悬臂梁结构光纤光栅温度自补偿位移传感器实验研究

悬臂梁结构光纤光栅温度自补偿位移传感器实验研究
悬臂梁结构光纤光栅温度自补偿位移传感器实验研究

悬臂梁结构光纤光栅温度自补偿位移传感器实验研究

摘要:以悬臂梁为基本构架,以FBG 为敏感元件,设计了一种新型的具

有温度自补偿特性的FBG 位移传感器方案。对悬臂梁进行分析,推导出位移

传感器的传递函数,然后对其定标并实际测量,得到了传感器线性度和灵敏度同悬臂梁长度以及光纤布拉格光栅的位置之间的关系,并从结果看出本传感器精度高,运行稳定,且有好的重复性,线性范围最大为16mm。关键词:光纤光栅;悬臂梁;位移传感器;传递函数;温度自补偿0 引言自从1978 年K.O.Hill 等人首次在锗硅光纤上用驻波持续曝光制作成第一个光纤布拉格光栅(FBG)以来,FBG 的应用研究引起了全世界学者的广泛关注。光纤光栅传感器的材料优势及传感优势使FBG 传感技术近年来引起人们极大的兴趣。在光

纤光栅传感方案中,温度补偿的准确性和可靠性对测量结果的准确性有非常大的影响,要做到合理准确又有效的温度补偿,只能通过单个传感器的温度自补偿来实现。本文在FBG 的传感机理上,依据悬臂粱结构提出一种位移传感器

方案,此方案结构简单、运行稳定,且能够实现温度补偿与减小外界干扰的作用,获得较高的灵敏度。1 原理基本结构原理为,图1 为矩形悬臂梁基本结构,粱长为L,梁轴线的曲率为p(η),梁的轴线称为挠度线,则曲线上任

一点η处在外力F 作用下的纵坐标f(η)即为该点的挠度,传振原理为,当自由端有静挠度y 时,距离固定端为的截面处的静挠度f(η):式中,εz 为轴向应变,Pe 为弹光系数,a∧为光纤的热膨胀系数,a0 表示热光系数,△T 温度的变化量。温度自补偿原理为,当采用双光栅差分式分布在梁上下表面时,两根光栅中心波长的变化方向是相反的。两根光栅封装方式完全一样,热膨胀系数与热光系数均相同,长度一致,且两者应变等幅反向,即有:故由两根光栅分别满足式(2),同时具有(3)(4)两式所示条件,可以

光纤光栅温度传感器 报告

波长调制型光纤温度传感器《光纤传感测试技术》 课程作业报告 提交时间:2011年10月27 日

1 研究背景 (执笔人: ) 被测场或参量与敏感光纤相互作用,引起光纤中传输光的波长改变,进而通过测量光波长的变化来确定北侧参量的传感方法即为波长调制型光纤传感器。 光纤光栅传感器是一种典型的波长调制型光纤传感器。基于光纤光栅的传感过程是通过外界参量对布拉格中心波长B λ的调制来获取传感信息,其数学表达式为: 2B eff n λ=Λ 式中:eff n 为纤芯的有效折射率;Λ是光栅周期。 这是一种波长调制型光纤温度传感器,它具有一下明显优势: (1)抗干扰能力强。由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输介质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。这使它在各种大型机电、石油化工、冶金高压、强电磁干扰、易燃、易爆、强腐蚀环境中能方便而有效地传感,具有很高的可靠性和稳定性。 (2)传感探头结构简单,体积小,重量轻,外形可变,适合埋入大型结构中测量结构内部的应力 、应变及结构损伤,稳定性、重复性好,适用于许多应用场合,尤其是智能材料和结构。 (3)测量结果具有良好的重复性。 (4)便于构成各种形式的光纤传感网络。 (5)可用于外界参量的绝对测量。 (6)光栅的写入技术已经较为成熟,便于形成规模生产。 (7)轻巧柔软,可以在一根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用系统相结合,实现分布式传感。 由于以上优点,光纤光栅传感器在大型土木工程结构、航空航天等领域的健康检测以及能源化工等领域得到了广泛的应用。但是它也存在一些不足之处。因为光纤光栅传感的关键技术在于对波长漂移的检测,而目前对波长漂移的检测需要用较复杂的技术和较昂贵的仪器或光纤器件,需大功率的宽带光源或可调谐光源,其检测的分辨率和动态范围也受到一定的限制等。 光纤布拉格光栅无疑是一种优秀的光纤传感器,尤其在测量应力和应变的场合,具有其它一些传感器无法比拟的优点,被认为是智能结构中最有希望集成在材料内部,作为检测材

