考研数学公式大全

考研数学公式大全
考研数学公式大全

高等数学公式篇

·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1

·三角函数恒等变形公式·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·倍角公式:si n(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三角函数的有理式积分:

22

2212211cos 12sin u du

dx x tg u u u x u u x +==+-=+=

, , , 

一些初等函数: 两个重要极限:

和差角公式: ·和差化积公式:

·正弦定理:R C c

B b A a 2sin sin sin ===·余弦定理:

C ab b a c

cos 2222

-+=

反三角函数性质:

arcctgx

arctgx x x -=

-=

2

arccos 2

arcsin π

π

高阶导数公式——莱布尼兹(Leibniz )公式:

)

()

()()2()1()(0)()()

(!)1()1(!2)1()

(n k k n n n n n

k k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+

'+==---=-∑

a

x x a a a ctgx x x tgx x x x

ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='?-='?='-='='2

2

22

11

)(11

)(11

)(arc c os 11

)(arc sin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'2

sin

2sin 2cos cos 2cos

2cos 2cos cos 2sin

2cos 2sin sin 2cos

2sin

2sin sin β

αβαβαβ

αβαβαβ

αβαβαβ

αβ

αβα-+=--+=+-+=--+=+α

ββαβαβαβ

αβαβ

αβαβαβ

αβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±?=

±?±=

±=±±=±1

)(1)(sin sin cos cos )cos(sin cos cos sin )sin( x

x

arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x

x

x x

x

x

x -+=

-+±=++=+-==+=

-=

----11ln

21)

1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)1

1(lim 1sin lim 0==+=∞→→e x

x

x

x x x

中值定理与导数应用:

拉格朗日中值定理。时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=

---'=-)(F )

()

()()()()()

)(()()(ξξξ

曲率:

.1

;0.

)

1(lim M s M M :.,13202a

K a K y y ds d s K M M s

K tg y dx y ds s =

='+''==??='?'???=

=''+=→?的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:α

ααα

α

定积分的近似计算:

???----+++++++++-≈

++++-≈

+++-≈

b

a

n n n b

a

n n b

a n y y y y y y y y n

a

b x f y y y y n a b x f y y y n

a

b x f )](4)(2)[(3)(])(2

1

[)()()(1312420110110 抛物线法:梯形法:矩形法:

定积分应用相关公式:

?

?--==?=?=b

a

b

a dt

t f

a

b dx

x f a b y k r m m k F A

p F s

F W )(1

)(1

,2

2

2

1均方根:

函数的平均值:为引力系数

引力:水压力:功:

空间解析几何和向量代数:

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22

2

2

2

2

2

21212

1221221221c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k

j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M M d z

y

x z y x

z

y x

z

y

x

z y x

z

y

x

z

y

x

z

z y y x x z z y y x x u u

??==??=?=?==?=++?

++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面:

同号)

(、抛物面:、椭球面:二次曲面:

参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:

1

1

3,,2221

1};,,{,1

302),,(},,,{0)()()(122

222222

22222222

22220000002

220000000000=+-=-+=+=++???

??+=+=+===-=-=-+++++=

=++=+++==-+-+-c z b y a x c z b y a x q p z q y

p x c z b y a x pt

z z nt

y y mt x x p n m s t p z z n y y m x x C B A D

Cz By Ax d c

z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A

多元函数微分法及应用

z

y z x y x y x y x y x F F y z

F F x z z y x F dx dy

F F y F F x dx y d F F dx dy y x F dy y v

dx x v dv dy y u dx x u du y x v v y x u u x

v

v z x u u z x z y x v y x u f z t

v

v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z

u

dy y u dx x u du dy y z dx x z dz -

=??-=??=?

-??-??=-==??+??=??+??===???

??+?????=??=?????+?????==?+?=≈???+??+??=??+??=

, , 隐函数+, , 隐函数隐函数的求导公式:

 

时,

,当

多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

)

,()

,(1),(),(1),()

,(1),(),(1),()

,(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F v

G u

G v F

u F

v u G F J v u y x G v u y x F v

u v u ???-=?????-=?????-=?????-=??=????????=??=?

??== 隐函数方程组:

微分法在几何上的应用:

)

,,(),,(),,(30

))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(}

,,{,0

),,(0),,(0))(())(())(()()()(),,()

()()

(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x y

x y x x z x z z y z y -=

-=-=-+-+-==????

?====-'+-'+-''-=

'-='-??

?

??===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:

上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线

ωψ?ωψ?ωψ?方向导数与梯度:

上的投影。

在是单位向量。方向上的

,为,其中:它与方向导数的关系是的梯度:在一点函数的转角。

轴到方向为其中的方向导数为:沿任一方向在一点函数l y x f l f l j i e e y x f l

f j y

f i x f y x f y x p y x f z l x y f

x f l f l y x p y x f z ),(grad sin cos ),(grad ),(grad ),(),(sin cos ),(),(??∴?+?=?=????+??=

=??+??=??=

????

