基于ATmega16超声波测距开放实验报告

青岛科技大学

开放实验报告

院校:高职学院

专业:电气工程及其自动化

年级:13级1班

实验名称:基于Atmega16单片机超声波测距实验

姓名:严家全

学号:1318020135

同组者姓名:张东东

同组者学号:1318020138

指导教师:王泽华老师

基于ATmega16单片机超声波测距的及显示系统

摘要:超声波测距在当今社会生活中已有十分广泛的应用如倒车雷达、航海、宇航、石油化工等工业领域,此外在材料科学、医学、生物科学等领域也占据重要地位。本文主要研究和说明了一种基于单片机微型处理器的超声波测距仪。该仪器以超声波在空气中的传播速度为确定条件,以反射超声波来测量待定距离。本文主要介绍了仪器的理论基础,和软硬件设计的相关情况。

该仪器硬件部分主要有单片机系统及显示电路、超声波传感器(发射部分、接收部分)、电源电路等四大部分组成。软件部分主要由主程序、超声波发射子程序、超声波接收及中断子程序、显示程序等组成。利用ATmega16单片机对超声波传感器接收到的信号进行一定的处理,并送到LCD1602上显示。

关键字:超声波,测距,单片机,显示

Based on ATmega16 single chip ultrasonic distance

measurement and display system

Abstract:ultrasonic ranging has been very widely used in today's social life, such as reversing radar, navigation, aerospace, petrochemical and other industrial areas, in addition in the field of materials science, medicine, biological sciences also occupy the important position.This paper mainly studies and illustrates a kind of ultrasonic range finder based on single chip microprocessor.The instrument to the ultrasonic velocity in air, in order to determine the conditions to reflect ultrasonic distance measure to be determined.This paper mainly introduces the theoretical foundation of the instrument, and hardware and software design.

The instrument hardware part mainly include the single chip microcomputer system and display circuit, ultrasonic sensors (launch part, receiving part) four major part, power supply circuit,

etc.The software part is mainly composed of main program subroutine, ultrasonic launch, ultrasonic receiving and interrupt subroutine, display program, https://www.360docs.net/doc/597529357.html,ing ATmega16 single chip microcomputer of ultrasonic sensor receives the signal processing, and send to the LCD1602 display.

Key words:ultrasonic ranging, microcontroller, display

目录

一、概论 (5)

1.超声波的产生。

2.超声声速的计算。

二、设计要求 (5)

三、ATmega16单片机的输入捕捉功能 (6)

四、硬件设计 (7)

1.ATmega16单片机的引脚分布图

2.超声波传感器

3.LCD1602显示屏

4.系统电路图

五、软件设计 (11)

六、附录 (12)

1.实物图

2.参考程序

3.参考文献

一、概论

1.超声波的产生

声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动形式。超声波是指振动频率大于20KHZ的声波。超声波的方向性好,穿透能力强,易于获得较集中的声能。本超声波测距仪采用的的是HC-SR04超声波传感器,在其TRIG引脚输入一个持续时间为10us的高电平,即可产生8段频率为40KHZ的超声波。

2.超声波在空气中的传播速度

超声波的传播速度受介质和温度的影响,超声波在空气中的传播速度为:

v=(331.4+0.607T)m/s

式中,v为超声波在空气中的传播速度;T为实际温度单位为℃。

本文中介绍的超声波测距仪能实现较为精确的距离测量,取超声波在空气中(常温下)的速度v=340m/s为标准。如想实现更加精准的距离测量,应增加温度补偿。

二、设计要求

*测量距离为3cm——300cm

*测量精度为0.5cm

三、ATmega16单片机的输入捕捉功能

ATmega16单片机的T/C1的输入捕捉功能是AVR定时/计数器的一个非常有特点的功能。T/C1的输入捕捉单元可应用于精确捕捉一个外部事件的发生,记录事件的发生印记。捕捉外部事件的触发信号由引脚TCP1输入,或模拟比较器的ACD单元的输出信号也可作为外部事件的触发信号。

当一个输入捕捉事件发生时,例如外部引脚TCP1的逻辑电平发生变化或模拟比较器的输出电平变化(事件发生)时,T/C1的计数器TCNT1的计数值被写入输入捕捉寄存器OCR1中,并置位输入捕捉标记为ICF1,产生中断申请。

置位编制为ICNC1将使能对输入输入捕捉触发信号的噪声抑制功能。噪声抑制电路是一个数字滤波器,它对输入触发信号进行4次采样,当4次采样值相同时,才确认触发信号。

输入触发方式选择由寄存器TCCR1B的ICES1决定,当ICES1设置为“0”时,输入信号下降沿触发输入捕捉动作;当ICES1设置为“1”,输入信号上升沿触发输入捕捉动作。

四、硬件设计

1.ATmega16单片机的引脚分布图

2.超声波传感器

引脚说明:

(1).VCC电源正极,提供5v电源;