光纤陀螺温度效应误差及其补偿技术研究

光纤陀螺温度效应误差及其补偿技术研究 摘要:温度效应误差是目前制约光纤陀螺高精度应 用的瓶颈之一。文中分析了光纤陀螺温度效应的成因及影响机理,介绍了温度效应误差补偿技术的研究现状,重点阐述了一种基于误差建模的软件补偿方法。该方法建立了以温度、温度变化率和温度梯度为变量的误差模型,使用温循实验数据进行模型参数拟合,通过DSP技术在系统中实现了对温度效应误差的补偿。仿真试验结果表明,使用该方法可以将某型光纤陀螺的温度效应误差降低约一个数量级。 关键词:光纤陀螺;温度效应误差;误差建模 经过几十年发展,光纤陀螺加工工艺逐渐成熟,潜在优势日益显现,已经成为新一代惯性导航系统中的理想器件[1]。目前,光纤陀螺面临着高精度的发展要求。而温度效应在很大程度上增大了光纤陀螺的输出漂移,是制约其高精度工程应用的瓶颈。 文章通过对光纤陀螺温度效应误差成因与机理的分析,结合国内外温度误差补偿技术的研究现状,提出了一种基于误差建模的软件补偿方法。仿真试验表明,该方法能有效抑制温度效应对光纤陀螺精度的影响。 1 光纤陀螺温度效应误差分析

温度效应是光纤陀螺的重要误差源之一,主要是指温度条件变化导致光纤陀螺输出漂移的现象。 引发温度效应的热量来源主要有两个:一是工作时陀螺各个元器件的自身产热;二是外界温度环境的影响[2]。光纤陀螺内部(核心器件是光纤环)的温度是这两个热源综合作用的结果。开机后的一段时间内,光纤陀螺自身产热导致的升温效应较为显著,器件内部的温度持续上升,直至产生的热量与散失的热量基本相当,形成动态平衡。之后,外部温度环境的影响占主导作用。在实际的工作环境中,陀螺外部的温度环境始终在变化,陀螺内部很难形成稳定不变的温度场,温度效应误差始终存在。 光纤陀螺内部受温度影响的元器件较多,温度效应可以看成多种相关因素共同作用的结果[3]。光纤陀螺系统由光路与电路两部分组成:光路部分包括光纤环、光源、Y波导、耦合器和光电探测器;电路部分包括光源驱动电路和信号处理电路[4]。其中,光路部分的光学器件(尤其是光纤环),对于环境温度的变化更为敏感。这些器件敏感温度变化的机理不尽相同,这导致温度效应误差的成因较为复杂。如果逐一进行试验分析,工作量较大,且无法排除系统内的误差耦合。 在IEEE光纤陀螺标准[5]给出的单轴光纤陀螺输入输出模型方程中,只考虑了不同温度特征量与陀螺零偏漂移的相

光纤位移传感器的动态实验一.

光纤位移传感器的动态实验一 (一) 实验目的 了解光纤位移传感器的动态应用。 (二) 实验仪器 DH-CG2000传感器系统实验仪(本实验所用部件包括:主、副电源、差动放大器、光纤位移传感器、低通滤波器、振动台、低频振荡器、激振线圈、示波器) (三) 实验内容 1. 了解激振线圈在实验仪上所在位置及激振线圈的符号。 2. 在静态实验的电路中接入低通滤波器和示波器,如图1接线。 图1 3. 将测微头与振动台的台面脱离,测微头远离振动台。将光纤探头与振动台反射面的距离调整在光纤传感器工作点即线形段中点上(利用静态特性实验中得到的特性曲线,选择线形中点的位置为工作点,目测振动台的反射面与光纤探头端面之间的相对距离即线性区△X 的中点)。 4. 将低频振荡信号接入振动台的激振线圈上,开启主、副电源,调节低频振荡器的频率与幅度旋钮,使振动台振动且振动幅度适中。 5. 保持低频振荡器输出的p p V -幅度值不变,改变低频振荡器的频率(用示波器观察低频振荡器输出的p p V -值为一定值,在改变频率的同时如幅值发生变化则调整幅度旋钮值p p V -相同),将频率和示波器上所测的峰峰值(此时的峰峰值p p V -是指经低通后的p p V -)填入表格中,并作出幅频特性图。 6. 关闭主、副电源,把所有旋钮复原到原始最小位置。

(四)数据表格 光纤位移传感器的动态实验二 (一)实验目的 了解光纤位移传感器的测速应用。 (二)实验仪器 DH-CG2000传感器系统实验仪(本实验所用部件包括:电机控制、差动放大器、小电机、电压表、光纤位移传感器、直流稳压电源、主、副电源、示波器) (三)实验内容 1.了解电机在实验仪上所在的位置及控制单元。 2.按图2接线,将差动放大器的增益置最大,电压表的切换开关置2V,开启主、副电源。 图2 3.将光纤探头移至电机上方对准电机上的反光纸,调节光纤传感器的高度,使电压表显示 最大。再用手稍微转动电机,让反光面避开光纤探头。调节差动放大器的调零,使电压表显示接近零。 4.旋动电机控制电位器,使电机运转。

