第四节混凝动力学

第四节混凝动力学
第四节混凝动力学

第四节、混凝动力学

影响混凝效果的因素中,水力条件是个重要因素,要达到最佳的混凝效果,应该创造良好的水力条件,即设计合理的混合池和絮凝池,而混凝动力学正是其设计的基础。

一、基本概念

1、异向絮凝(perikinetic flocculation )

异向絮凝指脱稳胶体由于布朗运动相碰撞而凝聚的现象。

异向絮凝主要对微小颗粒d <1m μ起作用。

2、同向絮凝(orthokinetic flocculation )

同向絮凝指借助于水力或机械搅拌使胶体颗粒相碰撞而凝聚的现象。 同向絮凝主要对大颗粒d >1m μ起作用。

说明:

(1)在混合和絮凝初期,主要表现为异向絮凝,形成微絮凝体;

(2)在絮凝初期以后,则主要表现为同向絮凝,形成粗大絮凝体;

(3)两者在时间上没有严格区分,在任何阶段都可能同时存在,只是程度不同。

3、碰撞速率

碰撞速率指单位时间、单位体积内颗粒的碰撞次数。

4、絮凝速率

絮凝速率指单位时间、单位体积内颗粒总数量浓度的减少速率。

[絮凝速率]=-1/2[碰撞速率]

因为:

(1)在计算颗粒i 和颗粒j 碰撞次数时,是将两个颗粒相互碰撞数计算了两次,即i 向j 碰撞一次,j 又向i 碰撞一次。而实际上两个颗粒一次相碰就相互凝聚成一个大的颗粒,故絮凝速率为总计算碰撞数的1/2。

(2)负号表示颗粒总数量随絮凝时间而减少,这是小颗粒相互结成大颗粒的结果。

二、异向絮凝

布朗运动为一种无规则的热运动,将导致水中颗粒相互碰撞。

假设:①水中胶体颗粒已完全脱稳;②颗粒每次碰撞都是有效碰撞,都会导致颗粒相互聚集,使小颗粒变成大颗粒;③颗粒为均匀球体。根据费克扩散定律,可导出颗粒碰撞速率为:

28n dD N B P π= (2-7) 式中,N P —— 单位体积中的颗粒在异向絮凝中碰撞速率(1/cm 3·s ); D B —— 布朗运动扩散系数(cm 2/s );

d —— 颗粒直径(cm );

n —— 颗粒数量浓度(个/cm 3)。

扩散系数D B 用斯笃克斯-爱因斯坦公式表示:

μ

πd KT D B 3= (2-8) 式中,K —— 波茨曼常数,K =1.38×10-16g ·cm 2/s 2·K ;

T —— 水的热力学温度(K );

μ—— 水的动力粘度(g/cm ·s )。

将(2-8)代入(2-7)可得:

238KTn N P μ

= (2-9) 于是,异向絮凝速率为:

234KTn dt dn μ

-= (2-10) 公式(2-10)是根据颗粒每次碰撞都导致凝聚而推导出来的。实际上并非每次碰撞都有效,引入有效碰撞系数η加以修正,则有:

234KTn dt dn ημ

-= (2-11) 有效碰撞系数η反映颗粒脱稳程度。η=1,表示完全脱稳,不存在排斥作用;η<1,则存在排斥作用,碰撞时仅部分凝聚。有些研究者认为,在水处理中,有效碰撞系数通常为η=0.01~0.448。

由(2-11)可知,异向絮凝速率与水温有关,与颗粒数量浓度的平方成正比,而与颗粒粒径无关。

由于只有小颗粒才具有布朗运动,随着颗粒凝聚增大,布朗运动将逐渐减弱,当d >1m μ时,布朗运动基本消失,故要使颗粒进一步碰撞凝聚,必须进行同向絮凝。

公式(2-7)的推导过程如下:

为讨论简便,设水中某一球体颗粒j 固定不动,所有其他球体颗粒i 由于布朗运动而向j 颗粒扩散。一旦i 颗粒与j 颗粒碰撞,则i 颗粒数量浓度将随之减小。根据费克扩散定律,可求得i 和j 的碰撞速率:

i i ij ij n D R N π4= (2-12) 式中,N ij —— i 与j 颗粒碰撞速率(1/cm 3·s );

n i —— i 颗粒数量浓度(个/cm 3);

D i —— i 颗粒扩散系数(cm 2/s );

R ij —— 碰撞半径,R ij =r i +r j (cm )。

当j 颗粒不是一个(n j ≠1),且j 颗粒也具有布朗运动时,则i 和j 的碰撞速率:

j i j i ij ij n n D D R N )(4+=π (2-13) 设i 和j 颗粒粒径相等,从而扩散系数也相等,于是有:R ij =r i +r j =2r =d ,

D i +D j =2D ,n i =n j =n ,代入上式得到:

28dDn N ij π= (2-14) 公式(2-14)即为(2-7)。

三、同向絮凝

1、层流条件下的同向絮凝

在层流条件下,i 和j 颗粒均随水流前进,i 颗粒的前进速率小于j 颗粒,则某一时刻,i 与j 必将碰撞。设水中颗粒为均匀球体,即d i =d j =d ,i 与j 的碰撞速率为:

G d n N 3203

4= (2-15) 式中,G —— 速度梯度(s -1),G =du/dz ;

du —— 相邻两流层的流速增量(cm/s );

dz —— 垂直于水流方向的两流层之间距离。

公式(2-15)的推导过程:

为便于讨论,首先假定i 颗粒静止不动,j 颗粒随水流运动。i 和j 因流速梯度而相互碰撞,见图2-7。

图2-7 层流条件下两球形颗粒相碰示意

如果j 颗粒中心位于圆柱体半径为Rij 范围以内,j 颗粒均会与i 颗粒相撞,则i 和j 在单位时间内的碰撞次数取决于j 颗粒数量浓度n j 和流过圆柱体的流量Q (n i =1)。

X 轴上方半圆柱体的微元流量为:

u dz z R u dA dQ ij

??-=?=2212 (2-16)

又有:

z dz

du u z dz u du ?=?= (2-17) dz

du G = (2-18) 将式(2-17)和(2-18)代入(2-16)得到: dz z G z R dQ ij ???-=2212 (2-19)

对(2-19)进行积分得到:

302213

22ij R ij GR dz z z R G Q ij =

??-=? (2-20) 在x 轴下方半圆柱体流量Q 2与x 轴上方流量完全一样,即Q 2=Q 1,所以流过圆柱体的总流量为:

3213

4ij GR Q Q Q =+= (2-21) 因此颗粒i 与j 的碰撞速率为:

33

4ij j j ij R Gn n Q N =?= (2-22) 当i 颗粒数量浓度为n i ,则碰撞速率为:

33

4ij j i j i ij R n Gn n n Q N =??= (2-23) 若i 与j 颗粒的粒径相等,有r i =r j ,R ij =r i +r j =2r =d ,且n i =n j =n ,则上式就为:

0323

4N d Gn N ij == (2-24) 故同向絮凝速率为:

323

2d Gn dt dn -= (2-25) 若考虑有效碰撞系数η,则有:

323

2d Gn dt dn η-= (2-26) 在公式(2-15)中,n 和d 为原水杂质特性,G 是控制混凝效果的水力条件,当原水杂质特性一定时,要提高混凝效果,就要控制速度梯度G 。故在絮凝设施的设计中,往往以G 作为重要的控制参数之一。

