电阻炉设计

电阻炉设计
电阻炉设计

大家好,我已经在本论坛注册4年,但是发帖很少,在这里也学到了很多东西。作为答谢各位刀友,今天我要给各位刀友们提供一些实质性的具有操作意义东西。

电阻炉,各位刀友们一定都熟悉吧,它相比炭火炉、气炉等有着温度控制精确、清洁、节省能源等天生的优点。网上乃至本论坛有很多人都讲了怎么做电阻炉,不过我觉的他们讲的不够详细,也没有实际操作的可行性。

由于时间有限我今天就讲一讲电阻炉发热丝的设计与计算。

有的人要说了,不就电炉丝嘛,有什么好设计计算的。这里我要说那你就是外行了。首先我们的电阻炉是用来热处理的,要处理合金工具钢、不锈钢等材料温度必须要到1100度左右。这是普通电炉丝不能承受的,还有,你如何确定功率、如何让电阻丝长寿命的工作,如何在有限的炉膛里面布置下电阻丝这些都是问题。

大多数电阻丝都是预制好的(标定功率),但预制电阻丝并不总合适你的炉子尺寸。

我接着分为如下几个部分来讲解电阻丝的设计

1。电炉内部尺寸的确定和电阻丝功率的确定

2.电阻丝线径的确定

3.电阻丝表面负载

4.线圈直径和拉伸参数

5.综合考虑

免责声明:需要有基本电学知识。如果你没有基本电学知识,请不要尝试或者向精通者学习后再尝试。电是危险的,如果你因此受伤或者死亡本人概不负责。

你的首要考虑应该是:

1.1功率:

有什么样的电压可用(220V,380V等)和你的插座、电线、电表、空开允许多少安培的电流(别告诉我你不知道,铭牌上有的)。

例如:你有220V和允许最大电流16A。

U(伏)I(安培)= P(瓦特)

220伏x 16安培= 3520瓦

所以我设计的电炉最大功率必须小于3520w。

最好是有10%的安全余量3168w,避免空气开关跳闸。

1.2尺寸:

这取决于几个因素,设计最高温度、升温速度。

如果你是个热力学工程师,可以计算出尺寸和功耗的要求,准确的热损失率,对流,辐射和传导,绝热材料吸热量、热损失率等等。

我们不需要这样做,我查阅了国外商业电窑的一些设计参数。

奥尔森窑(给爱好烧陶瓷的人用的)设计参数是这样的:0.92瓦/平方厘米2- 1.3w /厘米2的功率密度。我也计算过一些美国专业给刀匠设计的热处理炉,大多数功率密度是0.6瓦特/厘米2- 0.7瓦/厘米2,我估计是他们的保温材料保温性能比较好,结合我们国家的实际,我觉得保险起见还是参照奥尔森窑的设计参数。那么我就取一个方便计算的值1瓦/平方厘米2

举个例子:

我炉建成后将有一个12,4cm×12cm×50cm内部尺寸。

内部表面积= 2737.6cm2等于2737瓦的总表面面积。

当电阻丝的寿命随着时间的推移,其直径是由于氧化减少,炉子的功率下降。为了弥补这个和加快加热速度,我倾向于略微增加功率。所以我会提高到3000W,并且这也在安全功率范围内小雨3168w。

2.电阻丝的选择和电阻丝直径的确定

我从万能的TB那里查到了一些电阻丝的资料

牌号

1Cr13A14

1Cr21A14

0Cr21A16

0Cr23A15

0Cr25A15

0Cr21A16Nb

0Cr27A17Mo2

性能

主要化学成分%

Cr

12.0-15.0

17.0-21.0

19.0-22.0

20.0-23.5

23.0-26.0

21.0~23.0

26.5~27.8

AI

4.0~6.0

2.0~4.0

5.0~7.0

4.2~

5.3

4.5~6.5

5.0~7.0

6.0~

7.0

Fe

余量

余量

余量

余量

余量

余量

余量

Re

适量

适量

适量

适量

适量

适量

适量

加入量Nb:0.5

加入量Nb:0.5

元件最高使用温度℃950

1100

1250

1250

1250

1350

1400

熔点℃

1450

1500

1500

1500

1500

1510

1520

密度g/cm3

7.40

7.35

7.16

7.25

7.10

7.10

7.10

电阻率μΩ·m,20℃1.25±0.08

1.23±0.06

1.42±0.07

1.35±0.06

1.42±0.07

1.45±0.07

1.53±0.07

抗拉强度Mpa

588~735

637~784

637~784

637~784

637~784

637~784

686~784

延伸率%

≥16

≥12

≥12

≥12

≥12

≥12

≥10

反复弯曲次数

≥5

≥5

≥5

≥5

≥5

≥5

≥5

快速寿命h/℃

——

≥80/1250

≥80/1300

≥80/1300

≥80/1300

≥80/1350

≥80/1350

比热J/g.℃

0.490

0.490

0.520

0.460

0.494

0.494

0.494

导热系数KJ/m.h℃52.7

46.9

63.2

60.2

46.1

46.1

45.2

线胀系数

a×10-6/℃(20~1000℃15.4

13.5

14.7

15.0

16.0

16.0

16.0

硬度HB

200~260

200~260

200~260

200~260

200~260

200~260

200~260

显微组织

铁素体

铁素体

铁素体

铁素体

铁素体

铁素体

铁素体

磁性

磁性

磁性

磁性

磁性

磁性

磁性

磁性

一般电阻丝的温度都要比炉子温度高170度以上,因为我们的电阻炉设计额定最高温度为1100度,所以电阻丝必须耐温1270度以上。

从表里面看只有0Cr21A16Nb 0Cr27A17Mo2两种电阻丝能够满足需求。但是我查阅相关资料发现工业淬火炉一般都是用的0Cr27A17Mo2这种电阻材料。我考虑可能是因为0Cr21A16Nb的最高耐温温度为1350度,之比炉子最高温度时的露丝温度高80度,寿命不长。所以我建议选用0Cr27A17Mo2这种材料。