光纤光栅原理及应用

光纤光栅传感器原理及应用 (武汉理工大学) 1光纤光栅传感原理 光纤光栅就是利用紫外光曝光技术,在光纤中产生折射率的周期分布,这种光纤内部折射率分布的周期性结构就是光纤光栅。光纤布喇格光栅(Fiber Bragg grating ,FBG )在目前的应用和研究中最为广泛。光纤布喇格光栅,周期0.1微米数量级。FBG 是通过改变光纤芯区折射率,周期的折射率扰动仅会对很窄的一小段光谱产生影响,因此,如果宽带光波在光栅中传输时,入射光将在相应的波长上被反射回来,其余的透射光则不受影响,这样光纤光栅就起到了波长选择的作用,如图1。 图1 FBG 结构及其波长选择原理图 在外力作用下,光弹效应导致折射率变化,形变则使光栅常数发生变化;温度变化时,热光效应导致折射率变化,而热膨胀系数则使光栅常数发生变化。 (1)光纤光栅应变传感原理 光纤光栅反射光中心波长的变化反映了外界被测信号的变化情况,在外力作用下,光弹效应导致光纤光栅折射率变化,形变则使光栅栅格发生变化,同时弹光效应还使得介质折射率发生改变,光纤光栅波长为1300nm ,则每个με将导致1.01pm 的波长改变量。 (2)光纤光栅温度传感原理 光温度变化时,热光效应导致光纤光栅折射率变化,而热膨胀系数则使光栅栅格发生变化。光纤光栅中心波长为1300nm ,当温度变化1摄氏度时,波长改变量为9.1pm 。 反射光谱 入射光谱 投射光谱 入射光 反射光 投射光 包层 纤芯 光栅 光栅周期

2光纤光栅传感器特点 利用光敏元件或材料,将被测参量转换为相应光信号的新一代传感技术,最大特点就是一根光纤上能够刻多个光纤光栅,如图2所示。 光纤光栅传感器可测物理量: 温度、应力/应变、压力、流量、位移等。 图2 光纤光栅传感器分布式测量原理 光纤光栅的特点: ● 本质安全,抗电磁干扰 ● 一纤多点(20-30个点),动态多场:分布式、组网测量、远程监测 ● 尺寸小、重量轻; ● 寿命长: 寿命 20 年以上 3目前我校已经开展的工作(部分) 3.1 基于光纤光栅传感的旋转传动机械动态实时在线监测技术与系统 利用光纤光栅传感技术的特性,实现转子运行状态的非接触直接测量。 被测参量 宽带光源 光纤F-P 腔 测点1 测点2 测点3 测点n 波长 光 强 λ1 测点1 λ2 测点2 λ3 测点3 λn 测点n 光源波长

光纤陀螺仪指标 国军标

光纤陀螺仪测试方法 1范围 本标准规定了作为姿态控制系统、角位移测量系统和角速度测量系统中敏感器使用的单轴干涉性光纤陀螺仪(以下简称光纤陀螺仪)的性能测试方法。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注目期的引用文件,其随后所有的修改单(不包含勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB321-1980优先数和优先系数 CB998低压电器基本实验方法 GJB585A-1998惯性技术术语 GJB151军用设备和分系统电磁发射和敏感度要求 3术语、定义和符号 GJB585A-1998确立的以及下列术语、定义和符号适用于本标准。

3.1术语和定义 3.1.1干涉型光纤陀螺仪interferometric fiber optic gyroscope 仪萨格奈克(Sagnac)效应为基础,由光纤环圈构成的干涉仪型角速度测量装置。当绕其光纤环圈等效平面的垂线旋转时,在环圈中以相反方向传输出的两束相干光间产生相位差,其大小正比于该装置相对于惯性空间的旋转角速度,通过检测输出光干涉强度即反映出角速度的变化。 3.1.2陀螺输入轴input axis of gyro 垂直于光纤环圈等效平面的轴。当光纤陀螺仪绕该轴有旋转角速度输入时,产生光纤环圈相对于惯性空间输入角速度的输出信号。 3.1.3标度因数非线性度scale factor nonlinearity 在输入角速度范围内,光纤陀螺仪输出量相对于最小二乘法拟合直线的最大偏差值与最大输出量之比。 3.1.4零偏稳定性bias stability 当输入角速度为零时,衡量光纤陀螺仪输出量围绕其均值的离散程度。以规定时间内输出量的标准偏差相应的等效输入角速度表示,也可称为零漂。