(2).Trig触发信号控制输入端;

(3).Echo回响信号输出;

(4).GND接地;

基本工作原理:

(1). 给Trig触发端提供一个至少10us的高电平

(2).模块自动发出8个40KHZ的方波,自动检测是否有信号

返回。

(3).有信号返回,Echo回响端输出一个高电平,高电平持续时间就是超声波从发射到返回的时间。

3.LCD1602显示屏

引脚分布情况:

其中第3脚VL为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高(对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度)。

3.系统电路图

五、软件设计

系统初始化

发射超声波

捕捉检测超声波传感器ECHO引脚是否有高电平

有高电平

捕捉中断,读出时间标记,准备捕捉低电平

有低电平

捕捉中断,读出时间标记

计算高电平持续时间,

计算距离

多次测量取平均值送入LCD1602显示

六、附录

1.实物图

2.参考软件

/********************************************************** ***************超声波测距**********************************

************采用4MHZ内部时钟*******************************

************T1定时器输入捕捉*******************************

**************YAN JIA QUAN******************************** ***********************************************************/

#include"iom16v.h"

#include"macros.h"

#define RS PD0

#define RW PD1

#define EN PD2

#define F_CPU 4000000UL

#define uint unsigned int

#define uchar unsigned char

unsigned int count,data_1,data_2,buhuo_ok,cishu; unsigned int quyang[3];

void delay_us(int a) //延时us

{

int b;

for(a;a>0;a--)

for(b=2;b>0;b--);

}

void delay_ms(int c) //延时ms

{

for(c;c>0;c--)

delay_us(1000);

}

void lcd_write_cmd(char cmd) //LCD写指令函数

{

PORTD&=~BIT(EN);

PORTD&=~BIT(RS);

PORTB=cmd;

PORTD|=BIT(EN);

delay_ms(10);

PORTD&=~BIT(EN);

}

void lcd_write_data(char data) //LCD写数据函数

{

PORTD&=~BIT(EN);

PORTD|=BIT(RS);

PORTB=data;

PORTD|=BIT(EN);

delay_ms(10);

PORTD&=~BIT(EN);

}

void lcd_init() //LCD初始化函数

{

DDRB=0XFF;

PORTB=0XFF;

DDRD|=BIT(RS)|BIT(RW)|BIT(EN);

PORTD&=~BIT(RW);

lcd_write_cmd(0X38);

lcd_write_cmd(0X01);

lcd_write_cmd(0X06);

lcd_write_cmd(0X0C);

}

void io_init() //I/O初始化

{

DDRA=0XFF;

DDRC=0XFF;

PORTC=0XFF;

DDRC=0X00;

}

void T1_init() //T1定时器初始化

{

TCCR1A=0X0000;

TCCR1B=0X03;

TCCR1B|=BIT(ICES1)|BIT(ICNC1);

TIMSK|=BIT(TICIE1);

}

void show(uint sum) //显示函数

{

int i,j,k,l,m;

m=sum/10000+0x30;

i=sum%10000/1000+0x30;

j=sum%1000/100+0x30;

k=sum%100/10+0x30;

l=sum%10+0x30;

lcd_write_cmd(0X01);

lcd_write_data(m);

lcd_write_data(i);

lcd_write_data(j);

lcd_write_data(k);

lcd_write_data(0xa5);

lcd_write_data(l);

lcd_write_data(0x63);

lcd_write_data(0x6d);

}

void start() //发射超声波

{

PORTA|=BIT(PA0);

delay_us(12);

PORTA&=~BIT(PA0);

}

#pragma interrupt_handler T1BUHUO_OVF_isr:6

void T1BUHUO_OVF_isr() //T1定时器捕捉中断服务函数

{

if(count==0)

{

data_1=ICR1;

TCCR1B&=~BIT(ICES1)|BIT(ICNC1);

TIFR=(1<

count=1;

}

else

{

data_2=ICR1;

TCCR1B|=BIT(ICES1)|BIT(ICNC1);

buhuo_ok=1;

PORTA|=BIT(PA7);

count=0;

}

}

void main() //主函数

{

int a=0,b=0,juli=0;

lcd_init();

io_init();

T1_init();

count=0;

juli=0;

buhuo_ok=0;

cishu=0;

data_1=0;

data_2=0;

SEI();

while(1)

{

if((PINC==0XFE)&(cishu==0)) {

delay_ms(20);

if(PINC==0XFE)

{

while(PINC==0XFE);

start();

}

}

if(buhuo_ok==1)

{

if(data_2>=data_1)

{

data_2=data_2-data_1;

}

else

data_2=65536-data_1+data_2;

data_2=data_2*2.72+0.5;

quyang[cishu]=data_2;

cishu++;

buhuo_ok=0;

if(cishu<3)

{

delay_ms(60);

start();

}

else

{

for(b=0;b<3;b++)

a=a+quyang[b];

juli=a/3+0.5;

cishu=0;

a=0;

show(juli);