2.2电阻丝的长度

现在你已经算好了你的电炉需要多少瓦,下一步计算电阻丝长度。

我们现在所知道的是:

- 3000W的功率需要

- 220伏伏供电

我们想知道的是:

多少欧姆的电阻

如果你还记得你的初中生活也许对一些基本的电公式将浮现在你的脑海中,如果想不起来了,照片可以提供帮助:

因为U2/ P = R

所以2202 / 3000 =16.1333欧姆

举个例子:

我们有一个直径1mm的0Cr27A17Mo2。这是不正确的直径,这将有一个很短的寿命。所以,我将在下一节中解释。这里我们先计算完。

查表得到了1mm 0Cr27A17Mo的电阻丝的电阻是1.948欧姆每米了。

所以现在只计算你需要多少米达到到16.1333欧姆

16.1333 / 1.948 =8.282米

得到一个有3000瓦功率的电阻丝,你需要8.282米直径为1mm的0Cr27A17Mo2电阻丝。这很容易不是吗?

3。表面负荷

注意了,这一部分非常重要,也是很多DIY电阻炉容易犯错误的地方

表面负荷的意思就是电阻丝总功率与电阻丝的表面积的比值。单位是W/cm2(瓦/平方厘米) 表面负荷是一个影响电阻丝的寿命的非常重要的因素。

如果你把过多的功率加载在太细的电阻丝上,电阻丝会过热、氧化快,如果严重过热会导致

电阻丝融化、电阻丝破坏,炉就坏了。

为了避免这个,我们必须保持在一个安全的表面负荷。表面负荷里的面积是整个电阻丝的表面面积。

好了,这个表面负荷确实挺难找到数据的,哈哈、让我给找到了。康泰尔炉设计手册第7页(http://heatingelements.hitemppro ... Metric-version-.pdf)告诉我们,在温度为1100°C在槽的螺旋电阻丝,其表面负荷不应超过3瓦/厘米2。但是注意在该页(第7页)最下方说,如果你使用ON/off开关来控制温度那么电阻的表面负荷还要降低20%。我们一般使用的PID 控制固态继电器来实现电炉的温控,这种方式就是ON/off开关方式。所以我们的电阻丝表面负荷最大只能是3*(1-20%)=2.4w/cm2

还记得前面我说过1mm的电阻丝太细了不能使用吗?现在我们来算算为什么不能用。

前面我们计算了1mm的电阻丝要达到3000w的功率需要长度为8.282米,其表面积就是0.1*3.1415*828.2=260.179cm2(别告诉我你看不懂这个表面积计算公式,就是一个圆柱体侧面积=截面直径*π*高度)

那么其表面负荷就是3000/260.179=11.53瓦/厘米2。看到没有用1mm的电阻丝其表面负荷超出了最高允许值的4倍多。如果你不考虑表面负荷安装上电阻丝加热运气好的话,炉子能正常加热,但是电阻丝会很快烧坏。最有可能的情况是一加电电阻丝很快就烧毁。

在这里可能有的DIYer又会说了,那还不简单,直接用粗的电阻丝,表面负载肯定够了。我要说的是你没有考虑到电阻丝越粗那么要使其功率为3000瓦,那么它的长度也就越长。那么你炉子里面可能就没有足够的空间来布置电阻丝。

4.绕组直径,拉伸比例

既然是自己设计选型电阻丝那么就要涉及到缠绕电阻丝,除非花高价让厂家定做。这也是一个非常重要的因素,但没有表面负荷的的重要性大。

康泰尔手册(http://heatingelements.hitemppro ... Metric-version-.pdf)再次排上用场(祖国让我们学英语干什么来着?让我们学习国外先进技术的。纯属娱乐,勿怪)见7页和10。

螺旋电阻原件(绕好的电阻丝)的直径至少要是电阻丝直径5-7倍。再大也没问题,只要炉子有位置安装。

另外的元素是伸展后电阻丝之间的最小距离。单绕组之间的距离应该是2-3倍的电阻丝直径。

这可以防止元件过热、绕组短路等。也可以提高电阻丝的使用寿命。电阻丝如果短路不仅会降低其自身寿命,关键电阻丝的功率会增加,没有及时发现可能会烧坏动力线路。

箱式电阻炉设计

辽宁工业大学 热工过程与设备课程设计(说明书) 题目:热处理箱式电阻炉的设计 (生产率110kg/h,功率30kw,温度≤600℃) 院(系):材料科学与工程学院 专业班级:材料083 学号: 学生姓名: 指导教师: 起止时间:2011-12-26~2011-1-8

课程设计任务及评语

目录 一、炉型的选择.................................................................................................. - 4 - 二、确定炉体结构和尺寸.................................................................................. - 4 - 三、砌体平均表面积计算.................................................................................. - 5 - 四、计算炉子功率.............................................................................................. - 6 - 五、炉子热效率计算.......................................................................................... - 8 - 六、炉子空载功率计算...................................................................................... - 8 - 七、空炉升温时间计算...................................................................................... - 8 - 八、功率的分配与接线...................................................................................... - 9 - 九、电热元件材料选择及计算.......................................................................... - 9 - 十、电热体元件图............................................................................................ - 10 - 十一、电阻炉装配图........................................................................................ - 10 - 十二、电阻炉技术指标(标牌).................................................................... - 10 - 参考文献............................................................................................................. - 11 -