光纤陀螺的温度试验与误差补偿

第36卷第12期2009年12月 光电工程 Opto-ElectronicEngineering V01.36,No.12 Dee,2009 文章编号:1003—501X(2009)12—0132—06 光纤陀螺的温度试验与误差补偿 李家垒1,何婧2,许化龙1 (1.第二炮兵工程学院,西安710025} 2.96411部队23分队,陕西宝鸡721006) 摘要:分析了光纤陀螺的温度特性及非线性特性,并在组建光纤陀螺温度试验系统的基础上,进行了全温度范围下的位置试验和角速率试验,研究不同的温度及输入角速率对光纤陀螺输出的影响。根据试验结果,分别建立了光纤陀螺零偏的温度模型以及标度因数的温度和非线性模型,并采用最小二乘法拟合模型的参数。通过实测数据进行仿真验证,结果表明,建立的模型能够较好地描述光纤陀螺的温度及非线性特性,利用该模型进行光纤陀螺的温度和非线性误差补偿,取得了较好的效果,光纤陀螺的测试精度得到了较大程度的提高。 关键词:光纤陀螺;温度试验;温度模型:非线性模型 中图分类号:V241.5文献标志码:Adoi:10.3969/j.issn.1003.501X.2009.12.026 TemperatureTestandErrorCompensationofFOG LIJia.1eil,HEJin92,XUHua-longl (1.TheSecondArtilleryEngineeringCollegestaff,X/'an710025,China; 2.Unit23ofArmy96411,Baoji721006,ShaanxiProvince,China) Abstract:ThetemperatureandnonlinearcharacteristicsofFiberOpticGyro(FOG)aleanalyzed,andpositionandangularvelocityexperimentsarecarriedoutbasedonthetemperaturelestsystem,SOtheeffectsofdifferenttemperatureandangularvelocityonFOG’Soutputcanbestudied.Accordingtoexperimentalresults,temperatureerrormodelofzerobiasandtemperatureandnonlinearerrormodelofscalefactorofFOGarebuilt,whoseparametersareestimatedbyusingleastsquaremethod.Throughsimulation,itisprovedthatthebuiltmodelstanreflectthetemperatureandnonlinearcharacteristicsofFOGverywell,Thenthecompensationcanbedonebasedonthemodels,andtheaccuracyofFOGCallbeimprovedgreatly. Keywords:fiberopticgyro;temperaturetest;temperaturemodel;nonlinearmodel 0引言 光纤陀螺是一种基于Sagnac效应¨1的测量仪表,它利用固态的全光纤结构实现载体自转角速度的测量。与传统的机械陀螺相比有许多突出的优点,如精度高、耐冲击、抗震性好、动态范围大、对重力加速度不敏感等。由于构成光纤陀螺的核心部件对温度较为敏感,温度已成为光纡陀螺迈向工程化所面临的难题之一。当光纤陀螺工作环境的温度发生变化时,在陀螺的输出信号中将产生热致非互易相位噪声¨圳,这种噪声是导致光纤陀螺零偏和标度因数不稳定的主要原因;当输入角速率比较大时,还会产生标度因数的非线性偏差,对于开环光纤陀螺尤为明显,因此有必要采取温度和非线性补偿措施。 论文对某型开环光纤陀螺进行了全温位置和速率试验,研究了其受温度影响的情况,通过对试验结果的分析和建模,得到了一些重要结论,对于研究光纤陀螺的温度特性p1具有一定的工程意义和理论价值。 收稿日期:2009-05-31。收到修改稿日期:2009-07—17 作者简介:李家垒(1983一),男(汉族),山东青州人。博士研究生。主要研究工作是光惯导系统。E-mail:lijialei20052005@yahOo.com.cn。 万方数据

光纤温度传感器

光纤温度传感器 电子092班 张洪亮 2009131041

光纤温度传感器 摘要 本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外 主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。 关键词:光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理 1 引言: 光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。70 年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。1977 年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。从70 年代中期到 80 年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高; 是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是: 光纤传感系统;现代数字光 纤控制系统;光纤陀螺;核辐射监控;飞机发动机监控; 民用研究计划。以上计划仅在 1983 年就投资 12-14 亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等 28 个主要单位。美国光纤

光纤光栅

“现代传感与检测技术”课程学习汇报 光纤光栅传感器及其在医学上的应用 学院:机电学院 专业:仪器科学与技术 教师:刘增华 学号: S201201134 姓名:王锦 2013年03月

目录 第一章光纤光栅简介 (3) 1.1 光纤的基本概念 (3) 1.2 光纤光栅器件的基本概念 (3) 1.3 光纤光栅的加工工艺 (4) 1.4 光纤光栅的类型 (5) 第二章光纤光栅传感器 (7) 2.1光纤光栅温度传感器 (7) 2.2 光纤光栅应变与位移传感器以及振动与加速度传感器 (8) 第三章光纤光栅传感器的应用 (10) 3.1 光纤光栅传感器在结构健康测试方面的应用 (10) 3.2光纤光栅传感器在医学中的应用 (10) 3.3 光纤光栅在其他领域的应用 (11) 第四章总结 (12) 参考文献 (12)

第一章光纤光栅简介 1.1 光纤的基本概念 光纤的结构十分简单。光纤的纤芯是有折射率比周围包层略高的光学材料制作而成的,折射率的差异引起全内反射,引导光线在纤芯内传播。 光纤纤芯和包层的尺寸根据不同的用途,有多中类型。如传输图像的光纤要尽可能地收集到起端面上的光,因此其包层相对于纤芯而言非常薄。长距离传输过程中,通信光纤的厚半层能避免光束泄露出纤芯。然而,短距离通信光纤的纤芯较大,能够尽可能地手机光,一般称为多模光纤,长距离通信光纤的纤芯直径 一边比较小,一般只能传输一个模式,因此成为单模光纤。 光纤具有机械特性和光学特性。在机械方面光纤坚硬而又灵活,机械强度大。光纤的光学特性取决于他们的结构与成分。一般轴对称的单模光纤可以同时传输两个线偏振正交模式或者两个圆偏振正交模式。这两个正交模式在光纤中将以相同的速度向前传播,因而在其传播过程中偏振态不会发生变化。 1.2 光纤光栅器件的基本概念 加拿大渥太华通信研究中心的K.O.Hill等人于1978年首次在掺锗石英光纤中发现光线的光敏效应,并采用驻波写入法制成世界上第一只光纤光栅。光纤光栅是近几年发展最快夫人光纤无源器件之一,他的出现将可能在光纤技术以及众多相关领域中引起一场新的技术革命。由于它具有在管线通信、光纤传感、光计算和光信息处理等领域均具有广阔的应用前景。 光纤光栅是利用光线材料的光敏性(外界入射光子和纤芯锗离子相互作用in 器折射率永久性变化),在纤芯内形成空间相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或者反射)滤波或者反射镜。利用这一特性可构成许多性能独特的光纤无源器件,例如利用光纤光栅的窄带高反射特性构成光纤反馈腔,依靠掺铒光纤等为增益介质可制成光纤激光器;利用光纤光栅作为激光二极管的外腔反射器,可以构成课调谐激光二极管;利用光纤光栅课构成Michelson干涉仪型Mach-Zehnder干涉仪和Febry-Peort干涉仪型的光纤色散补偿器。利用闪耀光栅可以制成光纤平坦滤波器;利用非均匀光纤光栅还可以制成用于检测应力、应变、温度等诸多参量的光纤传感器和各种传感网。