}

}

}

}

3.参考文献

①.AVR单片机嵌入式系统原理与应用实践(第二版马潮著)

②.ATmega16单片机数据手册

③.LCD1602数据手册

超声光栅测液体中的声速 实验报告

实验设计说明书题目:利用超声光栅测液体中的声速 院部:理工科基础教学部 专业班级:物理学(创新实验班)1班 学生姓名:某某某 学号:41106XXX 实验日期: 2013年5月21日

超声光栅测液体中的声速 人耳能听到的声波,其频率在16Hz 到20kHz 范围内。超过20Hz 的机械波称为超声波。光通过受超声波扰动的介质时会发生衍射现象,这种现象称为声光效应。利用声光效应测量超声波在液体中传播速度是声光学领域具有代表性的实验。 一、实验目的 (1)学习声光学实验的设计思想及其基本的观测方法。 (2)测定超声波在液体中的传播速度。 (3)了解超声波的产生方法。 二、 仪器用具 分光计,超声光栅盒,高频振荡器,数字频率计,纳米灯。 三、 实验原理 将某些材料(如石英、铌酸锂或锆钛酸铅陶瓷等)的晶体沿一定方向切割成晶片,在其表面上加以交流电压,在交变电场作用下,晶片会产生与外加电压频率相同的机械振动,这种特性称为晶体的反压电效应。把具有反压电效应的晶片置于液体介质中,当晶片上加的交变电压频率等于晶片的固有频率时,晶片的振动会向周围介质传播出去,就得到了最强的超声波。 正文: 光声效应的发现无疑是物理学两大分支的又一次融合,利用超声光栅测量液体中的声速就是这一物理现象的应用。此次实验的仪器包括超声光栅池、超声仪、分光计、测微目镜以及光源。 由于声波是纵波,所以当超声波在液体(本实验用的是水)传播时,声波的振动会引起液体密度空间分布的周期性变化(如右图),进而导致液体的折射率亦呈周期性分布(如右图)。如果在某一时间t 0,液体密度的空间函数为: ()0s 02sin x t x π ρρρωλ??=+?- ? ?? ? ① 其中,0ρ是液体的静态密度,ρ?是密度的变化幅度,s ω是超声波的角频率,λ是超声波长,x 是超声波的传播方向,也是密度变化的空间方向;此时,折射率 的空间函数为:()0s 02sin n x n n t x πωλ? ?=+?-? ?? ?②,其中0n 为液体的静态折射率

单片机应用_超声波测距器

单片机课程设计 一、需求分析: 超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量围在1m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。 本文旨在设计一种能对中近距离障碍物进行实时测量的测距装置,它能对障碍物进行适时、适量的测量,起到智能操作,实时监控的作用。 关键词单片机AT82S51 超声波传感器测量距离 二、硬件设计方案 设计思路 超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。

超声波测距的原理一般采用渡越时间法TOF(time of flight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离 测量距离的方法有很多种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为340米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。 超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。本课题属于近距离测量,可以采用常用的压电式超声波换能器来实现。 根据设计要求并综合各方面因素,可以采用AT89S51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距器的系统框图如下图所示: 超声波测距器系统设计框图 主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。采用AT89S51来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

基于单片机的超声波测距系统设计实验报告 - 重

指导教师评定成绩: 审定成绩: 自动化学院 计算机控制技术课程设计报告设计题目:基于单片机的超声波测距系统设计 单位(二级学院): 学生姓名: 专业: 班级: 学号: 指导教师: 负责项目: 设计时间:二〇一四年五月 自动化学院制

目录 一、设计题目 (1) 基于51单片机的超声波测距系统设计 (1) 设计要求 (1) 摘要 (2) 二、设计报告正文 (3) 2.1 超声波测距原理 (3) 2.2系统总体方案设计 (4) 2.3主要元件选型及其结构 (5) 2.4硬件实现及单元电路设计 (9) 2.5系统的软件设计 (13) 三、设计总结 (17) 四、参考文献 (17) 五、附录 (18) 附录一:总体电路图 (18) 附录二:系统源代码 (18)

一、设计题目 基于51单片机的超声波测距系统设计 设计要求 1、以51系列单片机为核心,控制超声波测距系统; 2、测量范围为:2cm~4m,测量精度:1cm; 3、通过键盘电路设置报警距离,测出的距离通过显示电路显示出来; 4、当所测距离小于报警距离时,声光报警装置报警加以提示; 5、设计出相应的电子电路和控制软件流程及源代码,并制作实物。

摘要 超声波具有传播距离远、能量耗散少、指向性强等特点,在实际应用中常利用这些特点进行距离测量。超声波测距具有非接触式、测量快速、计算简单、应用性强的特点,在汽车倒车雷达系统、液位测量等方面应用广泛。本次课设利用超声波传播中距离与时间的关系为基本原理,以STC89C52单片机为核心进行控制及数据处理,通过外围电源、显示、键盘、声光报警等电路实现系统供电、测距显示、报警值设置及报警提示的功能。软件部分采用了模块化的设计,由系统主程序及各功能部分的子程序组成。超声波回波信号输入单片机,经单片机综合分析处理后实现其预定功能。 关键词:STC89C52单片机; HC-SR04;超声波测距