2、紊流条件下的同向絮凝

在实际混凝过程中,水流一般均处于紊流状态,流体内部存在大小不等的涡旋,除前进速度外,还存在纵向和横向脉动速度。

层流条件下推导出来的同向絮凝碰撞速率公式(2-15)中控制混凝效果的水力条件为G =du/dz ,G 为速度梯度,其表达式在紊流条件下不适用,甘布(T.R.Camp )和斯泰因(P.C.Stein )仍然利用层流条件下碰撞速率公式的形式,但对G 值表达式进行了变化,以一个瞬间受剪而扭转的单位体积水流所耗功率计算G 值来替代G =du/dz ,G 值表达式推导如下:

如图2-8所示,在受搅拌的水中取出一微团来分析它在x 方向的受力情况。这一微团瞬间受剪而扭转的过程中,剪力做了扭转功。由于剪应力的作用,在x 方向产生切应变θ。x 方向即相当于图2-7中水的运动方向。这一微团在z 方

向存在一个速度梯度du/dz ,同样也与图2-7一致。由于θ值很小,切应变θ=速度梯度du/dz 。图中p 及τ分别表示微团在x 方向所受的压力及切应力。

图2-8 速度梯度的推导图示

由牛顿内摩擦力公式,剪力τ为:

G z

u μμτ=??= (2-27) 则扭转功率为:

V G G V G z

u z y x u y x u T P ??=???=?????????=??????=??=?2)()(μμττ 于是单位体积水流所耗功率为:

2G V

P P μ=??= (2-28) 所以,速度梯度G 值表达式为:

μP

G = (2-29)

公式(2-29)中,当用机械搅拌时,式中P 由机械搅拌的功率提供;当用水力搅拌时,功率P 为水流本身的能量消耗。

设被搅拌的水流体积为V ,水头损失为h ,则总功率为:

PV Qh P z ==γ (2-30) 而V=QT ,代入上式得到:

T G PT h 2μγ== (2-31) 所以水力搅拌时的速度梯度G 值表达式为:

T

h G μγ= (2-32) 式中,γ—— 水的重度(kg/m 2·s 2);

h —— 混凝设备中的水头损失(m );

μ—— 水的动力粘度(kg/m ·s )

T —— 水流在混凝设备中的停留时间(s )

公式(2-29)和(2-32)为著名的甘布公式,公式中G 值反映了能量消耗的概念。以该公式G 值表达式代替层流条件下的公式中G =du/dz ,则可得到紊流条件下同向絮凝速率:

μ

ηηP d n d Gn dt dn 3

2323232-=-= (2-33) 或为:

T h d n d Gn dt dn μγηη3

2323232-=-= (2-34) 3、局部各向同性紊流理论

近年来,有些专家学者认为甘布公式所求G 值直接代入层流公式来求得的紊流条件下的同向絮凝速率在理论上依据不足,进而直接从紊流理论出发来探讨颗粒碰撞速率。例如,列维奇(Levich )等人根据科尔摩哥罗夫(Kolmogoroff )的局部各向同性紊流理论来推导了同向絮凝速率方程。

局部各向同性紊流理论的要点如下:

(1)在各向同性紊流中,存在各种尺度不等的涡旋;

(2)大涡旋将能量输送给小涡旋,小涡旋又将一部分能量输送给更小的涡旋;

(3)小涡旋逐渐增多,水的粘性增强,从而产生能量损耗;

(4)当涡旋的尺度与颗粒直径或碰撞半径相近时,才会使颗粒相互碰撞。 在物理学中有一个现象:

大涡旋→减小→小涡旋(惯性区)→减小→更小涡旋(粘性区)→湮灭 在粘性区涡旋尺度λ与颗粒粒径d 相近(即为同一数量级),造成颗粒相互碰撞,混凝效果最好。故在絮凝设备中应多增加小涡旋。

小涡旋的无规则脉动类似于布朗运动,可得碰撞速率为:

208dDn N π= (2-35)

式中D 为紊流扩散和布朗扩散系数之和,在紊流中,布朗扩散远小于紊流扩散,D 近似为紊流扩散系数,有:

λλu D = (2-36)

λu 为脉动流速,由下式表示:

λνελ15

1=u (2-37) 设涡旋尺度λ=d ,将式(2-36)和(2-37)代入(2-35)得到:

32015

8d n N νεπ= (2-38) 式中,ε—— 单位时间、单位体积流体的有效能耗;

ν—— 水的运动粘度。

该公式与甘布公式相比,如果令νε=G ,则两式仅是系数不同。μP 和νε也非常相似,不同的是P 为平均流速和脉动流速所耗功率,而ε为脉动流速所耗功率。两者实质比较接近,均为控制混凝效果的重要参数。

由于公式(2-37)仅适用于粘性区,而实际上水中颗粒尺寸大小不等,且有效功率ε很难确定,故公式(2-38)虽然有理论依据,但其应用受到局限。因此仍然沿用甘布公式作为同向絮凝的控制指标。

栅条絮凝池中的混凝现象即可用局部各向同性紊流理论来解释。

四、G 值、GT 值的含义

1、G 值增大,碰撞速率增大,则颗粒碰撞次数也增加,G 值可作为一种搅拌强度的指标;但G 值太大,絮凝体会破碎。一般控制平均G 值为:

(1)混合阶段以异向絮凝为主,要求将混凝剂快速溶解于水中使胶体脱稳,一般G =700~1000s -1。

(2)絮凝阶段以同向絮凝为主,要促使微絮凝体变成粗大絮凝体,又要防止絮凝体破碎,一般G =20~70s -1。

2、水流在混凝设备中停留时间T 越大,颗粒碰撞的次数越多,但T 太长,经济上不合理,一般控制T 为:

(1)混合阶段T =10~20s ,不超过2min 。

(2)絮凝阶段T =10~30min 。不同的絮凝池设计停留时间不同。

3、G 值间接反映单位时间颗粒碰撞次数,GT 值反映总的碰撞次数,一般控制絮凝池的平均GT =1×104~1×105。

第五节、混合和絮凝设备

一、混合和絮凝的工艺要求

1、混合工艺要求

在混合阶段,水中杂质颗粒尺寸微小,异向絮凝占主导地位。

(1)作用

在混合阶段进行剧烈搅拌的目的是使药剂快速均匀地扩散在水中,使胶体脱稳凝聚,产生微絮凝体(微絮凝体d >5m μ)。

(2)要求

混合要快速剧烈。

2、絮凝工艺要求

在絮凝阶段,必须借助于机械或水力搅拌进行同向絮凝。

(1)作用

使微絮凝体通过合适的水力条件变成粗大絮凝体(粗大絮凝体d >0.6mm )。

(2)要求

1)提供足够的碰撞次数;

2)搅拌强调要递减;

3)絮凝体不能在絮凝池中沉淀,因此要求流速不能太小。

(3)措施

1)增大颗粒浓度,即增大n。对低浊度水可投加粘土、增加投矾量等。

2)增大颗粒尺寸,即增大d。例如投加高分子助凝剂活化硅酸、PAM等。

3)要有适当的速度梯度G,且G值要逐渐递减,一般通过控制流速v来控制G值递减。一般在絮凝池进口v=0.5~0.6m/s,在絮凝池出口v=0.1~0.2m/s。

4)要提供足够的碰撞次数,就要有足够的絮凝时间,T=10~30min。

5)改善水流状态,即在絮凝池中设置扰流装置,在水中形成脉动流速,提高有效能耗ε。例如设置栅条、网格、波纹板等。

二、混合设备

常用混合方式有水力和机械两类。水力混合简单,但不能适应流量变化;机械混合可随流量变化而调节,但机械需维修。

1、管式混合

管式混合是利用水厂进水管的水流,通过管道或管道配件(弯头、渐缩管、三通等),也可在管道内设置阻流物,以产生局部阻力.使水流发生湍流,从而使水体和药剂混合。

设置阻流物的形式很多,常用的有孔板、文氏管、扩散混台器、静态混合器等。如:

1)扩散混合器,见图2-9,为孔板混合器加上锥形配药帽所组成。锥形帽顺水流方向的投影面积为进水管总面积的l/4,孔板的孔面积为进水管总面积的3/4;

2)静态混合器,见图2-10,是利用在管道内设置多节固定分流板使水流成对分流.同时又有交叉和旋涡反向旋转.以达到较好的混合效果。

图2-9 管道扩散混合器

图2-10 管道静态混合器

2、混合池

采用混合池混合有多种形式,如隔板混合池、涡流混合池、穿孔混合池等。

(1)隔板混合池,如图2-11所示,利用水体的曲折行进所产生的湍流进行混合。—般为设有三块隔板的窄长形水槽。

(2)涡流混合池,如图2-12所示,适用于中小型水厂,特别适合于石灰乳的混合。其平面形状呈正方形或圆形,与此相适应的下部呈倒金字塔形或圆锥形。

(3)穿孔混合池,如图2-13所示,为设有三块隔板的矩形水槽,板上有较多的孔眼,以造成较多的涡流。适用于1000m3/h以下的水厂,不适用于石灰乳或者有较大渣子的药剂混合,以免石灰粒子或渣子堵塞孔眼。

图2-11 隔板混合池

3、水泵混合

药剂溶液加于水泵吸水管中,通过水泵叶轮高速转动达到混合效果。

药剂一般采用重力投加,为防止空气进入水泵吸水管内,必须设一个装有浮球阀的水封箱,对于投加腐蚀性强的药剂应注意避免腐蚀水泵叶轮及管道。对于泵房距净水构筑物距离较远时不宜采用。

4、机械混合

机械混合系通过浆板的转动搅拌水体,以达到混合目的。如图]2-14所示。

混合机械包括驱动电动机和垂直轴悬挂浆板。浆板有浆式、推进式、涡流式等。采用较多的为浆式,结构简单易制造,但所供混合功率较小。

为加强混合效果,除了设快速旋转桨板外,还可在周壁上设固定挡板。

图2-12 涡流混合池

图2-13 穿孔混合池

图2-14 机械混合池

试验设计与分析

试验方案:根据试验目的和要求所拟进行比较的一组试验处理的总称。 试验因素:在试验中所研究的影响试验指标的某一项目称为因素 单因素试验:探索某一个因素对试验指标作用的试验 多因素试验:探索多个因素对试验指标作用的试验 (试验)处理:事先设计好的实施在试验单元上的具体项目,即试验中具体比较的项目称为实验处理 处理组合:不同因素不同水平的组合。 试验指标:用于衡量试验效果的指示性状。 因素水平:实验因素所处的某种特定状态或数量等级称为因素水平 显著水平:用来判断是否属于小概率事件的概率值称为显著水平,及拒绝零假设的概率,通常取0.05或0.01 参数:用来描述总体的特征值称为参数 随机化:试验处理的分配和各个试验进行的次序都是随机确定的,这个原理称为随机化 试验单元:在试验中能够施以不同处理的最小的材料单元 接受域:一个假设总体的概率分布中,可能接受假设时所能取的一切可能值所在的范围,即接受H0的区间试验效应:试验因素对试验指标所起的增加或减少的作用。 简单效应:在同一因素内两种水平间试验指标的相差。 平均效应:一个因素内各简单效应的平均数。也称主要效应,简称主效。 交互作用效应:两个因素简单效应间的平均差异。简称互作。 对照:试验方案中包括有对照水平或处理,简称对照。(试验当中所设计的比较标准的处理) 唯一差异原则:指在试验中进行比较的各个处理,其间的差别仅在于不同的试验因素或不同的水平,其余所有的条件都应完全一致。 (试验)误差:测量值与真实值之间的差异称为试验误差。 随机误差:由随机或偶然因素造成的试验结果与处理真值之间的差异称为偶然性误差或随机误差。 系统误差:由固定原因一起的试验结果与处理真值之间的差异称为系统误差。 错失误差:实验中由于试验人员粗心大意所发生的差错称为错失误差 精确度:试验中同一性状的重复观察值彼此接近的程度。(即试验误差的大小) 准确度:试验中某一性状的观察值与其理论值真值的接近程度。 固定模型:仅考察参试处理均值差异或主效应差异的单因素等重复试验的模型 试验控制:为了提高试验的准确度和精确度,必须使所有试验单元或区组内的试验单元的试验条件一致,叫试验控制 局部控制:将整个试验空间分为若干个各自相对均与的局部,每一个局部叫一个区组,所有局部构成区组因素,在每一个区组内随机排列一套试验的所有处理,它等价于一个重复 边际效应:小区两边或两端的植株,因占较大空间而表现的差异。 生长竞争:相邻小区种植不同品种或施用不同肥料时,由于株高、分蘖力或生长期的不同,通常有一行或更多行受到影响。 总体:具有共同性质的个体所组成的集团。 样本:从总体中随机抽取一些个体进行观察得到的总体变量称为样本 小概率事件不可能性原理:概率很小的事件,在一次试验中几乎不可能发生或可认为不可能发生。 接受区域:指一个假设总体的概率分布中,可能接受假设时所能取的一切可能值所在的范围,即接受H0的区间 一尾测验:备择假设只有一种可能性,假设检验只有一个否定区域,这类测验叫一尾测验。 两尾测验:指概率分布下,显著水平按左边和右边两尾的概率的和进行检验假设检验有两个否定区 第一类错误:指不同总体的参数间本来没有差异,而测验结果认为有差异,这种错误称为第一类错误(否定本来正确的无效假设) 第二类错误:指参数间本来有差异,而测验结果认为参数间无差异,这种错误称为第二类错误。(接受了本来错误的无效假设) 置信度:保证区间能覆盖参数的概率。 置信区间:在一定概率保证下,能够覆盖参数的一个估计范围。 1.Fisher试验设计的三个基本原理:设置突变,随机化,局部控制 2.数据资料变异度的表示方法:变异系数,极差,方差,标准差 3.统计假设检验的一般步骤为:提出统计假设,确定显著水平的统计区间,计算μ值或t值,统计推断 4.在直线回归分析中,检验回归关系是否显著的方法有:相关系数,回归方程,直线回归方程进行方差分析 5.常用的随机排列试验设计有:完全随机,随机区组试验,拉丁方试验,裂区和条区试验 6.实验因素对试验指标所起的增加或减少作用称为试验效应 7.进行田间试验时设置重复的主要作用是降低误差

3D打印创新实验室建设方案

目录 一 3D打印技术...............................................错误!未定义书签。 1、3D打印技术原理........................................错误!未定义书签。 2、3D打印流程............................................错误!未定义书签。 1)三维设计...........................................错误!未定义书签。 2)切片处理...........................................错误!未定义书签。 3)模型打印...........................................错误!未定义书签。 4)后续处理...........................................错误!未定义书签。 3、常见3D打印技术........................................错误!未定义书签。 1) FDM:熔融沉积成型工艺..............................错误!未定义书签。 2) SLS:选择性激光烧结工艺............................错误!未定义书签。 3) LOM:分层实体成型工艺..............................错误!未定义书签。 4) SLA:立体光固化成型工艺............................错误!未定义书签。 5) 3DP:三维印刷工艺..................................错误!未定义书签。 6) PolyJet:聚合物喷射技术............................错误!未定义书签。 4、3D打印材料............................................错误!未定义书签。 5、3D打印机类型..........................................错误!未定义书签。 二 3D打印创新实验室建设规划.................................错误!未定义书签。 1、3D打印创新实验室功能..................................错误!未定义书签。 2、3D打印创新实验室建设规划..............................错误!未定义书签。 3、3D打印创新实验室软件..................................错误!未定义书签。 三 3D打印创新实验室创新课程体系设计.........................错误!未定义书签。 1、教学架构...............................................错误!未定义书签。 2、教学内容...............................................错误!未定义书签。