光纤光栅应变传感器实验讲义

实验光纤布拉格光栅(FBG )应变实验研究 【实验目的】 1) 了解光纤光栅传感器基本原理及FBG 应变测量的基本公式。 2) 了解飞机驾驶杆弹性元件的力学特性。 3) 学习光纤光栅应变测量的基本步骤和方法。 【实验原理】 1.光纤光栅传感器的基本原理及FBG 应变测量的基本公式 光纤布喇格光栅(Fiber Bragg grating, FBG )用于传感测量技术,主要是通过外界物理量的变化对光纤光栅中心波长的调制来获取传感信息,因此它是一种波长调制型的光纤传感器。FBG 传感原理如图1所示。 图1中,当一束入射光波进入FBG 时,根据光纤光栅模式耦合理论,当满足满足相位 匹配条件时,反射光波即为FBG 的布喇格波长λB ,λB 与有效折射率n eff 和光栅周期Λ的关系为 Λ2eff B n =λ(1) 由式(1)可以知:n eff 与Λ的改变均会引起光纤光栅波长的改变,而且n eff 与Λ的改变与应变和温度有关。应变和温度分别通过弹光效应与热光效应影响n eff ,通过长度改变和热膨胀效应影响周期Λ,进而使λB 发生移动。将耦合波长λB 视为温度T 和应变ε的函数,略去高次项,则由应变和温度波动引起的光纤光栅波长的漂移可表示为 Λ ?+?Λ=?eff eff B 22n n λ (2) I λ I 输入光波 反射光波 透射光波 图1 FBG 传感原理示意图

由式(2)可知光纤光栅中心波长漂移量?λ对轴向应变?ε和环境温度变化?T 比较敏感。通过测量FBG 中心波长的变化,就可测量外界物理量的变化值(如应变、温度等)。 光纤光栅轴向应变测量的一般公式为 ()ελλe B Bz 1p -=?,也是裸光纤光栅轴向应变测量的计 算公式。由上式可知,?λBz 和ε存在线性关系,因此通过解调装置检测出布拉格波长的偏移量?λ,就可以确定被测量ε的变化。 2. 飞机驾驶杆弹性元件的力学特性 杆力传感器弹性元件采用平行梁形式,其结构如图2所示。弹性元件由互相交叉90°的两对关联平行梁组成一个测力悬杆,其中一组感受纵向作用力,另一组感受横向作用力,上下部分连为一体,增加了梁的刚度,提高了梁的固有频率并具有良好的散热条件。对其中每一方向作用力,由于其侧向刚度大,于是侧向负载能力强,与施加力平行的一对平行梁轴向应变可以忽略不计,外加力主要使与作用方向垂直的一对平行梁变形。 杆力传感器弹性元件为方框平行梁结构,为便于分析和简化计算,将方框平行梁简化为 一超静定刚架,力学模型如图3(a)所示。 因为刚架计算通常忽略轴力对变形的影响,力学模型又可进一步简化为一个反对称载 荷作用的刚架,简化后的力学模型如图3(b)所示,其中P=1/2P 0。将受反对称载荷作用的刚 架沿水平对称轴截开,这时垂直梁的截面上有三对内力力,即一对剪力X 、一对轴力N 、一对弯矩M ,多余约束力如图3(c)所示。根据结构力学反对称结构对称的外力为零的理论,因 图2弹性元件结构简图 (纵向) ) 图3简化后的模型 (a)超静定刚架结构 P 0 h (c) 多余未知力图 P P (b) 简化后力学模型 P P a

光纤温度传感器简介

光纤温度传感器 摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。 关键字:光纤传感温度应用 1引言 在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。光纤温度传感器是20世纪70年代发展起来的一种新型传感器。与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。 2光纤温度传感器分类 光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。 目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。 2.1光纤光栅温度传感器 光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。 光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程: =2nA 式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。 长周期光纤光栅是一种特殊的光纤光栅,其传光原理是将前向传输的基模耦合到前向传输的包层模中。由于其宽带滤波、极低的背景发射等特点引起人们的重视,是一种新型的宽带带阻滤波器。 光纤温度监测系统主要由光纤光栅传感器、传输信号用的光纤和光纤光栅解调器组成。光纤光栅解调器用于对光纤光栅传感器的信号检测和数据处理,以获得测量结果,传输光纤用于传输光信号,光纤光栅传感器则主要用于反射随温度变化中心波长的窄带光,如图1所示:

悬臂梁结构光纤光栅温度自补偿位移传感器实验研究

悬臂梁结构光纤光栅温度自补偿位移传感器实验研究 摘要:以悬臂梁为基本构架,以FBG 为敏感元件,设计了一种新型的具 有温度自补偿特性的FBG 位移传感器方案。对悬臂梁进行分析,推导出位移 传感器的传递函数,然后对其定标并实际测量,得到了传感器线性度和灵敏度同悬臂梁长度以及光纤布拉格光栅的位置之间的关系,并从结果看出本传感器精度高,运行稳定,且有好的重复性,线性范围最大为16mm。关键词:光纤光栅;悬臂梁;位移传感器;传递函数;温度自补偿0 引言自从1978 年K.O.Hill 等人首次在锗硅光纤上用驻波持续曝光制作成第一个光纤布拉格光栅(FBG)以来,FBG 的应用研究引起了全世界学者的广泛关注。光纤光栅传感器的材料优势及传感优势使FBG 传感技术近年来引起人们极大的兴趣。在光 纤光栅传感方案中,温度补偿的准确性和可靠性对测量结果的准确性有非常大的影响,要做到合理准确又有效的温度补偿,只能通过单个传感器的温度自补偿来实现。本文在FBG 的传感机理上,依据悬臂粱结构提出一种位移传感器 方案,此方案结构简单、运行稳定,且能够实现温度补偿与减小外界干扰的作用,获得较高的灵敏度。1 原理基本结构原理为,图1 为矩形悬臂梁基本结构,粱长为L,梁轴线的曲率为p(η),梁的轴线称为挠度线,则曲线上任 一点η处在外力F 作用下的纵坐标f(η)即为该点的挠度,传振原理为,当自由端有静挠度y 时,距离固定端为的截面处的静挠度f(η):式中,εz 为轴向应变,Pe 为弹光系数,a∧为光纤的热膨胀系数,a0 表示热光系数,△T 温度的变化量。温度自补偿原理为,当采用双光栅差分式分布在梁上下表面时,两根光栅中心波长的变化方向是相反的。两根光栅封装方式完全一样,热膨胀系数与热光系数均相同,长度一致,且两者应变等幅反向,即有:故由两根光栅分别满足式(2),同时具有(3)(4)两式所示条件,可以

光纤温度传感器

光纤温度传感器的种类很多,除了以上所介绍的荧光和分布式光纤温度传感器外,还有光纤光栅温度传感器、干涉型光纤温度传感器以及基于弯曲损耗的光纤温度传感器等等,由于其种类很多,应用发展也很广泛,例如,应用于电力系统、建筑业、航空航天业以及海洋开发领域等等。 分布式光纤温度传感器在电力系统行业的发展 光纤温度传感器在电力系统的应用中得到发展,由于电力电缆温度、高压配电设备内部温度、发电厂环境的温度等,都需要使用光纤传感器进行测量,因此就促进了光纤传感器的不断完善和发展。尤其是分布式光纤温度传感器得到了改善,经过在电力系统行业的应用,从而使其接收信号和处理检测系统的能力都得到了提升。 光纤光栅温度传感器在建筑业的发展 光纤光栅温度传感器由于其较高的分辨率和测量范围广泛等优点,被广泛应用于建筑业温度测量工作中。西方很多发达国家都已普遍采用此系统,进行建筑物的温度、位移等安全指标的测试工作,例如,美国墨西哥使用光栅温度传感器,对高速公路上桥梁的温度进行检测。通过广泛使用,光栅温度传感器所存在的问题,如:交叉敏感的消除、光纤光栅的封装等都得到了解决,因而此系统得到了完善。 航空航天业中的应用发展 航空航天业使用传感器的频率较高,包括对飞行器的压力、温度、燃料等各方面的检测,都需要使用光纤温度传感器进行检测,并且所使用到的传感器数量多达百个,所以对传感器的大小和重量要求很严

格。因此,基于航空航天业对传感器的要求,光纤温度传感器的体积、重量规格方面都经过了调整。2222222分布式光纤温度传感器分布式光纤温度传感器,通常用在检测空间温度分布的系统,其原理最早于1981年提出,后随着科学家的实验研究,最终研制出了此项技术。这种传感器原理发展是基于三种传感器的研究,分别是瑞利散射、布里渊散射、喇曼散射。在瑞利散射(OTDR)和布里渊散射(OTDR)的研究已取得了很大的进展,因此未来的传感器研究热点,将放在对基于喇曼散射(OTDR)的新分布式光纤传感器的研究上。最近,土耳其Gunes Yilmaz开发出了一种分布式光纤温度传感器,此传感器的温度分辨率是1℃,空间分辨率是1.23m。在我国也有很多大学展开了对分布式光纤温度传感器的研究,例如,中国计量大学1997年发明出煤矿温度检测的传感器系统,其检测温度为-49℃~150℃,温度分辨率为0.1℃。 光纤荧光温度传感器 当前最热门的研究,就是针对光纤荧光温度传感器,其是利用荧光的材料会发光的特性,来检测发光区域的温度。这种荧光的材料通常在受到紫外线或红外线的刺激时,就会出现发光的情况,发射出的光参数和温度是有着必然联系的,因此可以通过检测荧光强度来测试温度。世界各国的高校都设计过此类传感器,例如,韩国汉城大学发现10cm的双掺杂光纤,在其915nm的地方所反射出的荧光强度所对应的温度指数是20℃~290℃;我国清华大学借用半导体GaAs原料来吸收光,进而以光随温度改变的原理,研发出了温度范围是0℃~

