电动汽车V2G系统及充放电控制策略研究

目录

目录

摘要 ....................................................................................................................... I Abstract .................................................................................................................. I II

第1章绪论 (1)

1.1 课题背景及研究的目的和意义 (1)

1.2 电动汽车V2G技术研究现状 (2)

1.2.1 V2G可行性研究 (2)

1.2.2 V2G的实现方式 (4)

1.2.3 国内外V2G示范项目 (7)

1.3 电动汽车充放电负荷的时空分布 (8)

1.3.1 基于出行特征的分析方法 (9)

1.3.2 基于充/换电站的负荷分析方法 (9)

1.4 电动汽车充放电控制策略 (10)

1.4.1 区域电力系统控制策略 (10)

1.4.2 电动汽车群体控制策略 (11)

1.4.3 个体电动汽车控制策略 (11)

1.5 电动汽车充放电系统运行及V2G双向充电机 (12)

1.5.1 电动汽车充放电系统及运行 (12)

1.5.2 V2G双向充电机 (13)

1.6 本文主要研究内容 (14)

第2章电动汽车V2G负荷时空分布预测研究 (16)

2.1 引言 (16)

2.2 电动汽车V2G负荷时空分布预测的总体思路 (16)

2.3 电动汽车停车需求空间分布模型 (17)

2.3.1 城市综合交通规划中的停车需求模型 (17)

2.3.2 停车泊位需求计算与区位划分 (18)

2.3.3 电动汽车停车需求空间分布修正 (19)

2.4 电动汽车行驶及停车需求特性分析 (20)

2.4.1 电动汽车行驶行为特点 (20)

2.4.2 电动汽车停车需求时间分布 (21)

2.4.3 工商业区和居住区电动汽车停车需求时间分布模型 (22)

目录

2.5 电动汽车V2G负荷容量模型及预测方法 (22)

2.5.1 电动汽车V2G负荷容量模型 (22)

2.5.2 基于蒙特卡洛仿真的V2G负荷预测 (24)

2.6 算例分析 (25)

2.6.1 电动汽车停车需求的空间分布 (26)

2.6.2 仿真参数设置 (26)

2.6.3 仿真分析 (28)

2.7 本章小结 (32)

第3章停车场电动汽车用户侧最优V2G控制策略研究 (33)

3.1 引言 (33)

3.2 基于分层的V2G控制系统结构 (33)

3.3 电动汽车V2G服务类型分析 (35)

3.3.1 电力市场服务类型 (35)

3.3.2适合电动汽车V2G的服务类型 (37)

3.4 V2G停车场用户侧最优控制策略 (39)

3.4.1频率调节服务需求特性分析 (39)

3.4.2 基于最优合约的第一类服务策略 (40)

3.4.3 基于最优合约的第二类服务策略 (46)

3.5基于最优合约策略下的收益分析 (48)

3.5.1 第一类服务仿真结果分析 (49)

3.5.2 第二类服务仿真结果分析 (53)

3.5.3 对用户及V2G停车场的建议 (56)

3.6 本章小结 (56)

第4章基于有源前端控制器的V2G能量变换系统 (57)

4.1 引言 (57)

4.2 基于有源前端控制器的共直流母线V2G系统 (57)

4.2.1 传统电动汽车充电系统结构分析 (57)

4.2.2 基于有源前端控制器的共直流母线V2G系统 (59)

4.3 基于有源前端控制器的V2G系统构建与分析 (60)

4.3.1 V2G能量变换系统构建 (60)

4.3.2 V2G系统有功与无功运行分析 (61)

4.4 V2G能量变换系统控制策略 (62)

4.4.1级联H桥双向AC/DC变换器控制策略 (63)

4.4.2 双向DC/DC变换器并联控制策略 (66)

目录

4.4.3 双向车载充电机群控制策略 (67)

4.5 V2G能量变换系统建模与仿真分析 (68)

4.5.1 V2G能量变换系统建模 (68)

4.5.2 仿真结果分析 (70)

4.6本章小结 (76)

第5章车载V2G充电机系统设计与实验 (78)

5.1 引言 (78)

5.2 V2G系统及服务对于车载充电机的要求分析 (78)

5.3 车载双向充电机系统设计 (81)

5.3.1 双向DC/DC充电机主电路拓扑及控制策略分析 (81)

5.3.2 单相PFC主电路拓扑选择 (83)

5.3.3 硬件系统设计 (84)

5.3.4 充电机系统软件设计与基于模型的代码自动生成 (87)

5.4 车载V2G充电机系统实验与分析 (89)

5.4.1 车载V2G充电机实验平台 (89)

5.4.2 实验结果与分析 (90)

5.5 本章小结 (95)

结论 (97)

参考文献 (99)

攻读博士学位期间发表的论文及其他成果 (109)

哈尔滨工业大学学位论文原创性声明及使用授权说明 (110)

致谢 (111)

个人简历 (112)

Contents

Contents

Abstract (In Chinese) .............................................................................................. ?Abstract (In English) ............................................................................................. I II

Chapter 1 Introduction (1)