流体动力学基础复习思考题

第四章 流体动力学基础 复习思考题 1. 在 流动中,伯努利方程不成立。D (A) 恒定 (B) 理想流体 (C) 不可压缩 (D) 可压缩 2. 在总流伯努利方程中,速度 v 是 速度。B (A) 某点 (B) 断面平均 (C) 断面形心处 (D) 断面上最大 3. 文透里管用于测量 。D (A) 点流速 (B) 压强 (C) 密度 (D) 流量 4. 毕托管用于测量 。A (A) 点流速 (B) 压强 (C) 密度 (D) 流量 5. 密度 ρ = 800kg/m 3 的油在管中流动,若压强水头为2m 油柱,则压强为 N/m 2。C (A) 1.96×104 (B) 2×103 (C) 1.57×104 (D) 1.6×103 6. 应用总流能量方程时,两断面之间 。D (A) 必须是缓变流 (B) 必须是急变流 (C) 不能出现急变流 (D) 可以出现急变流 7. 应用总流动量方程求流体对物体合力时,进、出口的压强应使用 。B (A) 绝对压强 (B) 相对压强 (C) 大气压强 (D) 真空值 8. 伯努利方程中 g v p z 22 αγ++表示 。B (A) 单位质量流体具有的机械能 (B) 单位重量流体具有的机械能 (C) 单位体积流体具有的机械能 (D) 通过过流断面的总机械能 9. 粘性流体恒定总流的总水头线沿程变化规律是 。A (A) 沿程下降 (B) 沿程上升 (C) 保持水平 (D) 前三种情况都有可能 10. 粘性流体恒定总流的测压管水头线沿程变化规律是 。D (A) 沿程下降 (B) 沿程上升 (C) 保持水平 (D) 前三种情况都有可能 11. 动能修正系数α = 。C (A) A v u A A ??d 1 (B) A v u A A ????? ??d 12 (C) A v u A A ????? ??d 13 (D) A v u A A ????? ??d 14 12. 动量修正系数α0 = 。B (A) A v u A A ??d 1 (B) A v u A A ????? ??d 12 (C) A v u A A ????? ??d 13 (D) A v u A A ????? ??d 14 13. 描述不可压缩粘性流体运动的微分方程是 。D (A) 欧拉方程 (B) 边界层方程 (C) 斯托克斯方程 (D) 纳维—斯托克斯方程 14. 恒定水流运动方向应该是: 。D (A) 从高处向低处流 (B) 从压强大处向压强小处流 (C) 从流速大的地方向流速低的地方流 (D) 从单位重量流体机械能高的地方向低的地方流 15. 欧拉运动微分方程式 。D (A) 适用于不可压缩流体,不适用于可压缩流体 (B) 适用于恒定流,不适用于非恒定流 (C) 适用于无旋流,不适用于有旋流 (D) 适用于上述所提及的各种情况下的流动。 16. 两艘平行行驶的船只,为什么不能靠得太近? 17. 理想流体运动微分方程的伯努利积分和欧拉积分有何区别? 18. 粘性流体运动微分方程和理想流体微分方程主要差别是什么? 19. N-S 方程适用范围是什么?各项的物理意义是什么?

混凝土配合比试验设计方案

混凝土配合比试验设计方案

混凝土配合比设计试验报告 一、配合比设计理论依据 1、《民航机场场道工程施工技术要求》1996—10 2、《广州白云国际机场迁建工程——场道道面工程补充施工技术要求》 3、《水泥胶砂强度检测方法(ISO)法》GBT17671—1999 4、《公路集料试验规程》JTJ058—2000 5、《水泥混凝土路面施工及验收规范》GB97—87 6、《公路工程水泥混凝土试验规程》JTJ053—94 7、《普通混凝土配合比设计规程》JGJ55—2000 J64—2000 8、《硅酸盐水泥、普通硅酸盐水泥》GB175 9、《混凝土外加剂一等品规定指标》(GB8076-1997) 10、《混凝土外加剂应用技术规范》(GBJ119-88) 二、道面混凝土设计要求如下: 2.1、强度:28天抗折强度5.0Mpa; 2.2、和易性要求:维勃稠度20-40s,或塌落度小于10mm; 2.3、耐久性要求:水泥用量不少于300Kg/m3,也不宜大于330Kg/m3; 水灰比不宜大于0.44; 2.4、水泥混凝土所用原材料应符合《民航机场场道工程施工技术要求》1996—10中的有关要求外,尚应符合以下规定: 2.4.1水泥道面及道肩面层混凝土可采用标号为525的硅酸盐水泥。水泥中氧化镁含量不宜大于3%,碱含量不大于0.6%。水泥的其他质量应符合《硅酸盐水泥、普通硅酸盐水泥》GB175的有关规定。

2.4.2砂宜采用细度模数为2.65~ 3.20的中粗河砂。砂的含泥量不得大于3%,含泥量超过规定时应冲洗。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的砂不得使用。 2.4.3碎石圆孔筛最大粒径为40mm。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的碎石不得使用。碎石应按圆孔筛5~20mm、20~40mm两级级配分别备料,两种碎石混合后的颗粒级配应符合下表要求: 项目技术要求 颗粒尺寸筛孔尺寸mm(圆孔筛)40 20 10 5 累积筛余(%)0~5 50~70 70~90 90~100 2.4.4水冲洗集料、拌和混凝土及混凝土养生可采用一般饮用水。使用河水、池水或其他水应符合下列要求:①水中不得含有影响水泥正常凝结和硬化的有害杂质,如油、糖、酸、碱、盐等;②硫酸盐含量(按SO2-1计)不超过2.7mg/cm3;③pH值大于4;含盐总量不得超过5mg/cm3。 2.4.5外加剂水泥混凝土中需要掺用外加剂时,必须根据工程要求,通过试验选定外加剂的种类和用量。外加剂的质量应符合《混凝土外加剂一等品规定指标》(GB8076-1997)的规定要求,其使用应符合《混凝土外加剂应用技术规范》(GBJ119-88)的规定要求。不得使用pH值大于8的碱性外加剂。施工过程中应严格控制外加剂剂量,现场有专人配制。 三、确定原材料 我们根据招标文件、投标书、与业主签订的施工合同及施工图纸的要求确定使用下列材料:

正交实验设计及结果分析

正交试验设计对于单因素或两因素试验,因其因素少,试验的设计、实施与分析都比较简单。但在实际工作中,常常需要同时考察3 个或3 个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。正交试验设计就是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。 1 正交试验设计的概念及原理 1.1 正交试验设计的基本概念 正交试验设计是利用正交表来安排与分析多因素试验的一种设计方法。它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验的,通过对这部分试验结果的分析了解全面试验的情况,找出最优的水平组合。 例如:设计一个三因素、3 水平的试验 A 因素,设A、A?、A33个水平;B因素,设B、B2、B33个水平; C因素,设G、G、G 3个水平,各因素的水平之间全部可能组合有27 种。 全面试验:可以分析各因素的效应,交互作用,也可选出最优水平组合。但全面试验包含的水平组合数较多(图示的27 个节点),工作量大,在有些情况下无法完成。 若试验的主要目的是寻求最优水平组合,则可利用正交表来设计安排试验。 全面试验法示意图

三因素、三水平全面试验方案 正交试验设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。 正因为正交试验是用部分试验来代替全面试验的,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。虽然正交试验设计有上述不足,但它能通过部分试验找到最优水平组合,因而很受实际工作者青睐。 如对于上述3因素3水平试验,若不考虑交互作用,可利用正交表L9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包