声速的测量(超声)实验报告

声速的测量(超声) 一、实验目的: ①用共振干涉法求超声声速; ②用相位比较法求超声声速。 二、实验仪器: 超声声速测量仪、信号发生器、数字频率计、同轴电缆、示波器、游标卡尺、压电陶瓷超声换能器。 三、实验原理: ①声速的测量: 利用公式νλ,测量声波的频率ν和波长λ去求声速v。 ②声压驻波:已知两列频率、振幅和振动方向相同的平面简谐波,向相反的方向传播时,叠加的合成波就是驻波,在驻波场中质点振幅最大处为波腹,质点位移振幅近似为零处为波节,相邻波腹或波长的距离为半波长(λ/2)。 ③声波波长的测量:接收器S2输出的信息有两部分:1、驻波的信息,其振幅随S2的移动而变化,在共振时,S1、S2的距离为l:,,,此时振幅较大。2、类 似行波的信息,S1、S2用的相位差,也随着S2的移动而变化,每移动λ/2,相位差改变Π(即180°)。利用这两种信息均可测量声波波长λ。(1)共振干涉法;(2)相位比较法。 四、实验方法: ①用共振干涉法测声速: 示波器的X端用内部扫描,调内部扫描与S2的信息同步,示波器上显示的是S2的交流信号按时间展开的图形,移动S2示波器上图形有时很大,有时很小。在S2移动范围内,仔细测多个出现极大值时S2的位置l1、l2、……、l n,用逐差法求出λ,再求声速v。 ②用相位比较法测声速: 示波器的X端用内部扫描,调内部扫描与S2的信息同步,移动S2示波器上的图形会从椭圆变换到一条直线,再从直线变换到一个反方向的椭圆,往复变换。在S2移动范围内,仔细测多个出现直线时S2的位置l1、l2、……、l n,用逐差法求出λ,再求声速v。 ③记录实验室的实温t。 ④用当前实温和公式求出声速,与以上两种方法求出的声速进行比较, 分析。 五、数据处理: 温度:34℃频率:37500Hz 共振干涉法(单位:mm): 218.98 213.58 209.20 204.56 199.62 194.92 190.64 185.72 180.62 176.52 相位比较法(单位:mm): 174.60 169.60 164.80 160.68 155.90 151.22 146.28 141.58 136.68 131.70 共振干涉法: λ

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

超声波测距仪硬件电路的设计

超声波测距仪电路设计实验报告 轮机系楼宇071 周钰泉2007212117 实验目的:了解超声波测距仪的原理,掌握焊接方法,掌握电路串接方法,熟悉电路元件。 实验设备及器材:电烙铁,锡线,电路元件 实验步骤:1,学习keil软件编写程序2、焊接电路板3、运行调试 超声波测距程序: #include unsigned char code dispbitcode[]={0x31,0x32,0x34,0x38,0x30,0x30, 0x30,0x30}; unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x77,0x7c,0x 39}; unsigned char dispbuf[8]={10,10,10,10,10,10,0,0}; unsigned char dispcount; unsigned char getdata; unsigned int temp; unsigned int temp1;

unsigned char i; sbit ST=P3^0; sbit OE=P3^1; sbit EOC=P3^4; sbit CLK=P3^5; sbit M1=P3^6; sbit M2=P3^7; sbit SPK=P2^6; sbit LA=P3^3; sbit LB=P3^2; sbit LC=P2^7; sbit K1=P2^4; sbit K2=P2^5; bit wd; bit yw; bit shuid; bit shuig; unsigned int cnta; unsigned int cntb; bit alarmflag; void delay10ms(void) { unsigned char i,j; for(i=20;i>0;i--) for(j=248;j>0;j--); } void main(void) { M1=0; M2=0; yw=1; wd=0; SPK=0; ST=0; OE=0; TMOD=0x12; TH0=0x216; TL0=0x216; TH1=(65536-500)/256; TL1=(65536-500)%256; TR1=1; TR0=1; ET0=1; ET1=1; EA=1; ST=1; ST=0; while(1) { if(K1==0) { delay10ms(); if(K1==0) { yw=1; wd=0; } } else if(K2==0) { delay10ms(); if(K2==0) { wd=1; yw=0; } } else if(LC==1) { delay10ms(); if(LC==1) { M1=0; M2=1; temp1=13; shuid=0; shuig=1; LB=0; } } else if((LC==0) && (LB==1)) { delay10ms(); if((LC==0) && (LB==1)) { M1=0; M2=0; temp1=12; shuig=0; shuid=0; LB=0; }