(完整word版)箱式电阻炉的设计

长春理工大学 热工课程设计说明书题目箱式电阻炉的设计 学院材料科学与工程学院 专业无机非金属材料(建筑材料)班级0706121 姓名向仕君学号18

2009 年7 月5 日 设计任务书 一、题目:箱式电阻炉的设计 二、原始数据: 电路形势:箱式电阻炉 炉膛尺寸:120 ?mm 170 260? 使用温度:1000℃ 表面温度:60℃ 电源电压:220V 三、设计要求: 1、设计认真,积极思考,独立完成,有所创新。 2、设计说明书:一份 思路清晰,论述充分;设计参数选择合理,设计计算步骤完整,结果准确;著名参考文献。 3、设计图纸:2#图纸1—3张 图画布置合理,比例适当,图画清洁;绘图线

条类型正确,位置准确;尺寸标注正确、齐全。 摘要 本说明书重点阐述箱式电阻炉的具体设计过程。设计过程包括高温炉的简介,炉膛尺寸的确定,材料选择,电阻炉尺寸和结构设计,功率计算,供电电路的选择,电热提的尺寸确定及安装,以及热电偶使用,涉及到热量计算,功率计算,电热元件规格计算。 本设计说明书可供实验电阻和工业电阻炉的维修和设计提供理论参考导和指导。

引言 陶瓷工业在社会主义建设,国防科学和人民生活都占重要的地位,它不仅与人类的日常生活存在密切的关系,而且随着科学技术的发展,已经超越了日用,建筑及一般的工业用途的范围,而应用与电子,原子能等尖端材料中。 生产陶瓷中一个重要的过程就是烧结,烧成时在热工设备中进行的,这里的热工设备指的是窑炉及其附属设备。 窑炉从生产方式上分为间歇式和连续式,按电能转化为热能形式分为:电阻炉,感应炉,电弧炉,等离子炉等,在使用热源上又分为火焰式和电热式。目前,电子陶瓷,高温陶瓷及其他特种陶瓷的生产和科研处于火热期。 在实验中,使用较多的是间歇式的电阻炉。

箱式电阻炉(材料热处理课程设计说明书)

化学与材料工程学院 材料热处理课程设计说明书 学生姓名: 专业:金属材料工程 学号: 班级:材料金属 指导老师:刘

目录 一、设计任务书 (3) 二、工艺设计 (3) 1.型的选择 (3) 2.炉膛尺寸的确定 (3) 3.炉子砌砖设计 (4) 4.中温箱式电阻炉功率的计算 (4) 5.电热元件 (5) 6.电热元件的设计计算 (5) 三、工艺流程图和设备装置图 (7) 四、进度安排 (9) 五、总结与体会 (9)

一、设计任务书 为某厂设计一台热处理电阻炉,其技术条件如下: 1)用途:中碳钢、低合金钢毛坯或零件的淬火、正火及退火处理,处理对象为 中小型零件,无定型产品,处理批量为多种,小批量。 2)生产率:160 kg/h 3)工作温度:最高使用温度950℃ 4)生产特点:周期式成批装料,长时间连续生产。 二、工艺设计 1.炉型的选择 根据设计的具体要求和生产特点,进行综合技术经济分析。决定选用箱式电阻炉,不通保护气体,炉子最高温度为950℃。属中温箱式电阻炉。 2.炉膛尺寸的确定 (1)查表,箱式电阻炉单位炉底面积生产率P 0 ,取P =100[kg/(m2·h)] (2)炉底面积采用加热能力指标法计算,F 效= P P0 =125 100 =1.25 m2 炉底有效面积炉底总面积=F 有效 F 总 = 0.75 - 0.85,取上限,0.85,炉底总面积: 1.25 F 总 = 0.85 F 总 = 1.5625 m2 炉底板宽度 B =1 2F 总 =1 2 ?1.5625 =0.88 m 炉底板长度 L =2F 总 =2?1.5625 =1.77 m (3).炉膛高度的确定炉膛高度H与宽度B之比H B =0.52– 0.9,取0.7 高度H = 0.628 m (4).炉膛有效尺寸(可装工件) L 效×B 效 ×H 效 =1.77m × 0.88m × 0.628m (5).炉膛尺寸 宽 B =B 效 +2×(0.1-0.15)取0.1 B=0.88+2×0.1=1.08 m

箱式电阻炉课程设计

一、设计任务书 题目:设计一台中温箱式热处理电阻炉; 炉子用途:中小型零件的热处理; 材料及热处理工艺:中碳钢毛坯或零件的淬火、正火及调制处理; 生产率:160kg/h; 生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产; 要求:完整的设计计算书一份和炉子总图一张。 二、炉型的选择 根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度950℃,不通保护气氛。 三、确定炉体结构及尺寸 1.炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。已知生产率p为160kg/h,按照教材表5-1选择箱式炉用于正火和淬火时的单位面积生产率p0为 120kg/(m2﹒h),故可求得炉底有效面积: F1=P = 160 =1.33 m2 由于有效面积与炉底总面积存在关系式F1F=0.75~0.85,取系数上限,得炉底实际面积: F= F1 0.85 = 1.33 0.85 =1.57 m2 2.炉底长度和宽度的确定 由于热处理箱式电阻炉设计时应考虑出料方便,取L B=2,因此,可求得: L===1.772 m B=L2=1.7722=0.886 m 根据标准砖尺寸,为便于砌砖,取L=1.741 m,B=0.869 m,如总图所示。 3.炉膛高度的确定 按照统计资料,炉膛高度H与宽度B之比H B通常在0.5~0.9之间,根据炉子工作条件,取H B=0.64Om。 因此,确定炉膛尺寸如下: 长L=230+2×7+230×1 2 +2=1741 m 宽B=120+2×4+65+2+40+2×2+113+2×2=869 mm 高H=65+2×9+37=640 mm 为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为: L 效 =1500 mm B 效 =700 mm H 效 =500 mm 4.炉衬材料及厚度的确定 由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN?0.8轻质粘土砖,+80 mm密度为250 kg m3的普通硅酸铝纤维毡,+113mm B级硅藻土砖。 炉顶采用113 mmQN?1.0轻质粘土砖,+80 mm密度为250 kg m3的普通硅酸铝纤维毡,