初中物理创新实验设计方案1

初中物理创新实验设计方案 一、实验课题名称:惯性定律演示仪 二、实验设计思路: 运用惯性定律(牛顿第一定律):物体在不受任何外力作用的时候总保持静止或匀速直线运动(物体总保持原有在运动状态直到有外力迫使它改变为止) 三、实验或实验器材在教材中所处的地位与作用: 该实验是八年级物理第八章第二节内容,在已经学习了牛顿第一定律的基础上,研究所有物体都具有惯性,对于学生理解、学习、运用牛顿第一定律以及惯性的知识具有相当重要的作用。 可以说,这个实验是探究物体惯性的核心演示实验,一旦学生通过观察本实验仪的演示,必定会十分深刻在理解和掌握惯性在相关知识。 四、实验器材: 长木板、小车、弹簧、直塑料细管、漏斗、橡皮筋、细线、弹珠、铁钉 五、实验原型及不足之处: 传统的实验方法是使用控制变量法,使两种物质的质量相等,吸收的热量相同,通过观察温度计上示数的变化,得出结论:温度计示数上升较快的物质,升高1℃所需的热量较少,吸收热量的能力较小(即比热容较小)。它的不足之处: ⑴水和食用油吸收相同的热量用这套实验装置有较大的误差,容易受到外界环境的影响(如风向、石棉网的初温、两个酒精等的火焰有大小等)不便于控制; ⑵通过实验得出的结论是:吸热能力的大小与温度的变化成反比,学生要多转动一下思维才能理解,结论没有改进后的直接; ⑶所需要的实验器材也比较多,不利于实验的准备与操作。 ⑷所用烧杯体积过大,与空气的接触面积过大,所以散热过多,造成实验测量误差过大。 (如图) 六、实验创新与改进之处: ⑴将两套装置合二为一,减少了小组实验时对器材的需要;

⑵便于控制相同时间内吸收的热量相同这个变量,误差更小; ⑶两试管与空气的接触面更小,散热较少,误差较小; ⑷将烧杯较大的吸热面改为试管底部较小的吸热点(两试管型号相同、质量相等),就保证了相同时间内吸收的热量相同 ⑸实验中,将原实验观察温度计示数变化改为观察并记录两物质升高相同温度时的时间,这样做的好处是使实验结论更直接; (如图) 七、实验原理: 通过控制两物质质量相等、吸收热量相同、升高相同的温度等因素,来观察手中的秒表。升高相同温度时,所用时间较长的物质吸收的热量自然多一些,单位质量吸收热量的能力更强(即比热容更大一些)。 说明:完成实验时需控制的几个量 ⑴两试管型号相同、质量相等; ⑵试管中的水和食用油质量相等; ⑶试管中的水和食用油初温相同(可将两试管放入装有冷水的同一烧杯中1~2分钟); ⑷相同时间内两试管吸收的热量相等; ⑸两试管中的液体升高相同的温度; 改变的量: ⑴升高相同温度时所需要加热的时间不同; ⑵升高相同温度时所吸收的热量不同。 八、实验操作步骤: ⑴将装有质量相等的水和食用油的试管插入事先准备好的同一烧杯的冷水中1~2分钟,保证两试管中液体的初温相同; ⑵将初温相同的两试管从冷水中拿出来同时放入正在加热的石棉网上,并放入温度计(同时按下秒表开始计时),观察通过热传递获得热量的两试管中温度计的变化; ⑶在温度计达到70℃时分别记下所用的时间; ⑷比较升高相同温度时所用时间的不同; ⑸得出结论:升高相同温度时,所用时间较长的物质吸收的热量较多,吸收热量的能力较强(比热容较大)。

混凝土湿喷工艺性试验方案

隧道初支湿喷混凝土工艺性试验方案 1.编制依据及编制范围 1.1编制依据 1)新建成都至贵阳铁路乐山至贵阳段站前工程CGZQSG3标段合同文件及投标文件。 2)新建成都至贵阳铁路乐山至贵阳段站前工程《指导性施工组织设计》3)《高速铁路设计规范(试行)》(TB10621-2009)及局部修订(铁建设【2010】257号) 4)《铁路设计规范》(TB10003-2005)及局部修订((铁建设【2008】147号、铁建设【2009】22号、铁建设【2009】62号、铁建设【2010】257号)5)《高速铁路隧道施工技术指南》(铁建设【2010】241号) 6)《锚杆喷射混凝土支护技术规范》(GB50086-2001) 7)《中空锚杆技术条件》(TB/T3209-2008) 8)《铁路隧道防水材料暂行技术条件》(科技基【2008】21号) 9)《混凝土结构设计规范》(GB50010-2010) 10)《铁路混凝土施工技术指南》(铁建设【2010】241号) 11)《高速铁路隧道工程施工质量验收标准》(TB10753-2010) 12)《铁路隧道监控量测技术规程》(TB10121-2007) 13)《铁路混凝土结构耐久性设计规范》(TB10005-2010) 14)《中国铁路总公司关于新建成都至贵阳铁路乐山至贵阳段初步设计的批复》(铁总办函【2013】-568号) 1.2编制目的 通过混凝土湿喷试验段施工,我们将确定主要施工参数及相关工艺: 1)验证喷射混凝土性能参数,包括;强度和塌落度。 2)验证喷射施工的各项工艺参数,包括;风压、喷射距离、喷射角度、喷射厚度、操作方法和回弹率。 3)验证设备之间的匹配性,设备与原材料、拌合物的复符合性。 1.3编制范围 新建成贵铁路乐山至贵阳段CGZQSG-3标帽子山隧道初期支护湿喷混凝土工

分析化学实验方案设计

Cl NH HCl 4-的实验方案设计 一.实验目的 了解弱酸强化的基本原理,掌握甲醛法测定氨态氮的原理及操作方法,掌握酸碱指示剂的选择原理。 二.实验原理 HCl 为强酸,用NaOH 标定溶液直接准确滴定,+ 4NH 为极弱酸,对HCl 的滴定无影响,可分布滴定。第一计量点时,溶液中+ 4NH 微呈酸性用甲基红做指示剂,红 黄,记为V 1, O H NaCl NaOH HC 2l +==+,NaOH NaOH HCl HCl V C V C =,25 a l OH N HC C C = ,+ 4NH 被甲醛强化后用NaOH 标准溶液滴定产物微碱性,用PP 为指示剂,红黄红(或橙),记为V 2(V 总-V 1) 三.实验试剂 Cl NH HCl 4-(1:1)的溶液,甲醛(1:1)溶液,甲基红试剂,酚酞试剂,氢氧化钠固 体,草酸固体 四.实验步骤 1.OH N L a mol 1.01 -?溶液的配制及标定 a .在天平上粗称取2gNaOH 固体于烧杯中,加蒸馏水混合,用玻璃棒搅匀,转入500ml 试剂瓶中,并加蒸馏水至500ml ,搅拌均匀 b .在分析天平上准去称取草酸1.2g~1.3g 于小烧杯中,加蒸馏水使之溶解,并转入250ml 容量瓶中,然后加水定容至刻度线,摇匀 c .用移液管移取O H O C H 24222?25ml 于锥形瓶中,加入2滴酚酞指示剂,向碱式滴定管中加入足够的碱液,,并用NaOH 滴定O H O C H 24222?至微红,30s 不褪色,即为滴定终点,做三次平行实验,分别记录实验数据。 2.HCl 浓度的测定 用移液管取待测液25.00ml 于250ml 锥形瓶中,加入1-2滴甲基红,用NaOH 滴定待测液由红-黄,记为V 1 3.甲醛溶液的处理 取70ml 的甲醛溶液于锥形瓶中,并用NaOH 中和其中的游离酸,加入1-2滴的酚酞,滴定至微红即可 4.NH 4Cl 浓度的测定 用连续滴定法继续滴定待测液,事先加入中和后的10ml 甲醛溶液强化+ 4NH ,摇匀后放置1min ,加入1-2滴的酚酞试剂,用NaOH 滴定溶液颜色由红-黄-红(橙),记为V 总 五.实验数据的记录及处理