PLC超声波测距实验报告082039140程稳

利用plc的高速计数模块进行超声波测距实验 ―――――微型控制计算机暑期设计实验报告 082039140程稳 利用51单片机来驱动超声波模块测距,是一件很容易的事,只需要结合定时中断和外部中断,利用12M或更高的晶振频率即可精确获取从发射到接收到超声波之间的时间,平均1ms对应 3.4cm的行程,本GE比赛设计需要物位测量的最大距离是30cm,即需要30*2/3.4=17.64ms,而GE PAC RX3i的PME软件梯形图程序得扫描周期2ms以上,就算是最快的定时节点也有1ms,所以若直接用PLC的普通离散量输入模块IC694MDL654输入节点来测量接收到超声波回波的时间的误差为1ms,误差距离3.4/2=1.7cm,结果自然不理想,更严重的问题在于PLC该模块无硬件中断响应功能,是不能测电平宽度的。总之PLC的IO口工作在低速模式下是难以胜任高速测量任务的,但可喜的是GE PLC 的高速计数模块HSC304能处理2MHZ的信号,但仍无硬件中断功能。于是想能否干脆把单片机测出的电平时间数据通过串口发送给PLC,我也试着这样连线测试,不过PLC串口的使用不像单片机这么简单,没有相关资料,PLC内部寄存器找不到PLC从单片机接收的数据。于是仍决定放弃此方案,回到高速计数模块。再认真阅读此模块配置信息和实验调试后,发现其可以测量出外部信号频率,于是想既然PLC无法直接测电平宽度,那干嘛不测量频率,有了频率自然有周期,有周期自然有电平宽度!

利用plc的高速计数模块检测超声波测距仪的信号接收端的频率,正常情况下应使用频率直接求得周期接而来计算时间,但由于实际测得这样根本很难实现,所以直接测频率,并利用示波器查看该频率的波形,并修改程序使得在所测距离变化的情况下,一周期内的低电平保持不变(高电平所持续的时间表示超声波从发出到接收到所经历的时间,低电平是延时,为了使得波形正常),然后测出频率及其所对应的距离。 以下是用虚拟示波器测出的超声波模块在不同距离测量回波接收脚电压波形:

声速测量实验报告

大学物理实验课教案 俸永格(136********) 教学题目:声速的测量 教学对象:10级电子信息班、10动医学班、10级农机班、10级植保班。授课地点:海南大学基础实验楼2610室。 教学重点:让学生了解测量超声波在媒介中传播速度的实验设计思想和实验方法。 教学难点:让学生熟练掌握双踪示波器、SV5/7测试仪、SV8信号源的协调使用并完成两正交信号相位差的多次测量。 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: GW-680双踪示波器一台,SV8信号发生器一台,SV7测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×104Hz的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)

间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ×f λ=2X v = 2X×f 原理图示1(驻波法原理图) (二)相位法测量声速基本原理 请同学们自行完成!要求体现以下两个方面的内容! (1)简谐振动正交合成的基本原理, (2)利用李萨如图形的相位差特点间接测量声速的基本原理。 四实验内容与步骤 (一)驻波法测声速 实验连线图示1(驻波法) (1)了解测试仪的基本结构,调节两个换能器的间距5cm左右。 (2)初始化示波器面板获得扫描线。 (3)按图示1正确连线,将示波器的扫描灵敏度与通道1垂直灵敏度旋钮分别调至适当档位,缓慢顺时针方向转动换能器平移鼓轮至驻波波腹位置

基于单片机的超声波测距系统实验报告

基于单片机的超声波测距系统实验报告

一、实验目的 1.了解超声波测距原理; 2.根据超声波测距原理,设计超声波测距器的硬件结构电路; 3.对设计的电路进行分析能够产生超声波,实现超声波的发送与接收,从而实现利用 超声波方法测量物体间的距离; 4.以数字的形式显示所测量的距离; 5.用蜂鸣器和发光二极管实现报警功能。 二、实验容 1.认真研究有关理论知识并大量查阅相关资料,确定系统的总体设计方案,设计出系 统框图; 2.决定各项参数所需要的硬件设施,完成电路的理论分析和电路模型构造。 3.对各单元模块进行调试与验证; 4.对单元模块进行整合,整体调试; 5.完成原理图设计和硬件制作; 6.编写程序和整体调试电路; 7.写出实验报告并交于老师验收。 三、实验原理 超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距S=Ct/2,式中的C为超声波波速。由于超声波也是一种声波,其声速C与温度有关。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理,单片机(AT89C51)发出短暂的40kHz信号,经放大后通过超声波换能器输出;反射后的超声波经超声波换能器作为系统的输入,锁相环对此信号锁定,产生锁定信号启动单片机中断程序,得出时间t,再由系统软件对其进行计算、判别后,相应的计算结果被送至LED显示电路进行显示。 (一)超声波模块原理: 超声波模块采用现成的HC-SR04超声波模块,该模块可提供 2cm-400cm 的非接触式距离感测功能,测距精度可达高到 3mm。模块包括超声波发射器、接收器与控制电路。基本工作原理:采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号;模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回;有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2。实物如下图1。其中VCC 供5V 电源,GND 为地线,TRIG 触发控制信号输入,ECHO 回响信号输出等四支线。