电阻炉设计方案

电阻炉设计方案 1.1课题背景和意义 从20世纪20年代开始,电阻炉就在工业上得到使用。随着科学技术的发展,电阻炉被广泛的应用在冶金、机械、石油化工、电力等工业生产中,在很多生产过程中,温度的测量和控制与生产安全、生产效率、产品质量、能源节约等重大技术经济指标紧紧相连。因此各个领域对电阻炉温度控制的精度、稳定性、可靠性等要求也越来越高,温度测控制技术也成为现代科技发展中的一项重要技术。 温度控制技术发展经历了三个阶段:l、定值开关控制;2、PID控制;3、智能控制。定值开关控制方法的原理是若所测温度比设定温度低,则开启控制开关加热,反之则关断控制开关。其控温方法简单,没有考虑温度变化的滞后性、惯性,导致系统控制精度低、超调量大、震荡明显。PID控制温度的效果主要取决于P、I、D三个参数。PID控制对于确定的温度系统,控制效果良好,但对于控制大滞后、大惯性、时变性温度系统,控制品质难以保证。电阻炉是由电阻丝加热升温,靠自然冷却降温,当电阻炉温度超调时无法靠控制手段降温,因而电阻炉温度控制具有非线性、滞后性、惯性、不确定性等特点。目前国成熟的电阻炉温度测控系统以PID控制器为主,PID控制对于小型实验用电阻炉控制效果良好,但对于大型工业电阻炉就难以保证电阻炉控制系统的精度、稳定性等。智能控制是一类无需人的干预就能独立驱动智能机械而实现其目标的自动控制,随着科学技术和控制理论的发展,国外的温度测控系统发展迅速,实现对温度的智能控制。应用广泛的温度智能控制的方法有模糊控制、神经网络控制、专家系统等,具有自适应、自学习、自协调等能力,保证了控制系统的控制精度、抗干扰能力、稳定性等性能。比较而言,国外温度控制系统的性能要明显优于国,其根本原因就是控制算法的不同。

950℃ 115Kgh箱式电阻炉设计

北华航天工业学院《热处理设备课程设计》 课程设计报告 报告题目:950℃115kg/h的箱式电阻炉设计 作者所在系部:材料工程系 作者所在专业:金属材料工程 作者所在班级:B10821 作者姓名: 作者学号:20104082204 指导教师姓名:陈志勇、范涛 完成时间:2013年月日

《热处理设备》课程设计任务书

内容摘要 本次课程设计的设计对象是RX3系列950℃ 115Kg/h箱式电阻炉,以“优质、高效、低耗、清洁、灵活”为设计指导方针。首先,根据箱式炉的生产率为80Kg确定炉子的炉膛尺寸为1277×698×537。进而对炉体砌体结构、总体尺寸、各部件结构及尺寸的设计。根据经验公式及热平衡对炉子的功率进行设计,最终功率定为30KW。最后通过图表和理论计算将电热元件分布于炉侧壁和炉底。完成了课程设计报告书的编写、电阻炉的总体装配图、电热元件图、炉门结构图以及砌体结构图的绘制。 关键词:热处理箱式电阻炉结构设计功率计算

目录 一、前言 (4) 1.1本设计的目的 (4) 1.2本设计的技术要求 (4) 二设计说明 (5) 2.1确定炉体结构和尺寸 (5) 2.1.1 炉底面积的确定 (5) 2.1.2 确定炉膛尺寸 (5) 2.1.3 炉衬材料及厚度的确定 (5) 2.2砌体平均表面积计算 (6) 2.2.1 炉顶平均面积 (6) 2.2.2 炉墙平均面积 (6) 2.2.3 炉底平均面积 (6) 2.3根据热平衡计算炉子功率 (7) 2.3.1 加热工件所需的热量Q件 (7) 2.3.2 通过炉衬的散热损失Q散 (7) 2.3.3 开启炉门的辐射热损失 (9) 2.3.4 开启炉门溢气热损失 (9) 2.3.5 其它热损失 (10) 2.3.6 热量总支出 (10) 2.3.7 炉子安装功率 (10) 2.4炉子热效率计算 (10) 2.4.1 正常工作时的效率 (10) 2.4.2 在保温阶段,关闭时的效率 (10) 2.5炉子空载功率计算 (10) 2.6空炉升温时间计算 (10) 2.6.1 炉墙及炉顶蓄热 (11) 2.6.2 炉底蓄热计算 (12) 2.6.3 炉底板蓄热 (12) 2.7功率的分配与接线 (13) 2.8电热元件材料选择及计算 (13) 2.8.1 图表法 (13) 2.8.2 理论计算法 (13) 2.9炉子技术指标(标牌) (15)