小学科学创新实验设计方案

小学科学创新实验设计方案 《空气占据空间》的实验创新 西海小学王绍亭 一.实验设计意图 1.《空气占据空间》是教科版小学科学三年级上册《认识空气》中的教学活动。通过实验,变看不见的空气为看的见,变摸不着的空气为摸得着,让学生在探究过程中认识到、感受到空气确实存在,空气和其他物质一样,能够占据空间。并为后面学习《空气的质量》打下基础。 2.通过尝试设计与完成实验过程,培养学生的科学探究精神,发展学生的科学素养。 二、实验原型的不足之处 教材上安排的实验为几个小实验:一是将吸管伸向水里,用嘴吹,有气泡产生;二是用橡皮泥堵塞瓶口,并插吸管,让学生向瓶内吹气,使水流出来;三是杯底塞入纸团,将杯子竖直压入水底,看纸团会不会湿。仔细分析,不难看出实验原型的不足之处有: 1.实验材料橡皮泥有毒;操作中容易出现橡皮泥堵塞吸管的失误,从而导致实验失败。 2.一次性吸管学生反复吹,不够卫生,用后丢弃造成环境污染和资源浪费。

3.学生气息不足,很难将水顺利吹出来,现象不明显。

4.如果杯子接触水面时没有垂直,很难达到理想的效果。 5.三年级的学生在操作时很容易把纸团掉入水中,浪费纸张,不利于环保。 三.实验创新与改进之处 创新实验一: 1.用橡胶塞替代有毒橡皮泥,安全、环保。 2.用玻璃管替代塑料吸管,消除浪费,减少了污染。 3.用推注射器活塞代替用嘴吹气实验,安全可靠更加卫生。 创新实验二: 用乒乓球代替纸团,节约用纸,实验更加绿色环保。 创新实验三: 1.在水槽壁粘贴刻度尺,在水面放一乒乓球,可以更直观地观察水位的升降变化。 2.用推拉注射器活塞来控制瓶内空气的流动,操作方便,现象明显。 四.创新实验所需器材 玻璃水槽、去底矿泉水瓶(底部缠铁丝)和完整矿泉水瓶各一个。玻璃管、橡胶管、带孔橡胶塞、乒乓球、注射器(或打气筒)、红墨水等。 五、实验过程 (一)自制小喷泉

实验1-3 《编译原理》词法分析程序设计方案

实验1-3 《编译原理》S语言词法分析程序设计方案 一、实验目的 了解词法分析程序的两种设计方法之一:根据状态转换图直接编程的方式; 二、实验内容 1.根据状态转换图直接编程 编写一个词法分析程序,它从左到右逐个字符的对源程序进行扫描,产生一个个的单词的二元式,形成二元式(记号)流文件输出。在此,词法分析程序作为单独的一遍,如下图所示。 具体任务有: (1)组织源程序的输入 (2)拼出单词并查找其类别编号,形成二元式输出,得到单词流文件 (3)删除注释、空格和无用符号 (4)发现并定位词法错误,需要输出错误的位置在源程序中的第几行。将错误信息输出到屏幕上。 (5)对于普通标识符和常量,分别建立标识符表和常量表(使用线性表存储),当遇到一个标识符或常量时,查找标识符表或常量表,若存在,则返回位置,否则返回0并且填写符号表或常量表。 标识符表结构:变量名,类型(整型、实型、字符型),分配的数据区地址 注:词法分析阶段只填写变量名,其它部分在语法分析、语义分析、代码生成等阶段逐步填入。 常量表结构:常量名,常量值 三、实验要求 1.能对任何S语言源程序进行分析 在运行词法分析程序时,应该用问答形式输入要被分析的S源语言程序的文件名,然后对该程序完成词法分析任务。 2.能检查并处理某些词法分析错误 词法分析程序能给出的错误信息包括:总的出错个数,每个错误所在的行号,错误的编号及错误信息。 本实验要求处理以下两种错误(编号分别为1,2): 1:非法字符:单词表中不存在的字符处理为非法字符,处理方式是删除该字符,给出错误信息,“某某字符非法”。 2:源程序文件结束而注释未结束。注释格式为:/* …… */ 四、保留字和特殊符号表

混凝实验报告

混凝实验报告/正交设计 一、实验目的 1、通过实验,观察混凝现象,加深对混凝理论的理解。 2、选择和确定最佳混凝工艺条件。 二、实验原理 天然水中存在大量胶体颗粒,使原水产生浑浊度。我们进行水质处理的根本任务之一,则正是为了降低或消除水的浑浊度。 水中的胶体颗粒,主要是带负电的粘土颗粒。胶体间静电斥力、胶粒的布朗运动以及胶粒表面水化作用的存在,使得它具有分散稳定性。混凝剂的加入,破坏了胶体的散稳定性,使胶粒脱稳。同时,混凝剂也起吸附架桥作用,使脱稳后的细小胶体颗粒,在一定的水力条件下,凝聚成较大的絮状体(矾花)。由于矾花易于下沉,因此也就易于将其从水中分离出去,而使水得以澄清。 由于原水水质复杂,影响因素多,故在混凝过程中,对于混凝剂品种的选用和最佳投药量的决定,必需依靠原水和混凝实验来决定。混凝实验的目的即在于利用少量原水、少量药剂。 三、实验仪器及设备 1. 1000 ml烧杯1只 2. 500 ml矿泉水瓶6只 3. 100 ml烧杯2只 4. 5 ml移液管1只 5. 400 ml烧杯2只 6. 5ml量筒1台

7. 吸耳球1个 8. 温度计(0-50℃)1只 9. 100 ml量筒1个 10. 10 ml;量筒1只 四、实验试剂 本实验用三氯化铁作混凝剂,配制浓度2g/L,800ml;以阴型聚丙烯酰胺为助凝剂,配制浓度0.05g/L,500 ml。三氯化铁用量2g,阴离子聚丙烯酰胺用量 0.0250 g 五、实验步骤 (一)配置药品 1、用台秤称取2g三氯化铁,溶解,配置1000 ml,三氯化铁配制浓度2 g/L;用电子天平称取0.05g阴离子聚丙烯酰胺,溶解,配置1000 ml,阴型聚丙烯酰胺配制浓度0.05 g/L。 2、测定原水特征。 (二)混凝剂最小投加量的确定 1、取6个500 ml瓶子,分别取400 ml原水。 2、分别向烧杯中加入氯化铁,每次加入1.0 ml,同时进行搅拌,直至出现矾花,在表1中记录投加量和矾花描述。 3、停止搅拌,静止10min。 4、根据矾花描述确定最小投加量A。 (三)混凝剂的最佳投加量的选择 1、用6个500 ml瓶子,分别取400 ml原水。 2、将混凝剂按不同投量(按4/6A~9/6A的量)分别加入到400 ml原水样中,利