? 多元函数的极值及其求法:

????

?????=-<-???><>-===== 不确定

时值时, 无极

为极小值为极大值时,

则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22

00002

0000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x

重积分及其应用:

????

??

??????????????

????++-=++=++==>===

=

=

=???

? ????+???

????+==='

D

z D

y D

x z y x D

y D

x D

D

y D

x

D

D D

a y x xd y x fa F a y x yd y x f F a y x xd y x f

F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y M

M y d y x d y x x M

M x dxdy y z x z A y x f z rdrd r r f dxdy y x f 2

3

2

2

2

2

3

2

2

2

2

3

2

2

2

22D

2

2

)

(),()

(),()

(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σ

ρσ

ρσ

ρσρσρσ

ρσ

ρσ

ρσ

ρθ

θθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面

柱面坐标和球面坐标:

???????????????????????????

?????????Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

ΩΩ

+=

+=

+=

=

====

=

=

=???=??

???=====???

??===dv

y x

I dv z x

I dv z y

I dv

x M

dv z M z dv y M y dv x M

x dr

r

r F d d d drd r

r F dxdydz z y x f d drd r dr d r rd dv r z r y r x z r r f z r F dz rdrd z r F dxdydz z y x f z z r y r x z y x r ρρρρρρρ?θ??θθ??θ?θ

??θ???θ?θ

?θθθθθθθπ

π

θ?)()()(1

,1,1sin ),,(sin ),,(),,(sin sin cos sin sin cos sin )

,sin ,cos (),,(,

),,(),,(,sin cos 22

22

22

20

)

,(0

2

2

2

, , 转动惯量:, 其中 重心:, 球面坐标:其中: 柱面坐标:

曲线积分:

??

?==<'+'=

≤≤?

?

?==?

?

)

()()()()](),([),(),(,)()

(),(22t y t

x dt t t t t f ds y x f t t y t x L L y x f L

?βαψ?ψ?βαψ?β

α

特殊情况: 则: 的参数方程为:上连续,在设长的曲线积分):

第一类曲线积分(对弧。

,通常设的全微分,其中:

才是二元函数时,=在:

二元函数的全微分求积注意方向相反!

减去对此奇点的积分,,应。注意奇点,如=,且内具有一阶连续偏导数在,、是一个单连通区域;

、无关的条件:平面上曲线积分与路径的面积:时,得到,即:当格林公式:格林公式:的方向角。

上积分起止点处切向量分别为

和,其中系:两类曲线积分之间的关,则:的参数方程为设标的曲线积分):第二类曲线积分(对坐0),(),(),(),(·)0,0(),(),(21·21

2,)()()cos cos ()}()](),([)()](),([{),(),()

()(00

)

,()

,(00==+=

+????????-==

=??-??=-=+=??-??+=??-??+=

+'+'=+??

?==??????????????y x

dy y x Q dx y x P y x u y x u Qdy Pdx y

P x Q y

P

x Q G y x Q y x P G ydx

xdy dxdy A D y P x Q x Q y P Qdy

Pdx dxdy y P

x Q Qdy Pdx dxdy y P x Q L ds Q P Qdy Pdx dt

t t t Q t t t P dy y x Q dx y x P t y t x L y x y x D

L

D L

D L L

L

L

βαβαψψ??ψ?ψ?β

α

曲面积分:

??????????????????????∑

++=

++±=±=±=++++=

ds

R Q P Rdxdy Qdzdx Pdydz dzdx z x z y x Q dzdx z y x Q dydz z y z y x P dydz z y x P dxdy y x z y x R dxdy z y x R dxdy z y x R dzdx z y x Q dydz z y x P dxdy

y x z y x z y x z y x f ds z y x f zx

yz

xy

xy

D D D D y x )cos cos cos (]),,(,[),,(],),,([),,()],(,,[),,(),,(),,(),,(),(),(1)]

,(,,[),,(2

2γβα系:两类曲面积分之间的关号。,取曲面的右侧时取正

号;,取曲面的前侧时取正

号;,取曲面的上侧时取正

,其中:

对坐标的曲面积分:对面积的曲面积分:

高斯公式:

???

???????????????Ω

Ω

=++==?

??ds

A dv A ds R Q P ds A ds n A z

R y Q x P ds

R Q P Rdxdy Qdzdx Pdydz dv z

R

y Q x

P

n

n

div )cos cos cos (...

,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:

—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:

??

??

?????Γ

Γ

Γ

?=

++Γ??

????=

??=

????=????=????????=??

????