1.1 Background, objective and significance of the subject (1)

1.2 V2G technology situation for Electric Vehicle (2)

1.2.1 Feasibility analysis for V2G (2)

1.2.2 Implementation methold of V2G (4)

1.2.3 V2G demonstration projects at home and abroad (7)

1.3 Temporal and spatial distribution pridiction of Electric Vehicle charging and

discharging load (8)

1.3.1 Analysis method based on trip characteristics (9)

1.3.2 Load analysis method for charging station and battery swap station (9)

1.4 Charging and discharging control strategy for Electric Vehicle (10)

1.4.1 Control strategy for regional power system (10)

1.4.2 Control strategy for Electric Vehicle groups (11)

1.4.3 Control strategy for individual Electric Vehicle (11)

1.5 The operation of Electric Vehicles' charging and discharging system and V2G

bidirectional charger (12)

1.5.1 Electric Vehicles' charging and discharging system (12)

1.5.2 V2G bidirectional charger (13)

1.6 Main research contents of the paper (14)

Chapter 2 Research on temporal and spatial distribution of Electric Vehicle

V2G load (16)

2.1 Introduction (16)

2.2 Total thinkway for the research on Electric Vehicle V2G load temporal and

spatial distribution (16)

2.3 Spatial distribution model of Electric Vehicles’ parking demand (17)

2.3.1 Parking demand model of urban comprehensive transportation (17)

2.3.2 Parking berth demand calculation and location division (18)

2.3.3 Modified model of Electric Vehicle parking demand of spatial distribu-

tion (19)

2.4 Characteristics analysis of Electric Vehicle parking and driving demand (20)

2.4.1 Driving behavior characteristics of Electric Vehicle (20)

2.4.2 Temporal distribution of Electric Vehicle parking demand (21)

Contents

2.4.3 Temporal distribution model of Electric Vehicle parking demand for

industrial, commercial and residential districts (22)

2.5 Electric Vehicle V2G load capacity modeling and prediction method (22)

2.5.1 Capacity model of Electric Vehicle V2G load (22)

2.5.2 V2G load prediction based on Monte Carlo simulation (24)

2.6 Analysis for example (25)

2.6.1 Spatial distribution of Electric Vehicle parking demand (26)

2.6.2 Parameter settings for the simulation (26)

2.6.3 Analysis of simulation results (28)

2.7 Brief summary (32)

Chapter 3 User-side optimal V2G control strategy in Electric Vehicle parking

lot (33)

3.1 Introduction (33)

3.2 V2G control system based on layered architecture (33)

3.3 Service type analysis for Electric Vehicle V2G (35)

3.3.1 Type of service for electricity market (35)

3.3.2 Type of service suitable for Electric Vehicle V2G (37)

3.4 User-side optimal V2G control strategy for parking lot (39)

3.4.1 Demand characteristic analysis for frequency regulation service (39)

3.4.2 Type I service strategy based on optimal contract (40)

3.4.3 Type II service strategy based on optimal contract (46)

3.5 Income analysis based on optimal contract control strategy (48)

3.5.1 Analysis of simulation results for the type I service (49)

3.5.2 Analysis of simulation results for the type II service (53)

3.5.3 Suggestions for users and V2G parking lots (56)

3.6 Brief summary (56)

Chapter 4 V2G energy conversion system based on the Active Front End Controller (57)

4.1 Introduction (57)

4.2 Common DC-bus V2G system based on Active Front End Controller (57)

4.2.1 Analysis of traditional charging system of Electric Vehicle (57)

4.2.2 Common DC-bus system structure based on AFEC (59)

4.3 Construction and analysis for V2G energy conversion system based on Active

Front End Controller (60)

4.3.1 Construction of V2G energy conversion system (60)

4.3.2 Operation analysis for active and reactive power in V2G system (61)

4.4 Control strategy for V2G energy conversion system (62)

4.4.1 Control strategy for cascaded H-bridge bi-directional AC/DC (63)

4.4.2 Parallel control strategy for bi-directional DC/DC (66)

Contents

4.4.3 Group control strategy for bi-directional chargers on board (67)

4.5 Modeling and simulation analysis of V2G energy conversion system (68)

4.4.1 Modeling of V2G energy conversion system (68)

4.4.2 Simulation results analysis (70)

4.6 Brief summary (76)

Chapter 5 Design and experiment of on-board V2G chargers system (78)

5.1 Introduction ............................................................................................... . 78

5.2 V2G system and service demand analysis for charger on board (78)

5.3 System design of bi-directional charger on board (81)

5.3.1 Main circuit topology and control strategy for bi-directional DC/DC

converter (81)

5.3.2 Main circuit topology selection for single phase PFC (83)

5.3.3 Hardware system design (84)

5.3.4 Software design and automatic code generation based on model (87)

5.4 Experiments and on-board V2G charger system analysis (89)

5.4.1 Experimental bentch for V2G charger on board (89)

5.4.2 Analysis of experiment results (90)

5.5 Brief summary (95)

Conclusions (97)

References (99)

Papers published in the period of Ph.D. education (109)

Statement of copyright and Letter of authorization (100)

Acknowledgements (111)

Resume (112)

相关主题
相关文档
最新文档