湘潭市环保局分析实验室设计方案

湘潭市环保局环境监测中心分析实验室设计方案 一、公司背景介绍 湘潭市环境保护局成立于1983年,全市环保系统现共有干部职工300多人。长期以来,全市环保系统服从经济建设大局,以促进经济发展和环境保护协调发展为己任,积极贯彻环境保护基本国策和可持续发展战略,严格控制新污染源,狠抓老污染治理,加强生态环境保护,使我市环境质量不断提高和改善。―十一五‖末,地表水环境质量明显好转,重金属类污染得到有效控制,土壤环境质量状况总体一般,声环境质量处于良好状态,生态和辐射环境质量良好,空气环境质量明显改善。未来五年,湘潭环保人将深入贯彻落实科学发展观,坚持―两型‖引领、―四化‖带动,始终与时代的命题同频同振,为把湘潭建设成为生态宜居之城而不懈努力。 二、环境监测中心主要职责职能 (一) 承担从源头上预防、控制环境污染和环境破坏的责任。依照国家环保法律法规和地方性法规及相关规定,审核、审批辖区内建设项目,受市政府委托对重大经济和技术政策、发展规划以及重大经济开发计划进行环境影响评价,对涉及环境保护的地方性规章草案提出有关环境影响方面的建议。 (二) 负责全市环境污染防治工作。制定辖区内水体、大气、土壤、噪声、光、恶臭、固体废物、化学品、机动车等的污染防治管理制度并组织实施,负责污染源的限期治理工作。统筹协调全市重点流域、区域污染防治工作。负责危险废物经营许可证的审批颁发和监督管理。会同有关部门监督管理饮用水水源地环境保护工作。组织指导全市城镇和农村的环境综合整治工作。 (三) 负责全市环境监测和信息发布。组织实施环境质量监测和污染监督性监测。组织对全市环境质量状况进行调查评估、预测预警,组织建设和管理好全市在线监测网络,统一编报全市环境质量报告和统一发布全市环境质量公报及重大环境信息。

振动台试验方案设计实例

一、振动台试验方案 1试验方案 1.1工程概况 本工程塔楼结构体系为“三维巨型空间框架-钢筋混凝土核心筒”结构体系,主要由4个核心筒、钢骨混凝土(SRC)外框架、3个避难层联系桁架三部分构成,图1-2、图1-3分别是B塔结构体系构成示意图和建筑效果图。特别指出的是本工程在14、24楼层的联系桁架的腹杆以及32、48楼层的斜撑为防屈曲支撑(UBB)构件。设计指标为小震不屈服,大震屈服耗能。具体位置示意见图1-4。 本工程的自振周期约为 6.44秒,超过了《建筑抗震设计规范》(GB-50011-2001)设计反应谱长为6秒的规定。本工程存在5个一般不规则和2个特别不规则类型,5个一般不规则类型分别是扭转不规则、凹凸不规则、刚度突变、构件间断和承载力突变。2个特别不规则是高位转换和复杂连接。 1.2 模拟方案 1、模拟方案选择 动力试验用的结构模型必须根据相似律进行设计,模型动力相似律的建立以结构运动方程为基础,选择若干主要控制参数作为模拟控制的对象,依据Buckingham的π定理,经无量纲分析导出控制参数的无量纲积,据此确定各控制参数的相似比率。 结构动力试验的相似模型大致分为四种: (1)弹塑性模型理论上可以重现结构反应的时间过程,使模型和原型的应力分布一致,并可模拟结构的破坏。由于要严格考虑重力加速度对应力反应的影响,必须满足S a=S g=1(S a=模型加速度/原型加速度,S g为重力加速度相似系数,各相似系数之间的关系见表1),即模型加速度反应与原型加速度反应一致,这一要求大大限制模型材料的选择。因为在缩尺模型中,几何比(S l)很小,在Sa=Sg=1的条件下,要满足Sa=S E/S l Sρ=1,即S l=S E/Sρ,必须使模型材料的弹模

(完整word版)第4章化学动力学基础习题及全解答.doc

第四章 化学动力学基础 1. 某基元反应 A+2B k 2P ,试分别用各种物质随时间的变化率表示反应的速率方程式。 dc(A) 1 dc( B) 1 dc(P ) 解 : r dt 2 dt 2 dt 2. 对反应 A —→ P ,当反应物反应掉 3 所需时间是它反应掉 1 所需时间的 3 倍,该反应是 4 2 几级反应?请用计算式说明。 解: 设为 a 初始浓度, x 为 t 时刻的产物浓度 t 3 4 3 3 x 4 t t 1 2 1 2 对于零级反应 k 0 2 ln 1 3 t 3 4 1 4 2 t 1 2 1 a ln 1 1 t ln x 1 对于一级反应 k 1 a 2 1 1 1 t 对于二级反应 k 2 a x a 或者:先假设此反应为二级反应,则有: 1 1 3 t 3 4 1 4 3 t 1 2 1 1 1 1 2 1 1 1 1 t 1 3 C 1 kt 1/ 4C 0 kt kC 0 C 0 C 0 1 1 1 1 t 2 1 C 2 kt 1/ 2C 0 kt kC 0 C 0 C 0 t 1 3t 2 答:该反应是二级反应。 3. 试证明一级反应的转化率分别达 50%、75%和 87.5%,所需时间分别是 t 1 / 2 、2 t 1 / 2 、3 t 1/ 2 。 证:设为 y 转化率 t 1 ln 1 ln 2 t 1 2 对于一级反应 k 2 1 y k 1 t 1 ln 1 ln 2 t 当 y=50%时 k 2 1 50% k 1 1 2 t 1 ln 1 1 2ln 2 2t 1 2 当 y=75%时 k 2 75% k 1

食品试验设计与分析

食品试验设计与分析 一、名词解释 科技论文:是通过运用概念、判断、推理、证明或反驳等逻辑思维手段来分析、表达自然科学理论和技术开发研究成果的文字材料。 可行性研究报告:随着近代自然科学技术、科技管理和商品经济的高度发展,每开展一个新 的研究项目或建设项目,投资者都要对投资效果进行预测,要多方周密地调查研究,寻找能 够获得最佳投资效果的可行方案,以便为最终决策提供科学依据。这种调查研究叫可行性研 究。 科技合同:科技合同(协议)是在科研、试制、成果推广、技术转让、技术咨询服务等科 技活动中,采用经济合同这一法律形式签订的契约,合同各方必须具有法人资格,才能签订 科技合同。 样本:是总体中所抽取的一部分个体。 总体:是指考察的对象的全体。 试验指标:在试验设计中,根据试验的目的而选定的用来衡量或考核试验效果的质量特性试验因素:凡对试验指标可能产生影响的原因或要素 正交试验设计:正交实验设计也称正交设计,是用来科学地设计多因素试验的一种方法。 二、填空。 1.根据研究方法不同,可把科技论文分为理论型、实验型、描述型。 2.科技应用文包括可行性研究报告、科技合同、和科技论文。 3.根据科技论文写作目的和作用的不同分为学术性论文、技术性论文、学位论文后者又可 分为学士论文、硕士论文、博士论文。 4.试验设计的三原则重复原则、随机化原则、局部控制。 5.试验误差可分为三类,即随机误差、系统误差和疏忽误差。 6.统计推断包括假设检验和参数估计。 7.显著性检验方法,常用的有t检验、F检验、X?检验、□检验等。 三、简答。 1.简述科技论文作用。 答:1.科技论文是科研成果的总结和记录,是进行学术交流的重要手段,也是进行科技成果 鉴定和评审科技成果的重要依据。 2?科技论文是政府或企业进行重大技术决策的依据。 3.科技论文是科研工作的一个组成部分,是考核科技人员工作业绩的重要标准之一,也是科 技人员申报、晋升技术职称的重要依据之一。 4.4.科技论文的数量越多,质量越高,标志着某个部门、单位、企业的研究水平越高,也是其科技工作成效和科学研究实力的具体体现。 2.试比较学术论文和学位论文在写作格式和风格方面的异同。 答:①学术论文的写作格式结构形式具有一定的规律,形成了一套独特的结构程序,一般包括8个部分前置部分(题名、论文作者、关键词、摘要)主题部分(引言、正文、结论、参考文献);②风格客观朴素在学术论文里,不需要用一些华丽的或是带情感的词句;单独性和连贯性,每一节和每一段也都各为一个单元,一节的开始,应该有一个主题段,一段的开始应该有一个主题句。③规范学位论文格式包括三大部分前置部分,包括封面、版权申明页、中文摘要和关键词、英文摘要和关键词、目录等;主体部分,包括引言、正文、 结论、参考文献等;结尾部分,包括致谢、学位论文原创性声明和使用授权说明以及相关检索等。 3.科技论文摘要应包括哪些内容。