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

超声波测距课程设计样本

目录 前言 1课题设计目及意义----------------------------------------------- 1 1.1设计目----------------------------------------------------- 1 1.2设计意义----------------------------------------------------- 1 1.3课题设计任务和规定------------------------------------------- 1 正文 1 课程方案设计------------------------------------------------- 2 1.1系统整体方案--------------------------------------------------- 2 1.2系统整体方案论证-------------------------------------------- 2 2系统硬件构造设计------------------------------------- 2 2.1 51系列单片机功能特点及测距原理------------------------------ 3 2.1.1 51系列单片机功能特点------------------------------------- 3 2.1.2 单片机实现测距原理 ----------------------------------------- 3 2.2 超声波电路构造------------------------------------------------ 4 2.3 超声波测距系统硬件电路设计---------------------------------- 4 2.4 PCB版图设计---------------------------------------------------- 5 3 系统软件设计----------------------------------------- 6 3.1 超声波测距仪算法设计---------------------------------------- 7 3.2 主程序流程图--------------------------------------------------- 7 3.3单片机某些C语言程序-------------------------------------------- 8 3.4超声波测距某些C语言程序-------------------------------------- 11

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

超声波测声速实验报告

实验名称:超声波测声速实验报告 一、实验目的 (1)、了解超声波的发射和接收方法。 (2)、加深对振动合成、波动干涉等理论知识的理解。 (3)、掌握用干涉法和相位法测声速。 二、实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共装置图。 波与发射波叠加,它们波动方程分别是: 叠加后合成波为:

的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 因此只要测得相邻两波腹(或波节)的位置Xn、Xn-1即可得波长。 相位比较法测波长:从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:φ=2∏x/λ,其中λ是波长,x为S1和S2之间距离)。因为x改变一个波长时,相位差就改变2∏。利用李萨如图形就可以测得超声波的波长。 三、实验仪器 超声声速测定仪:主要部件是两个压电陶瓷换能器和一个游标卡尺。函数信号发生器:提供一定频率的信号,使之等于系统的谐振频率。示波器:示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的李萨如图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 四、实验内容 1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。

3.用相位比较法测波长和声速。 五、实验数据及处理: f=34kHz; Vp-p=5V; L=3.976cm; 六、实验结论: 波长λ=1.0612cm; 由此声速经测算为v=(354±3)m/s; U=0.8% 七、思考题: 1.固定距离,改变频率,以求声速。是否可行? 答:不行,由“v = f λ”,距离一定后使得波长无法计算。 2.各种气体中的声速是否相同?为什么? 答:不同,因为不同气体的密度不同,声波在不同介质中波长改变,根据公式可得结论。

超声波测距器课程设计

《微机原理及应用》课程设计 超声波测距器的设计 学生姓名郝强 学号20110611113 学院名称机电工程学院 专业名称机械电子工程 指导教师王前 2013年12月27日

摘要 随着科学技术的快速发展,超声波将在科学技术中的应用越来越广。本文对超声波传感器测距的可能性进行了理论分析,利用模拟电子、数字电子、微机接口、超声波换能器、以及超声波在介质的传播特性等知识,采用以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。为了保证超声波测距传感器的可靠性和稳定性,采取了相应的抗干扰措施。就超声波的传播特性,超声波换能器的工作特性、超声波发射、接收、超声微弱信号放大、波形整形、速度变换、语音提示电路及系统功能软件等做了详细说明。 关键词:超声波;传感器;测量距离;控制

目录 摘要 (2) 目录 (3) 1.设计目的 (4) 2.总体方案 (4) 3.硬件设计 (5) 3.1 超声波测距器硬件电路设计 (5) 3.2.1单片机芯片的选择 (6) 3.2.2AT89C51定时计数应用电路 (6) 3.3超声波发射电路设计 (6) 3.3.1选择超声波发生器类型 (6) 3.3.2 超声波发射电路设计 (7) 3.4超声波接收电路设计 (8) 3.5超声波显示电路设计 (9) 4.软件设计 (9) 4.1波测距器的算法设计 (10) 4.2系统的主控制程序设计 (11) 4.3发生子程序设计 (12) 4.4接收中断程序设计 (13) 4.5显示程序设计 (14) 4.6距离计算程序 (15) 5.结论 (17) 参考文献 (18)

