: 则A值越大,表明物质对光吸收越强。T及A都是表示物质对光吸收程度的一种量度,透射比常以百分率表示,称为百分透射比,T%;吸光度A为一个无因次的量,两者可通过上式互相换算。 朗伯-比耳定律 朗伯-比耳定律(Lambert-Beer)是光吸收的基本定律,俗称光吸收定律,是分光光度法定量分析的依据和基础。当入射光波长一定时,溶液的吸光度A是吸光物质的浓度C及吸收介质厚度l(吸收光程)的函数。朗伯和比耳分别于1760年和1852年研究了这三者的定量关系。朗伯的结论是,当用适当波长的单色光照射一固定浓度的均匀溶液时,A与l成正比,其数学式为: A = k'l (此即称为朗伯定律,k'为比例系数)

而比耳的结论是,当用适当波长的单色光照射一固定液层厚度的均匀溶液时,A与C成正比,其数学表达式为: (此即称为比耳定律,k称为比例系数) 合并上述k的数值取决于吸光物质的特性外,其单位及数值还与C和l所采用的单位有关。l通常采用cm为单位,并用b表示。所以k的单位取决C采用的单位。 当C采用重量单位g/L时,吸收定律表达为: (a称为吸光系数,单位为) 当C采用摩尔浓度mol/L时,吸收定律表达为: (ε称摩尔吸光系数,单位为) 有时在化合物的组成不明的情况下,物质的摩尔质量不知道,因而物质的量浓度无法确定,就不能用摩尔吸光系数,而是采用比吸光系数,其意义是指质量分数为1%的溶液,用1cm吸收池时的吸光度,这时吸光度为: (c的质量百分浓度) ε、a、三者的换算关系为: ,(Mr为吸收物质的摩尔质量) 在吸收定律的几种表达式中,在分析上是最常用的,ε也是最常用的,有时吸收光谱的纵坐标也用ε或lgε表示,并以最大摩尔吸光系数表示物质的吸收强度。ε是在特定波长及外界条件下,吸光质点的一个特征常数,数值上等于吸光物质的浓度为1 mol/L,液层厚度为1cm时溶液的吸光度。它是物质吸光能力的量度,可作为定性分析的参考和估计定量分析的灵敏度。 朗伯比耳定律 朗伯-比耳定律的推导如下:根据量子理论,光是由光子所组成,其它能量为。因此,吸收光的过程就是光子被吸光质点(如分子或离子)的俘获,使吸光质点能量增加而处于激发状态,光子被俘获的几率取决于吸光质点的吸光截面积。如图1所示,

紫外可见分光光度法

第五章紫外—可见分光光度法 一.教学内容 1.紫外-可见吸收光谱的产生(分子的能级及光谱、有机物及无机物电子能级跃迁的类型和特点) 2.吸收定律及其发射偏差的原因 3.仪器类型、各部件的结构、性能以及仪器的校正 4.分析条件的选择 5.应用(定性及结构分析、定量分析的各种方法、物理化学常数的测定及其它方面的应用 二.重点与难点 1.比较有机化合物和无机化合物各种电子跃迁类型所产生吸收带的特点及应用价值 2.进行化合物的定性分析、结构判断 3.定量分析的新技术(双波长法、导数光谱法、动力学分析法) 4.物理化学常数的测定 三.教学要求 1.较为系统、深入地掌握各种电子跃迁所产生的吸收带及其特征、应用2.熟练掌握吸收定律的应用及测量条件的选择 3.较为熟练仪器的类型、各组件的工作原理 4.运用各种类型光谱及的经验规则,判断不同的化合物 5.掌握定量分析及测定物理化学常数的常见基本方法 6.一般掌握某些新的分析技术 四.学时安排5学时 研究物质在紫外、可见光区的分子吸收光谱的分析方法称

为紫外

-可见分光光度法。紫外—可见分光光度法是利用某些物质的分子吸收200 ~ 800 n m光谱区的辐射来进行分析测定的方法。这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,广泛用于无机和有机物质的定性和定量测定。 第一节紫外—可见吸收光谱 一、分子吸收光谱的产生 在分子中,除了电子相对于原子核的运动外,还有核间相对位移引起的振动和转动。这三种运动能量都是量子化的,并对应有一定能级。在每一电子能级上有许多间距较小的振动能级,在每一振动能级上又有许多更小的转动能级。 若用△E 电子、△E 振动 、△E 转动 分别表示电子能级、振动能 级转动能级差,即有△E 电子△E 振动 △E 转动 。处在同一电子 能级的分子,可能因其振动能量不同,而处在不同的振动能级上。当分子处在同一电子能级和同一振动能级时,它的能量还会因转动能量不同,而处在不同的转动能级上。所以分子的总能量可以认为 是这三种能量的总和:E 分子=E 电子 + E 振动 +E 转动 当用频率为的电磁波照射分子,而该分子的较高能级与较低能级之差△E恰好等于该电磁波的能量h时,即有 △ E = h(h为普朗克常数) 此时,在微观上出现分子由较低的能级跃迁到较高的能级;在宏观上则透射光的强度变小。若用一连续辐射的电磁波照射分子,将照射前后光强度的变化转变为电信号,并记录下来,然后以波长为横坐标,以电信号(吸光度A)为纵坐标,就可以得到一张光强度变化对波长的关系曲线图——分子吸收光谱图。 二、分子吸收光谱类型

相关文档
最新文档