实验室设计总体规划初步方案

实验室设计总体规划初步方案

年产3万吨P2O5中低品位磷矿项目实验室设计 总体规划初步方案 一、实验室建设总体规划与基本建设 四川玖长科技有限公司主要从中低品味磷矿中生产磷酸,要使整个生产环节得到控制,就要对各个生产环节进行检测,故建设正规的分析实验室对整个生产过程意义很重大。在生产过程如果原料变换或者对生产环节要进行优化,都要先在实验室中进行小型或者中型规模的实验,得到较好效果才能投入正常生产。故本实验室初步设计包括分析实验室和小型实验实验室两个部分。 分析实验室(以下简称实验室)是分析技术人员对生产过程进行分析测试工作的场所,是本厂矿不可缺少的组成部分。小型实验室是对生产过程进行验证、改进和提升的场所,同样是本厂不可缺少的组成部分。实验室的建设,不是单纯选购合理的仪器设备,还要综合考虑实验室的总体规划,合理布局和平面设计,以及供电、供水、供气、通风、空气净化、安全措施、环境保护等基础设施和基本条件,因此实验室的建设是一项复杂的系统工程。 1.实验室的建设规划 实验室建设规划的主要内容如下。

(1)建设单位:四川玖长科技有限公司。 (2)设计单位:长沙矿冶研究院有限责任公司冶金化工工程公司 (3)建设项目:四川玖长科技有限公司实验楼。 (4)建设性质:本实验楼为新建实验楼。 (5)建设地点及用地:四川玖长科技有限公司 (6)建设的目的、依据及规模:本实验楼主要包括分析实验室和小型实验实验室两个部分,对本厂正常生产磷酸有指导和检测的作用。 (7)人员编制:暂时未定 (8)建筑物要求及内容:根据实验室用途、实验仪器对振动、温度、湿度等条件的要求,本实验楼至少两楼,一楼为小型实验室,包括混料实验室、制球实验室、干燥实验室、回转窑还原实验室、回收气体实验室、储物室(储物室分别为储存工具的储物室和储存物料的储存室)和实验人员的办公休息室;二楼为分析实验室,包括湿法滴定分析室(包括天平和纯水制备)、火法分析室、灰熔点和碳氢测量分析室、原子光谱分析室、球团强度和水分分析室、分光光度分析室和分析人员办公休息室。建筑标准与建设工厂厂房的标准一致。 (9)抗震、防空措施:抗震标准与建设厂房标准一致。 (10)公害处理:本实验楼产生的试验废水先经过沉淀处理和酸碱综合处理后,流到废水处理车间统一处理,生活废水经管

乐高机器人实验室建设方案设计

乐高教育探究实验室配置方案 及课程介绍 一、乐高教育的理念 多年来,中国的教育界一直以加强学生素质教育为核心,探索和实践着教育改革的方向和途径。全国基础教育工作会议的召开,对全面推进素质教育提出了十分明确的要求,课程教材改革在推进素质教育、培养21世纪技能的重要作用已经成为全国上下的共识。

我们引入了以乐高教育为主的教育解决方案,它是长期以来与世界各国教育界密切合作,不断探究和开发出最先进的教育方案,并在25年的教学实践中获得成功应用,受到世界各国教育界的广泛接受和推崇。乐高教育在世界各地教育界的应用中已逐步形成了自身的、符合这些教育理念的可持续发展的优秀平台。 我们提供的教育解决方案确保学生获得快乐和有效的学习。教师在教学过程中将“指导”和“建构”的理念相互结合,这将帮助教师在学生以团队为单位来共同解决问题的课堂上,扮演顾问型的指导者,而不是灌输者。 二、乐高教育的应用 随着素质教育的推进和新课程新教材的改革,在各个学科的教学中对学生动手操作、动手实验的要求越来越多,因此除了常见的物理实验室、化学实验室、生物实验室,各个学校还建立了很多新课程的实验室,例如科学(自然)实验室、信息技术实验室、劳技实验室、通用技术实验室、探究实验室。 这些新课程的实验室由于建设时间较短,并没有形成统一的标准,实验室的设备配置区别很大。乐高教育平台可以很好的在这些课程上使用,而且如果在这些实验室里都有乐高设备,那么教师在教学的时候,学生在学习的时候就会非常的方便。 乐高探究实验室所涉及课程包含有:机械基础,动力机械,机械工程,机器人等。 三、机器人教育的目的 学生借助乐高机器人的平台,在老师的知道下,开展丰富多彩的机器人活动,通过活动提高学生对科技活动及知识的兴趣,培养学生动手能力、创新能力; 提高学生发现问题、分析问题、解决问题的能力;充分体会“做中学,玩中学”的无穷乐趣。建立机器人活动室,不仅满足课堂教学的需求,还能开展第二课堂活动,建立科技兴趣小组,丰富学生的课外活动,还可以参加到全国青少年机器人竞赛和全国电脑制作大赛中去。满足学生的同事也能给科技老师不断发现新的问题提供自身的发展的机会,参加到全国的比赛及交流中提高教师自身的素质。 (1)、通过创新实验室学习,对中小学生进行计算机编程、工程设计、动手制作与技术构建等知识的教学,培养他们动脑动手和独立思考、解决问题的技能,不断发展青少年的观察力、想象力和创新能力。

《实验设计方法》教案

教师教案( 2005 —2006 学年第 1 学期 ) 课程名称:试验设计方法 授课学时:32 授课班级:23034010-11 任课教师:何为 教师职称:教授 教师所在学院:微电子与固体电子学院电子科技大学

绪论 1学时 教学内容及要求 试验设计方法在科学研究中的作用 1. 科学研究的基本过程 2. 科学研究的基本方法 3. 试验设计方法的主要内容 ●试验设计方法在科学技术发展中的地位和作用。 ●试验设计方法的起源。 ●我国试验设计方法的发展和现状。 ●使用试验设计方法的目的、内容和应用。 ●试验设计方法是当代科技和工程技术人员必须掌握的技术方法。 ●教学内容:正交试验法、优选法基础、回归分析法、均匀设计法、单 纯形优化法 参考资料 ?项可风.试验设计与数据分析.上海科技出版社.1991年 ?陈宝林.最优化理论及算法.清华大学出版社.1990年 ?邓正龙.化工中的优化方法.化学工业出版社.1991年 ?陈魁.试验设计与分析.清华大学出版社.1996年 ? (日)田口玄一.实验设计法.魏锡,王世芳译.机械工业出版社.1987 ? Phadke, M.S. "Quality Engineering Using Robust Design" Prentice Hall, Englewood Cliff, NJ. November 1989 ? Taguchi, Genichi. "System of Experimental Design" Edited by Don Clausing. New York: UNIPUB/Krass International Publications, Volume 1 & 2, 1987 ? Montgomery, D. C.. Design and analysis of experiment. New York: Wiley.1997 ?杨德.试验设计与分析.中国农业出版社.2002 第一章正交试验基本方法 5学时 授课时数: 一、教学内容及要求 ●多因素试验问题、正交试验、正交表符号的意义。 ●因素、水平、自由度、试验指标、交互作用。均衡分散性、整齐可比

相关文档
最新文档