stm32超声波测距汇总

嵌入式系统及应用开放性实验报告 Stm32 HC-SR04超声波测距

第一章绪论 1.1STM32超声波测距系统 1.1.1 HC-SR04超声波测距模块简介 HC-SR04 超声波测距模块可提供2cm-400cm 的非接触式距离感测功能,测距精度可达高到3mm;模块包括超声波发射器、接收器与控制电路。 使用电压:DC---5V 静态电流:小于2mA 电平输出:高5V 低0V 感应角度:不大于15度 探测距离:2cm-450cm 高精度:可达3mm 1.1.2 HC-SR04超声波测距模块原理 采用IO 口TRIG 触发测距,给TRIG至少10us 的高电平信号; 模块自动发送8个40khz 的方波,自动检测是否有信号返回; 有信号返回,通过IO口ECHO输出一个高电平,高电平持续的时间就是超 声波从发射到返回的时间。 测试距离=(高电平时间*声速(340M/S))/2; T(℃)={(V25-Vsense)/Avg_Slope}+25 V25=Vsense 在25 度时的数值(典型值为: 1.43)。 Avg_Slope=温度与Vsense 曲线的平均斜率(单位为mv/℃或uv/℃)(典型值为4.3Mv/℃)。 利用以上公式,我们就可以方便的计算出当前物体超声波模块之间的距离。 程序中使用: 测试距离=高电平时间*声速(340M/S))/2 这个公式 1.2 设计要求 使用ARM开发板上硬件资源与超声波模块结合,编程实现实时距离显示功能,通过数码管实时显示距离,并在距离小于设定报警距离时使用蜂鸣器报警。1.3 总体设计方案及框图

1.3.1 距离测量及获取方法 通过设置定时器,开启中断,读取ECHO 输出高电平的持续时间,计算结果 作为当前距离。1.3.2 总体设计方案 实时距离: 本超声波测距系统可实现对距离的实时测量,并不断显示在数码 管上 保持距离: 用户可通过按键使得当前距离值在数码管保持, 也可再次返回对 距离的实时测量,此模式下距离小于报警值不会报警,仅为显示模式。 两种模式相互转换,并且可以在距离保持状态时通过按键进入修改报警距离模式,如果实测距离小于下限值,蜂鸣器报警,当距离大于下限值时,报警自动停止。 1.3.3 程序框图 K5 按下 K6按下 否 是 K7按下 是 否 否 超声波测距数码管显示距离K4是否按下 显示当前距离K7是否按下 开始初始化 数码管及按键扫描 SV++ SV-- K1是否按下

超声波测距实验报告

目录 1、课题设计的目的和意义 (3) 2、课题要求 (3) 2.1、基本功能要求 (3) 2.2、提高要求 (4) 3、重要器件功能介绍 (4) 3.1、CX20106A红外线发射接收专用芯片 (4) 3.2、AT89C51系列单片机的功能特点 (5) 3.3、ISD1700优质语音录放电路 (6) 4、超声波测距原理 (8) 4.1、超声波测距原理图 (8) 4.2、超声波测距的基本原理 (9) 5、硬件系统设计 (10) 5.1、超声波发射单元 (10) 5.2、超声波接收单元 (11)

5.3、显示单元 (11) 5.4、语音单元 (12) 5.5、硬件设计中遇到的难题: (12) 6、系统软件设计 (14) 7、调试与分析 (15) 7.1调试 (15) 7.2误差分析 (15) 8、总结 (16) 9、附件 (17) 9.1、总电路 (17) 9.2、主要程序 (18) 10、参考文献 (22)

1课题设计的目的及意义 随着科学技术的快速发展,超声波在测距仪中的应用越来越广,但就目前技术水平而言,人们可以利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距作为一种新型的非常重要有用的工具在各方面都有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。如声纳的发展趋势:研究具体的高定位精度的被动测距声纳,以满足军事和渔业等的发展需求,实现远程的被动探测和识别。毋庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。 超声波测距在某些场合有着显著的优点,因为这种方法是利用计算超声波在被测物体和超声波探头之间的传输来测量距离的,因此它是一种非接触式的测量,所以他就能够在某些场合或环境比较恶劣的环境下使用。比如测有毒或者有腐蚀性化学物质的液面高度或者高速公路上快速行驶汽车之间的距离。 随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最注重发展到具有创造力。在新的时代,测距仪将发挥更大的作用。 2课题要求 以单片机AT89C51为中心控制单元,配以超声波发射、接收装置,实现超声波发射及接收其遇到障碍物发生反射形成的回波信号,并根据超声波在介质中的传播速度及超声波从发射到接收到回波的时间,计算出发射点距障碍物的距离,设计出一套基于单片机的脉冲反射式超声波测距系统,利用单片机进行操作控制,用数码管作输出显示,设计发射、接收、检测、显示硬件电路和测距系统软件。

基于单片机的超声波测距报警系统设计

综合性课程设计报告基于proteus仿真软件的超声波测距报警控制器设计 院系:计算机与通信工程学院 专业:电子信息工程 学号: 姓名: 指导教师: 设计时间:2012/6/27 综合课程设计任务书