++=??-??+??-??+??-

??ds

t A Rdz Qdy Pdx A R

Q P z y x A y P

x Q x R z P z Q y R R

Q P z y x R

Q

P

z y x dxdy dzdx

dydz Rdz

Qdy Pdx dxdy y

P

x Q dzdx x R z P dydz z Q y

R

的环流量:沿有向闭曲线向量场旋度:, , 关的条件:空间曲线积分与路径无上式左端又可写成:k

j i rot cos cos cos )()()(γβα

常数项级数:

是发散的

调和级数:等差数列:等比数列:n

n

n n q q q q q n

n 1

312112

)1(3211111

2

+++++=

++++--=

++++-

级数审敛法:

散。

存在,则收敛;否则发、定义法:

时,不确定时,级数发散

时,级数收敛,则设:、比值审敛法:

时,不确定时,级数发散

时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞

→+∞→∞

→+++=??

?

??=><=??

?

??=><=lim ;3111

lim 2111

lim 1211 ρρρρρρρρ

。的绝对值其余项,那么级数收敛且其和

如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u

绝对收敛与条件收敛:

∑∑∑∑>≤-+++++++++时收敛1时发散p

级数: 收敛;

级数:收敛;

发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中11

1

)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n

幂级数:

01

0)3(lim )3(111

111122103

2

=+∞=+∞

===

≠==><+++++≥-<++++++++∞→R R R a a a a

R R x R x R x R x a x a x a a x x x x x x x n n n

n n n n n

时,时,时,的系数,则

是,,其中求收敛半径的方法:设称为收敛半径。,其中时不定

时发散时收敛

,使

在数轴上都收敛,则必存收敛,也不是在全

,如果它不是仅在原点 对于级数时,发散

时,收敛于

ρρρ

ρρ

函数展开成幂级数:

+++''+'+===-+=+-++-''+-=∞→++n

n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !

)0(!2)0()0()0()(00

lim )(,)()!1()

()(!

)()(!2)())(()()(2010)1(00)(2

0000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ

一些函数展开成幂级数:

)

()!12()1(!5!3sin )

11(!

)1()1(!2)1(1)1(121

532+∞<<-∞+--+-+-=<<-++--++-+

+=+--x n x x x x x x x n n m m m x m m mx x n n n

m 欧拉公式:

???

????-=+=+=--2sin 2cos sin cos ix

ix ix

ix ix

e e x e e x x i x e 或

三角级数:

上的积分=在任意两个不同项的乘积正交性:。

,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )

sin cos (2)sin()(001

10ππω???ω-====++=++=∑∑∞

=∞

= nx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n

傅立叶级数:

是偶函数 ,余弦级数:是奇函数

,正弦级数:(相减)

(相加)

其中,周期∑?

∑???∑+=

==

======+-+-=++++=

+++=

+++???

????=====++=--∞

=nx a a x f n nxdx x f a b nx b

x f n xdx x f b a n nxdx x f b n nxdx x f a nx b nx a a x f n n n n

n n n n n n n cos 2

)(2,1,0cos )(2

0sin )(3,2,1n sin )(2

012413121164

1312112461412185

1311)3,2,1(sin )(1)2,1,0(cos )(1

2)sin cos (2)(0

2

2222

2222

2222

221

π

π

π

πππ

π

π

πππππππ

周期为l 2的周期函数的傅立叶级数:

微分方程的相关概念:

????

???=====++=??∑--∞

=l

l n l

l n n n n n dx l x n x f l b n dx l x

n x f l a l

l x

n b l x n a a x f )3,2,1(sin )(1)2,1,0(cos

)(12)sin cos (2)(1

0 其中,周期ππππ

即得齐次方程通解。

代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。

得:的形式,解法:

为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y

u u du x dx u dx du u dx du x u dx dy x y u x

y

y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='??)()(),(),()()()()()()(0

),(),(),(???

一阶线性微分方程:

)

1,0()()(2))((0)(,0)()

()(1)()()(≠=+?

+?=≠?

===+?--n y x Q y x P dx

dy e C dx e x Q y x Q Ce y x Q x Q y x P dx

dy

n dx

x P dx

x P dx

x P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:

全微分方程:

通解。

应该是该全微分方程的,,其中:分方程,即:中左端是某函数的全微如果C y x u y x Q y u y x P x u dy y x Q dx y x P y x du dy y x Q dx y x P =∴=??=??=+==+),()

,(),(0),(),(),(0),(),(

二阶微分方程:

时为非齐次

时为齐次,0)(0)()()()(2

2≠≡=++x f x f x f y x Q dx dy

x P dx y d

二阶常系数齐次线性微分方程及其解法:

2

122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数;式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤:

为常数;,其中?'''=++?=+'+''式的通解:出的不同情况,按下表写、根据(*),3

r r 二阶常系数非齐次线性微分方程

型为常数;型,为常数,]sin )(cos )([)()()(,)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x ωωλλλ+===+'+''

相关主题
相关文档
最新文档