SX2系列高温箱式电阻炉使用说明书 2

S X2系列 箱式电阻炉 操 作 手 册

前言 感谢贵公司选择了本公司的产品,您成为我们的客户是我们莫大的荣幸。本公司不仅给贵公司提供质量优良的产品,而且将提供可靠的售后服务。为了您能更熟练地使用本试验箱,我们随机配备了说明书. 为确保使用人员之人身安全及仪器的完好性,在使用本仪器前请充分阅览此操作手册,确实留意其使用上的注意事项。本操作手册详细介绍此仪器之设计原理、依据标准、构造、操作规范、校正、保养、可能故障的情形及排除方法、电气图等内容。在本操作手册中如有提及之各种"试验规定"、"标准"时均只作参考用,如贵司觉得有异议请自行检阅相关标准或资料。 ★特别提示: 您所购买试验机随机配备的说明书以该试验机实际配备为准。在编写本手册时,我们难免有错误和疏漏之处,请多加包涵并热情欢迎您提出宝贵意见或建议。 本手册的内容如有变动,恕不另行通知。 本手册版权为重庆重标实验仪器有限公司所有;本手册的任何部分未经本公司书面许可,不得以任何方式影印、复印或翻译成其它语言。 ★特别声明:根据客户具体要求不同,具体配置见装箱单。 本说明书不能作为向本公司提出任何要求的依据。 本说明书的解释权在本公司。 重庆重标实验仪器有限公司

一、概述 本系列1000℃中温箱式电阻炉为周期作业式电炉。以镍铬铝电阻丝为加热元件,炉膛额定温度为1000℃。供实验室、工矿企业、科研等单位作合金钢的热处理及金属烧结、熔解、分析等高温加热之用。 本系列电阻炉需与温度控制器及铂铑-铂热电偶配套使用,由此进行电炉温度的测量、指示及自动控制。 三、结构简介 本系列电阻炉炉壳用薄钢板经折边焊接制成。炉膛由一高铝耐火材料制成的箱形整体炉衬构成。加热元件Ocr25A15铁铬铝合金丝绕成螺旋形后穿于炉衬上、下、左、右的丝槽中。丝槽与炉膛连通,使加热元件直接向炉膛辐射热量。这种敞开炉衬能有效地加快炉膛升温速度,提高温度控制精度。电炉的炉衬与炉壳之间砌筑是用硅酸铝纤维毡和硅藻、土砖等作保温层。 电炉门通过多级铰链的长臂固定在电炉面板上。炉门转动灵活。关闭时,压下或一推手把,扣住门钩,炉门就能紧贴于炉口上。开启时,只需往上或往里稍提手把,脱钩后,将炉

热处理箱式电阻炉设计

、 辽宁x x 大学 热工过程与设备课程设计# 题目:热处理箱式电阻炉的设计 (生产率150kg/h,功率39kw,工作温度≤600℃) 院(系):) X X 专业班级:X X 学号:X X 学生姓名:X X 指导教师:· X X 起止时间:X X

课程设计(论文)任务及评语 &

目录 一、炉型的选择 (2) 二、确定炉体结构和尺寸 (2) 三、砌体平均表面积设计 (4) 四、计算炉子功率 (5) 五、炉子热效率计算 (7) 六、炉子空载功率计算 (7) 七、空炉升温时间计算 (7) 八、功率分配与接线 (9) 九、电热元件材料选择与计算 (9) 十、电热体元件图 (11) 十一、电阻炉装配图 (11) 十二、炉子技术指标 (11) 参考文献 (12)

设计任务: 为某厂设计一台热处理电阻炉,其技术条件为: (1)用途:中碳钢、低合金钢毛坯或零件的退火,处理对象为中小型零件,无定型产品,处理批量为多品种,小批量; (2)生产率:150kg/ h; (3)工作温度:最高使用温度≤600℃; (4)生产特点:周期式成批装料,长时间连续生产。 一、炉型的选择 根据工件的特点与设计任务的要求及产量大小选择合适的炉型。由于小批量生产,品种多和工艺稳定的要求拟选用箱式热处理电阻炉,不通保护气氛。 二、确定炉体结构和尺寸 1.炉底面积的确定 炉底面积的计算方法有两种。一种是根据一次装料量计算,另一种是根据炉底强度指标计算[1]。因工件的加热周期和装炉量不明确,故不能用炉子一次装料量确定炉底面积,只能用炉底强度指标法。已知生产率为150kg/h,按表5—1[1]选择箱式炉用于正火和淬火 为120kg/(m2·h),故可求得炉底有效面积 时的单位面积生产率p =150/120=1.25m2 F=p/p =~,取系数上限,得到炉底实际面积:由于有效面积与炉底总面积存在关系式F/F 1 F=F/= =1.47m2 2.炉底长度和宽度的确定 对于热处理箱式电阻炉,设计时考虑装出料的方便,根据长度与宽度之比,取L/B=2:1,因此,可求得炉底宽度 F=2.059m L=5.0/ B=L/2=/2=1.030m 为方便砌砖L=2205mm B=1048mm 3.炉膛高度的确定 根据统计的资料,炉膛高度(H)对炉底宽度(B)之比H/B通常在0.52~0.9之间,大多数在左右,根据炉子工作条件,取H/B=左右,选定炉膛高度H=707mm。因此,确定炉膛尺寸如下 长 L=(230+2)×9+(230/2+2)=2205mm

箱式电阻炉课程设计

目录 一设计任务 (2) 二炉型的选择 (2) 三炉膛尺寸的确定 (2) 四炉体结构设计与材料选择 (4) 五电阻炉功率的计算 (8) 六电热元件的设计 (14) 七参考资料 (20)

试验设计及计算数据及结果一、设计任务 设计要求:1、低合金钢调质用炉; 2、最大生产率200kg/h; 3、画出总装图; 4、画出炉衬图; 5、画出炉壳图; 6、画出电热元件接线图; 7、写出设计说明书。 二、炉型的选择 热处理的工件材料:低合金钢; 热处理工艺:调质处理。 对于碳钢和低合金钢奥氏体化最高温度为【912+(30~50)】℃,回火的最高温度为650℃,故选择中温炉即可,同时工件尺寸和形状没有特殊规定也不是长轴类,则选择箱式炉,并且无需大批量生产、品种多、工艺用途多,所以选择周期式作业。 综上所述,决定选择周期式中温箱式电阻炉,不通保护气氛,炉子最高使用温度为950℃。 三、炉膛尺寸的确定 1、炉膛有效尺寸 由于无典型工件,无法按排料法确定,故采用炉底强度指标法计算,即根据炉子的生产率及生产能力来计算。周期式中温箱式电阻炉