光纤光栅应变传感器二维应变测量方法

龙源期刊网 https://www.360docs.net/doc/592542647.html, 光纤光栅应变传感器二维应变测量方法 作者:李金娟 来源:《无线互联科技》2015年第02期 摘要:文章介绍了光纤光栅二维应力传感测量的试验台的准备、光纤光栅的制备、光纤 光栅的粘贴、实验仪器、实验过程、光纤光栅测量应变与电阻应变片的测量结果作对比。实验结果说明利用光纤光栅应变花可以得出与电阻应变花一致的结果。 关键词:光纤光栅;电阻应变片;应变;直角应变花 光纤光栅应变花进行二维平面应力测量是通过三个光纤光栅的中心波长的变化来测定应变的,电阻应变片应变花测出的应变值对光纤光栅中心波长进行标定。所以粘贴时尽可能保证光纤光栅与对应的电阻应变片的测量方位一致。 1 实验台的准备 由于本实验需要用多个光纤光栅进行二维应力测量,所以不能使用一般的等强度梁,而是用一个十字架形结构,实际上也是一种等强度梁,不过这种装置有两个等强度梁,分别作为十字架的X轴向和Y轴向,用来施加压力,如图1所示。 这是实验的被测表面的俯视图,表面是由我们用一块马口铁皮做成的。实验时在X轴、Y 轴方向分别悬挂砝码盘。砝码的重力通过试验台的等悬梁臂结构拉伸X或者Y方向的铁皮,铁皮的应力的变化引起光纤光栅中心波长的变化,因此为了保证试验的效果,光纤光栅的粘贴必须使光栅光纤紧贴被测表面时同时发生应变。 2 光纤光栅的制备 实验台准备好后重要的是制备光纤光栅,本实验使用3只不同中心波长的光纤光栅,串联成直角应变花来测试动态应力的变化,因而需制备3只不同波长的光纤光栅。由于实验条件的限制,试验室中只有两块相位掩模板,在实验室中只能制备两只光纤光栅,另外一只光纤光栅是已经制备好的光纤光栅。三只光纤光栅的波长位置分别在:1532nm,1544nm,1548nm处附近。 根据实验条件,组建一个光纤光栅制作系统,制作方法采用目前最有效,也是最流行的相位掩模法,其实验系统如图2所示。 本实验用光纤,是载氢掺锗光敏光纤-普通光纤经过载氢处理(在室温下,压强为107Pa 的容器中,载氢两周左右),使得普通通信光纤的光敏性大大增加,达到写制光栅的要求。实验所用的光谱分析仪为国产AV6361,分辨率选择0.2nm,宽带光源使用LED。

光纤位移传感器实验

光纤位移传感器实验 一、实验目的 1、了解光纤位移传感器工作原理及其特性; 2、了解并掌握光纤位移传感器测量位移的方法。 二、实验内容 1、光纤位移传感器输出信号处理实验; 2、光纤位移传感器输出信号误差补偿实验; 3、光纤位移传感器测距原理实验; 4、利用光纤位移传感器测量出光强随位移变化的函数关系; 5、实验误差测量。 三、实验仪器 1、光线位移传感器实验仪1台 2、反射式光纤1根 3、对射式光纤2根 4、连接导线若干 5、电源线1根 四、实验原理 本实验仪通过光纤位移传感器位移测量实验,熟悉光纤结构特点及光纤数值孔径的定义,掌握光纤位移的测量原理,熟悉光路调整方法。 本实验仪可以完成反射式和对射式光纤位移传感器实验,重点研究光纤位移传感器的工作原理及其应用电路设计。 通常按光纤在传感器中所起的作用不同,将光纤传感器分成功能型称为传感 (或 型)和非功能型(传光型、结构型)两大类。功能型光纤传感器使用单模光纤,它 在传感器中不仅起传导光的作用,而且又是传感器的敏感元件。但这类传感器大制造上技术难度较大,结构比较复杂,且调试困难。 非功能型光纤传感器中,光纤本身只起传光作用,并不是传感器的敏感元件。它是利用在光纤端面或在两根光纤中间放置光学材料、机械式或光学式的敏感元件感受被测物理量的变化,使透射光或反射光强度随之发生变化。所以这种传感器也叫传输回路型光纤传感器。它的工作原理是:光纤把测量对象辐射的光信号或测量对象反射、散射的光信号直接传导到光电元件上,实现对被测物理量的检测。为了得到较大的受光量和传输光的功率,这种传感器所使用的光纤主要是孔径大的阶跃型多模光纤。该光纤传感器的特点是结构简单、可靠,技术上容易实现,便于推广应用,但灵敏度较低,测量精度也不高光纤位移传感器实位移测量器件,利用光纤传输光信号的功能,根据检测到的反射光的强度来测量被测反射表面的距离。 光纤位移传感器属于非功能型光纤传感器。 相关参数: 1、光源:高亮度白光LED,直径5mm 2、探测器:高灵敏度光敏三极管