专业:电子信息工程班级:4091603: 设计题目:基于proteus仿真软件的超声波测距报警控制器设计 一、设计实验条件 keil C和proteus仿真软件 二、设计任务 1)总体功能设计 2)硬件电路设计 3)软件设计 4)工作总结 三、设计说明书的容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.主体设计部分(各部分设计容、总结分析、结论等) 4.结束语 5.参考文献 (答辩时间18周星期日晚7:30,地点:综合楼1313室) 四、设计时间与设计时间安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、实验、收集资料:2 天 设计计算、绘制技术图纸:5 天 编写课程设计说明书:2 天 答辩:1 天 目录

一、设计题目 (2) 二、设计任务及要求 (3) 三、设计容 (3) 1.绪论 (3) 2.总体方案 (4) 2.1 总体设计方案 (4) 2.2超声波测距框图 (4) 3.系统硬件设计 (5) 3.1 硬件设计方案 (5) 3.2 各主要模块的硬件设计 (6) 4.系统软件设计 (10) 4.1 程序设计 (10) 4.2 程序流程图 (10) 四、结束语 (13) 五、参考文献 (13) 附录A 系统仿真图 (14) 附录B程序代码 (15) 一、设计题目 基于proteus仿真软件的超声波测距报警控制器设计

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计 1总体设计方案介绍 1.1超声波测距原理 发射器发出的超声波以速度υ在空气中传播,在到达被测物体时被反射返回,由接收器接收,其往返时间为t,由s=vt/2即可算出被测物体的距离。由于超声波也是一种声波,其声速v 与温度有关,下表列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。 表1-1 超声波波速与温度的关系表 表1-1 1.2超声波测距仪原理框图如下图 单片机发出40kHZ的信号,经放大后通过超声波发射器输出;超声波接收器将接收到的超声波信号经放大器放大,用锁相环电路进行检波处理后,启动单片机中断程序,测得时间为t,再由软件进行判别、计算,得出距离数并送LED

显示。 图1-1 超声波测距仪原理框图 2 系统的硬件结构设计 硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。单片机采用AT89C51或其兼容系列。采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。单片机用P1.0端口输出超声波换能器所需的40kHz的方波信号,利用外中断0口监测超声波接收电路输出的返回信号。显示电路采用简单实用的4位共阳LED数码管,段码用74LS244驱动,位码用PNP三极管8550驱动。 2.1 51系列单片机的功能特点及测距原理 2.1.1 51系列单片机的功能特点 5l系列单片机中典型芯片(AT89C51)采用40引脚双列直插封装(DIP)形式,内部由CPU,4kB的ROM,256 B的RAM,2个16b的定时/计数器TO和T1,4个8 b的工/O端I:IP0,

单片机课程设计超声波测距离

湖南工程学院 课程设计任务书 课程名称单片机原理与应用 课题超声波测距系统设计 专业班级自动化0901班 学生姓名段志勤 学号 200901020130 指导老师李晓秀 审批 任务书下达日期 2012 年 5 月 30 日任务完成日期2012 年 6 月 13 日

目录 序言 (6) 第一章、总体设计原理 (6) 1.1、超声波测距原理 (6) 1.2、超声波测距系统框图 (8) 1.3、程序流程图 (10) 第二章、系统硬件设计 (11) 2.1、超声波模块电路 (11) 2.2、数码管显示电路 (12) 2.3、单片机最小电路 (12) 2.4、键盘连接 (13) 第三章、系统软件设计 (14) 3.1、主程序流程图 (14) 3.2、子程序设计 (15) 第4章、调试结果 (21) 实验总结 (23) 参考文献 (24) 附录 A、整体电路图 (25) 附录B、程序清单 (26)

序言 由于超生波测距是一种非接触检测技术,不受光线、被测对象颜色限制,较其他仪器更卫生,更耐潮湿、粉尘、高温、腐蚀等恶劣环境,具有少维护,不污染,高可靠,长寿命等特点。因此,超声波测距有着广泛的应用领域。利用超声波检测往往比较迅速,简单,计算方便,易于实现实时控制,并且在测量精度方面能达到工业使用要求。超声波测距主要应用于倒车雷达、建筑施工工地以及一些工业现场,例如:液位、井深、管道长度等场合。 第一章、总体设计原理 本章主要介绍单片机超声波测距的主要原理,包括超声波测距的原理和STC89C52单片机的原理 1.1、超声波测距原理 谐振频率高于20kHz的声波被称为超声波。超声波为直线传播频率越高、绕射能力越弱、但反射能力越强。利用超声波的这种性能就可制成超声传感器、或称为超声换能器、它是一种既可以把电能转化为机械能、又可以把机械能转化为电能的器件或装置。换能器在电脉冲激励下可将电能转换为机械能、向外发送超声波、反之,当换能器处在接收状态时它可将声能(机械能)转换为电能。 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超 声波发生器内部结构如图1-1所示,它有两个压电晶片和一个共振板。

相关文档
最新文档