(1)炉底有效面积: 查参考文献【1】表2-1得,G h =100kg/(m 2·h ) F 效= h g G 件= 100 200 =2.00m 2 (2)炉膛有效尺寸: L 效=?效)(F 5.1~2 L 效=0.22?=2.0m=2000mm 取L 效=2000mm , (3)炉膛有效宽度: B 效=?效(F 2/3)~2/1 B 效=0.22/1?=1.0m=1000mm 取B 效=1000mm (4)根据参考文献【1】表2-2选择标准尺寸为2100×1020 ×45/12mm 的炉底板,炉底板材料为Cr-Mn-N 故L 效=2100-300=1800mm ,B 效=1020mm 2、炉膛内腔砌墙尺寸 炉膛宽度: B 砌=B 效+2×(0.1~0.15)? B 砌=1.02+2×0.15=1320mm 取B 砌=120×8+40×9=1320 mm 炉膛长度: L 砌=L 效+0.1=1.8+0.1=1900mm 取L 砌=51×36+200=2036mm L 效=1900mm B 效=1020mm B 砌=1320mm L 砌=2036mm

电阻炉设计与计算例题

电阻炉设计计算举例 一 设计任务 为某厂设计一台热处理电阻炉,其技术条件如下: (1) 用途:中碳钢、低合金钢毛坯或零件的淬火、正火及调质处理,处理 对象为中小型零件,无定型产品,处理批量为多品种,小批量; (2) 生产率:160kg/h ; (3) 工作温度:最高使用温度≤950℃; (4) 生产特点:周期式成批装料,长时间连续生产。 二 炉型的选择 根据设计任务给出的生产特点,拟选用箱式热处理电阻炉,不通保护气氛。 三 确定炉体结构和尺寸 1. 炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。一直生率P 为160kg/h ,按表1选择箱式炉用于正火和淬火时的单位面积生产率P 0为120kg/(m 2.h)。 表1 故可求得炉底有效面积 210160 1.33m 120 P F P = == 由于有效面积与炉底总面积存在关系式1 0.75~0.85F F =,取系数上限,得炉底实际面积 21 1.33 1.57m 0.850.85 F F = == 2. 炉底长度和宽度的确定 由于热处理箱式电阻炉设计时应考虑装出料方便,取L/B=2,因此,可求得 1.772L m === B=L/2=1.772/2=0.886m 根据标准砖尺寸,为便于砌砖,取L=1.741m ,B=0.869m ,如图5-8所示。 3. 炉膛高度的确定 按统计资料,炉膛高度H 与宽度B 之比H/B 通常在0.5~0.9之间,根据炉子工作条件,取H/B=0.7左右,根据标准砖尺寸,选定炉膛高度H=0.640m 。 因此,确定炉膛尺寸如下 长 L=(230+2)×7+(230×1/2+2)=1741mm 宽 B=(120+2)×4+(65+2)+(40+2)×2+)(113+2)×2=869mm 高 H=(65+2)×9+37=640mm

电阻炉温度控制系统的设计

电炉温度控制系统设计

摘要 热处理是提高金属材料及其制品质量的重要技术手段。近年来随工业的发展,对金属材料的性能提出了更多更高的要求,因而热处理技术也向着优质、高效、节能、无公害方向发展。电阻炉是热处理生产中应用最广泛的加热设备,加热时恒温过程的测量与控制成为了关键技术,促使人们更加积极地研制热加工工业过程的温度控制器。 此设计针对处理电阻炉炉温控制系统,设计了温度检测和恒温控制系统,实现了基本控制、数据采样、实时显示温度控制器运行状态。控制器采用 51 单片机作为处理器,该温度控制器具有自动检测、数据实时采集处理及控制结果显示等功能,控制的稳定性和精度上均能达到要求。满足了本次设计的技术要求。 关键词:电阻炉,温度测量与控制,单片机

目录 一、绪论.......................................................................................................................................- 1 - 1.1 选题背景...................................................................................................................- 1 - 1.2电阻炉国内发展动态...............................................................................................- 1 - 1.3设计主要内容...........................................................................................................- 2 - 二、温度测量系统的设计要求...................................................................................................- 3 - 2.1 设计任务.....................................................................................................................- 3 - 2.2 系统的技术参数.........................................................................................................- 3 - 2.3 操作功能设计.............................................................................................................- 4 - 三、系统硬件设计.......................................................................................................................- 5 - 3.1 CPU选型......................................................................................................................- 5 - 3.2 温度检测电路设计........................................................................................................- 5 - 3.2.1 温度传感器的选择.............................................................................................- 5 - 3.2.1.1热电偶的测温原理...............................................................................- 6 - 3.2.1.2 热电偶的温度补偿..............................................................................- 7 - 3.2.2 炉温数据采集电路的设计...............................................................................- 7 - 3.2.2.1 MAX6675芯片...................................................................................- 7 - 3.2.2.2 MAX6675的测温原理.......................................................................- 8 - 3.2.2.3 MAX6675 与单片机的连接.................................................................- 8 - 3.3 输入/输出接口设计 ....................................................................................................- 9 - 3.4 保温定时电路设计................................................................................................... - 10 - 3.4.1 DS1302 与单片机的连接 .............................................................................. - 11 - 3.5 温度控制电路设计..................................................................................................... - 11 - 系统硬件电路图................................................................................................................ - 13 - 四、系统软件设计.................................................................................................................... - 15 - 4.1 软件总体设计............................................................................................................. - 15 - 4.2 主程序设计................................................................................................................ - 15 - 4.3 温度检测及处理程序设计......................................................................................... - 16 - 4.4 按键检测程序设计..................................................................................................... - 18 - 4.5 显示程序设计............................................................................................................. - 20 - 4.6 输出程序设计............................................................................................................. - 21 - 4.7中值滤波..................................................................................................................... - 22 - 五、结论.................................................................................................................................... - 23 - 参考文献.................................................................................................................................... - 24 -