光纤位移传感器

课程设计中期报告课题名称:光纤位移传感器 班级:2013级机电1班 组长:彭欢201307124101 组员:郑岩201307124123 马晓龙201307124117 张林201307124128

光纤位移传感器 重庆三峡学院机械工程学院机械电子专业2013级重庆万州 404000 摘要:光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,称为被调制的信号光,再过利用被测量对光的传输特性施加的影响,完成测量. 绝缘子污秽、磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流、光纤传感器可用于位移、震动、转动、压力、弯曲、应变、速度、加速度、电流、磁场、电压、湿度、温度、声场、流量、浓度、PH值和应变等物理量的测量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年来一直存在的技术难题,具有很大的市场需求。 关键字:位移光纤传感器 1引言 光纤传感器的基本工作原理是将来自光源的光信号经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,成为被调制的信号源,在经过光纤送入光探测器,经解调后,获得被测参数。 1.1光纤位移传感器的发展 光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。光纤传感器有70多种,大致上分成光纤自身传感器和利用光纤的传感器。 1.2光纤位移传感器的特性 一。灵敏度较高 二。几何形状具有多方面的适应性,可以制成任意形状的光纤传感器 三。可以制造传感各种不同物理信息(声、磁、温度、旋转等)的器件; 四。可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境; 五。而且具有与光纤遥测技术的内在相容性。附属说明:可以用来检测多种物理量,比如声场、电场、压力、振动、温度、加速度等,还可以完成现有检测工作中难以完成的检测任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了超强的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤传感器。近年来得到很好的发展,大多应用在低碳领域。在风力发电中,光纤传感工艺开始用于检测和优化风力发电风轮系统。作为发展最快的能源工艺,风轮的尺寸越来越大。这些风轮体积巨大,又安装在比较遥远的地点。监控工程师需要实时了解这些风轮的状态。因此,光纤传感器就能发挥其功效,帮助工程师了解风力发电机机组的运行情况。光纤传感器工艺耗能极低而且灵敏,特别在远距离传输中,信号稳定,受干扰小。这些特点使光纤传感器成为极端环境下的理想选择。

光纤光栅应力传感器工作原理

四、光纤光栅应力传感器工作原理 光纤光栅技术是利用紫外曝光技术在光纤芯中引起折射率的周期性变化而形成的。光纤光栅中折射率分布的周期性结构,导致某一特定波长光的反射,从而形成光纤光栅的反射谱。光纤光栅应力传感器通常是将光纤光栅附着在某一弹性体上,同时进行保护封装。反射光的波长对温度、应力和应变非常敏感,当弹性体受到压力时时, 光纤光栅与弹性体一起发生应变,导致光纤光栅反射光的峰值波长漂移,通过对波长漂移量的度量来实现对温度、应力和应变的感测。其工作原理如图1 图1给出了光纤光栅应力传感器与波长解调仪组成的应力测量系统。它主要 由四个部分组成,第一部分为宽带光源,第二部分为光纤光栅应力传感器, 光纤光栅传感测量系统由四个部分组成,第一部分为宽带光源,第二部分为光纤光栅应力传感器,第三部分为基于可调F-P 滤波器的波长解调仪,第四部分为计算机及软件分析处理系统。图中给出等间隔分布多个光纤光栅应力传感器,这些光纤光栅通常要进行串接。由宽带光源发出的宽带光信号经过隔离器和3dB 耦合器传输到串接的传感光栅上,经过这些光纤光栅的波长选择后,一组不同波长的窄带光被反射,反射光再次经过3dB 耦合器由波长解调仪接收,经过波长解调仪对这些波长进行识别,得到一组应力传感信息,当边坡内部应力发生变化时,通过光栅解调器检测出波长的变化即应力变化,之后输入到计算机进行数据分析处理,最后得到边坡受到压力的分布状况,根据监测对象内部变化情况,判断是否会产生塌方,起到报警作用。 计算机 波长解调仪 宽带光源 耦合器 光纤光栅应力传感器 图1测量系统光路示意图 光隔离器 扫描电压 抖动信号 可调F-P 滤波器 混合器 LP 滤波器

光纤传感器的位移特性

光纤传感器的位移特性实验报告 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、基本原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 三、需用器件与单元 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面。 四、实验步骤 1、根据图1-6安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图1-6光纤传感器安装示意图

2、将光纤实验模板输出端V O1与数显单元相连,见图1-7。 图1-7光纤传感器位移实验接线图 2、调节测微头,使探头与反射面圆平板接触。 3、实验模板接入±15V电源,合上主控箱电源开关,调R W、使数显表显示为零。 4、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表1-4。 表1-4光纤位移传感器输出电压与位移数据 5、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。 五、实验数据处理 1、实验数据:

2、光纤传感器位移与输出电压特性曲线: 3、1mm时的灵敏度与非线性误差:

用最小二乘法拟合的直线为: 灵敏度为0.1458V/mm 在0.45mm处取最大相对误差为:0.07V 非线性误差为: 六、思考题 光纤位移传感器测位移时对被测体的表面有些什么要求? 答:表面要干净没有污点,而且光洁度要好;再因为一定要可以反射光,因此一定不能出现黑色表面的情况。

相关文档
最新文档