中温箱式电阻炉课程设计说明书

一、炉型的选择 因为工件材料为低合金钢,热处理工艺为正火,对于低合金钢正火最高温度为 【912+(30~50)】℃,选择中温炉(上限950℃)即可,同时工件没有特殊规定也不是长轴类,则选择箱式炉,并且无需大批量生产、工艺多变,则选择周期式作业。综上所述,选择周期式中温箱式电阻炉。 二、炉膛尺寸的确定 1、用炉底强度指标法计算 炉底有效面积: 查表得炉底强度h G =100Kg/(m 2·h ) F 效=h g G 件 =60100 =0.6(m 2) 炉膛有效尺寸: L 效=效)(F 5.1~2 L 效(m )=960mm 炉膛有效宽度: B 效=效(F 2/3)~2/1 B 效选择 1000mm ×600mm ×45mm/12mm 的炉底板,取B 效=0.6m 2、 炉膛腔砌墙尺寸 炉膛宽度: B 砌=B 效+2×(0.1~0.15) B 砌=0.6+2×0.125=0.85 (m) 炉膛长度: L 砌=L 效+0.16 =1.12(m ) 炉膛高度: H 砌=(0.5~0.9)B 砌 H 砌=0.8×0.85=0.68 (m )

层数n=067.0108.03 -??砌B =10.1 选择10层 ∴炉膛高度H 砌=10×67+42+39=0.751(m) 三、炉体结构设计与材料选择 (一)、选择炉衬材料部分 炉体包括炉壁、炉底、炉底、炉门、炉壳架几部分。炉体通常用耐火层和保温层构成, 尺寸与炉膛砌筑尺寸有关。设计时应满足下列要求: (1)确定砌体的厚度尺寸要满足强度要求,并应与耐火砖、隔热保温砖的尺寸相吻合; (2)为了减少热损失和缩短升温时间,在满足强度要求的前提下,应尽量选用轻质耐火材料; (3)要保证炉壳表面温升小于50℃,否则会增大热损失,使环境温度升高,导致劳动条件恶化。 (二)、炉体结构设计和尺寸 本炉设计为两层炉壁 层选用RNG-0.6型轻质粘土砖,其厚度S 1=115mm ; 外层选用硅酸铝耐火纤维,体积密度λ2=105Kg/m 3厚度S 2待计算; RNG-0.6型轻质粘土砖: ρ1=600【Kg/ m 3】 λ1=0.165+0.194×10-3t 均【w/(m ·℃)】 C 1=0.836+0.263×10-3t 均【KJ/(Kg ·℃)】 耐火纤维 当t 3=60℃时,由表查得α∑=12.17【W/(㎡·℃)】 ∴ q=12.17×(50-20)=486.8(W/㎡) 将上述各数据代入公式得: ()[]115.08.486950165.095010194.05.010194.02165.0165.010194.01t 233232?-?+?????++-?= --- =782(℃) 代入数据解得: 纤维层厚度:()107.0607828 .4861S 2?-?==228(mm ) 取S 2=230mm (三)、炉顶的设计 炉膛宽度为850mm ,采用拱顶,拱角60°的标准拱顶,拱顶式炉子最容易损坏的部位,受热时耐火砖发生膨胀,造成砌筑拱顶时,为了减少拱顶向两侧的压力,应采用轻质的楔形砖与标准直角砖混合砌筑。故选用侧厚楔形砖(230,113,65,45)、厚

40吨电弧炉炉体设计

目录 一、电弧炉简介及其发展趋势 (2) 二、电弧炉炉型算及变压器功率确定 (3) 1、电弧炉设计要求 (3) 2、电弧炉炉型计算 (4) 3、炉子的变压器功率及电极参数确定 (8) 三、电弧炉耐火材料的损毁机理及选择 (11) 1、炉衬损毁机理 (11) 2、炉顶用耐火材料 (12) 3、炉墙用耐火材料 (13) 4、炉底和出钢槽用耐火材料 (14) 附录 (16)

40吨电弧炉炉体设计说明书 一、电弧炉简介及其发展趋势 电弧炉是炼钢电炉的一种,也是目前世界上熔炼优质钢、特殊用途钢种的主要设备。电弧炉炼钢技术已有100年的历史,第二次世界大战后电炉炼钢才有较大发展,在最近的20年,电弧炉炼钢技术发展尤为迅速,电弧炉的应用带来了炼钢技术的革命。尽管全球粗钢年产总量的增长速度很缓慢,但以废钢为主要原料的电弧炉炼钢的产量所占的比重却在逐年上升。2001年,电弧炉炼钢占世界钢产量的40%,成为最重要的炼钢方法之一。与高炉铁水炼钢相比,其竞争优势在于投资费用和运行成本。自60年代中期提出电弧炉超高功率概念以来,电弧炉建造趋于大型化、高功率化,出现现了多种新型式的电弧炉。在发展大型电弧炉的过程中,美国曾用六支电极,由两台变压器供电,电弧炉为椭圆形。 发展大容量电炉和提高电炉自动化水平,采用大功率静止式动态补偿技术,用水冷构件代替耐火材料,炉盖第四孔直接排烟与电炉周围密封罩相连接的烟尘净化系统,炉盖第五孔机械化自动化加料系统,电炉使用还原铁比例逐渐扩大,炉外废钢预热,炉内燃料助燃,强化熔池用氧,开发底气搅拌系统和泡沫渣覆盖下的冶炼工艺,从冷却水和废气中回收热能,采用全连铸,发展纤维石墨电极和采用优质高效碱性镁碳炉衬等。 电弧炉炼钢得到迅速发展的主要原因: (1)废钢日益增多 (2)钢铁工业迅速增长。由于发电设备大型化和技术不断改进,可利煤用部分劣质粉发电,电的供应和价格比较稳定,使电炉炼钢有了比较可靠的基础。此外,电炉用废钢比高炉——转炉炼钢的能耗低。 (3)电炉趋向大型化、超高功率化,冶炼工艺化。 (4)投资少,基建速度快,基金回收速度。 (5)钢液温度、成份容易控制,品种适应性大,可冶炼多种牌号的钢,同时还能间断性生产。 电炉炼钢是世界各国生产特殊钢的主要方法,它具有一系列的优点: (1)电炉炼钢的设备投资少、基建速度快; (2)炼钢的热源来自于电弧,温度高达4000~6000℃,并直接作用于炉料,

热处理箱式电阻炉的设计学习资料

辽宁x x 大学 热工过程与设备课程设计 题目:热处理箱式电阻炉的设计 (生产率150kg/h,功率39kw,工作温度≤600℃) 院(系):X X 专业班级:X X 学号:X X 学生姓名:X X 指导教师:X X 起止时间:X X

课程设计(论文)任务及评语

目录 一、炉型的选择 (2) 二、确定炉体结构和尺寸 (2) 三、砌体平均表面积设计 (4) 四、计算炉子功率 (5) 五、炉子热效率计算 (7) 六、炉子空载功率计算 (7) 七、空炉升温时间计算 (7) 八、功率分配与接线 (9) 九、电热元件材料选择与计算 (9) 十、电热体元件图 (11) 十一、电阻炉装配图 (11) 十二、炉子技术指标 (11) 参考文献 (12)

设计任务: 为某厂设计一台热处理电阻炉,其技术条件为: (1)用途:中碳钢、低合金钢毛坯或零件的退火,处理对象为中小型零件,无定型产品,处理批量为多品种,小批量; (2)生产率:150kg/ h; (3)工作温度:最高使用温度≤600℃; (4)生产特点:周期式成批装料,长时间连续生产。 一、炉型的选择 根据工件的特点与设计任务的要求及产量大小选择合适的炉型。由于小批量生产,品种多和工艺稳定的要求拟选用箱式热处理电阻炉,不通保护气氛。 二、确定炉体结构和尺寸 1.炉底面积的确定 炉底面积的计算方法有两种。一种是根据一次装料量计算,另一种是根据炉底强度指标计算[1]。因工件的加热周期和装炉量不明确,故不能用炉子一次装料量确定炉底面积,只能用炉底强度指标法。已知生产率为150kg/h,按表5—1[1]选择箱式炉用于正火和淬火时的单位面积生产率p0为120kg/(m2·h),故可求得炉底有效面积 F=p/p0=150/120=1.25m2 由于有效面积与炉底总面积存在关系式F/F1=0.75~0.85,取系数上限0.85,得到炉底实际面积: F=F/0.85= 1.25/0.85=1.47m2 2.炉底长度和宽度的确定 对于热处理箱式电阻炉,设计时考虑装出料的方便,根据长度与宽度之比,取L/B=2:1,因此,可求得炉底宽度 F=2.059m L=5.0/ B=L/2=2.059/2=1.030m 为方便砌砖L=2205mm B=1048mm 3.炉膛高度的确定 根据统计的资料,炉膛高度(H)对炉底宽度(B)之比H/B通常在0.52~0.9之间,大多数在0.8左右,根据炉子工作条件,取H/B=0.7左右,选定炉膛高度H=707mm。因此,确定炉膛尺寸如下

热处理炉(箱式电阻炉)设计

热处理炉设计 一、 设计任务 设计一箱式电阻炉,计算和确定主要项目,并绘出草图。 基本技术条件: (1)用途:低合金钢等的回火; (2)工件:中小型零件,小批量多品种,最长0.8m ; (3)最高工作温度为550℃; (4)炉外壁温度小于60℃; (5)生产率:120kg/h 。 设计计算的主要项目: (1) 确定炉膛尺寸; (2) 选择炉衬材料及厚度,确定炉体外形尺寸; (3) 计算炉子功率,进行热平衡计算,并与经验计算法比较; (4) 计算炉子主要经济技术指标(热效率,空载功率,空炉升温时间); (5) 选择和计算电热元件,确定其布置方法; (6) 写出技术规范。 二、 炉型选择 根据设计任务给出的生产特点,选用低温(≦550℃)箱式热处理电阻炉,炉膛不通保护气氛,为空气介质。 三、 确定炉膛尺寸 1. 理论确定炉膛尺寸 (1) 确定炉底总面积 炉底总面积的确定方法有两种:实际排料法和加热能力指标法。本设计用加热能力指标法来确定炉底面积。已知炉子生产率h kg P 120=,按教材表5-1选择适用于回火的一般箱式炉,其单位炉底面积生产率)(00120h m kg p ?=。因此,炉子的炉底有效面积(可以摆放工件的面积)1F 可按下式计算: 201 1.2100 120m p P F === 通常炉底有效面积和炉底总面积之比值在0.75~0.85之间选择。本设计取值0.85,则炉底总面积F 为: 2 1 1.41285 .01.285.0m F F ≈== (2) 确定炉膛的长度和宽度 炉底长度和宽度之比B L 在3/2~2之间选择。考虑到炉子使用时装、出料的 方便,本设计取2=B L ,则炉子炉底长度和宽度分别为:

相关文档
最新文档