微波射频仿真软件综述和应用评析

微波射频仿真软件综述和应用评析
微波射频仿真软件综述和应用评析

微波射频仿真软件综述和应用评析

微波EDA仿真软件与电磁场的数值算法密切相关,在介绍微波EDA 软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell方程组之上的,了解Maxwell方程是学习电磁场数值算法的基础;在频域,数值算法有:有限元

法 ( FEM -- Finite Element Method)、矩量法( MoM -- Method of Moments),差分法( FDM -- Finite Difference Methods),边界元法( BEM -- ),和传输线法

( TLM -- Transmission-Line-matrix Method),在时域,数值算法有:时域有限差分法( FDTD – Finite Difference Time Domain ),和有限积分

法 ( FIT – Finite Integration Technology )。如果想进一步了解各种数值算法的具体实现,可以参阅以下几本书

籍:① Microwave Circuit Modeling Using Electromagnetic Field Simulation, ② N umerical Techniques in Electromagnetics, ③ Electromagmetic Simunation Using t he FDTD Method,④ Complex eletromagnetic problems and numerical Simulation Ap proaches。

其中,使用矩量法( MoM )的微波EDA软件有ADS,Ansoft Designer,Microwave Office, Zeland IE3D,Ansoft Esemble,Super NEC和FEKO;使用有限元法 ( FEM )的微波EDA软件有HFSS和 ANSYS;使用时域有限差分法( FDTD )的微波EDA 软件有 EMPIRE和XFDTD,使用有限积分法( FIT )的微波EDA软件有 CST Microwave Studio和CST Mafia。

下面来介绍较流行几种的微波EDA软件的功能和应用。

ADS – Advanced Design System,是Agilent公司推出的微波电路和通信系统仿真软件,是国内各大学和研究所使用最多的软件之一。其功能非常强大,仿真手段丰富多样,可实现包括时域和频域、数字与模拟、线性与非线性、噪声等多种仿真分析手段,并可对设计结果进行成品率分析与优化,从而大大提高了复杂电路的设计效率,是非常优秀的微波电路、系统信号链路的设计工具。主要应用于:射频和微波电路的设计,通信系统的设计,DSP设计和向量仿真。现在最新的版本是ADS2004A。

Ansoft Designer,是Ansoft公司推出的微波电路和通信系统仿真软件;它采用了最新的视窗技术,是第一个将高频电路系统,版图和电磁场仿真工具无缝地集成到同一个环境的设计工具,这种集成不是简单和界面集成,其关键是Ansoft Designer独有的"按需求解"的技术,它使你能够根据需要选择求解器,从而实现对设计过程的完全控制。Ansoft Designer实现了“所见即所得”的自动化版图功能,版图与原理图自动同步,大大提高了版图设计效率。同时, Ansoft还能方便地与其他设计软件集成到一起,并可以和测试仪器连接,完成各种设计任务,如频率合成器,锁相环,通信系统,雷达系统以及放大器,混频器,滤波器,移相器,功率分配器,合成器和微带天线等。主要应用于:射频和微波电路的设计,通信系统的设计,电路板和模块设计,部件设计。现在最新的版本是Ansoft Designer 2.1。

Ansoft HFSS,是Ansoft公司推出的三维电磁仿真软件;是世界上第一个商业化的三维结构电磁场仿真软件,业界公认的三维电磁场设计和分析的电子设计工业标准。HFSS提供了一简洁直观的用户设计界面、精确自适应的场解器、拥有空前电性能分析能力的功能强大后处理器,能计算任意形状三维无源结构的S参数和全波电磁场。HFSS软件拥有强大的天线设计功能,它可以计算天线参量,如增益、方向性、远场方向图剖面、远场3D图和3dB带宽;绘制极化特性,包括球形场分量、圆极化场分量、Ludwig第三定义场分量和轴比。使用HFSS,可以计算:①基本电磁场数值解和开边界问题,近远场辐射问题;②端口特征阻抗和传输常数;③ S参数和相应端口阻抗的归一化S 参数;④结构的本征模或谐振解。而且,由Ansoft HFSS和Ansoft Designer构成的Ansoft高频解决方案,是目前唯一以物理原型为基础的高频设计解决方案,提供了从系统到电路直至部件级的快速而精确的设计手段,覆盖了高频设计的所有环节。现在最新的版本是 Ansoft HFSS 9.2。

Microwave Office,是AWR公司推出的微波EDA软件,为微波平面电路设计提供了最完整, 最快速和最精确的解答。它是通过两个模拟器来对微波平面电路进行模拟和仿真的。对于由集总元件构成的电路,用电路的方法来处理较为简便;该软件设有"VoltaireXL"的模拟器来处理集总元件构成的微波平面电路问题。而对于由具体的微带几何图形构成的分布参数微波平面电路则采用场的方法较为有效;该软件采用的是"EMSight"的模拟器来处理任何多层平面结构的三维电磁场的问题。"VoltaireXL" 模拟器内设一个元件库,在建立电路模型时,可以调出微波电路所用的元件,其中无源器件有电感、电阻、电容、谐振电路、微带线、带状线、同轴线等等,非线性器件有双极晶体管,场效应晶体管,二极管等等。"EMSight"模拟器是一个三维电磁场模拟程序包,可用于平面高频电路和天线结构的分析。特点是把修

正谱域矩量法与直观的视窗图形用户界面(GUI)技术结合起来,使得计算速度加快许多。MWO可以分析射频集成电路 (RFIC)、微波单片集成电路(MMIC)、微带贴片天线和高速印制电路(PCB)等电路的电气特性。

XFDTD,是Remcom公司推出的基于时域有限差分法 (FDTD)的三维全波电磁场仿真软件。XFDTD用户界面友好、计算准确;但XFDTD本身没有优化功能,须通过第三方软件Engineous完成优化。该软件最早用于仿真蜂窝电话,长于手机天线和SAR计算。现在广泛用于无线、微波电路、雷达散射计算,化学、光学、陆基警戒雷达和生物组织仿真。软件最新版本为 XFDTD 6.0

Zeland IE3D,IE3D是一个基于矩量法的电磁场仿真工具,可以解决多层介质环境下的三维金属结构的电流分布问题。IE3D可分为MGRID、MODUA和PATTERNVIEW三部分;MGRID 为IE3D的前处理套件,功能有建立电路结构、设定基板与金属材料的参数和设定模拟仿真参数;MOODUA是IE3D的核心执行套件,可执行电磁场的模拟仿真计算、性能参数(Smith 园图,S参数等)计算和执行参数优化计算;PATTERNVIEW是IE3D的后处理套件,可以将仿真计算结果,电磁场的分布以等高线或向量场的形式显示出来。IE3D仿真结果包括S、Y、Z 参数,VWSR,RLC等效电路,电流分布,近场分布和辐射方向图,方向性,效率和RCS等;应用范围主要是在微波射频电路、多层印刷电路板、平面微带天线设计的分析与设计。软件最新版本为Zeland IE3D10.0。

CST MICROWAVE STUDIO,是德国CST(Computer Simulation Technology)公司推出的高频三维电磁场仿真软件。广泛应用于移动通信、无线通信(蓝牙系统)、信号集成和电磁兼容等领域。微波工作室使用简洁,能为用户的高频设计提供直观的电磁特性。微波工作室除了主要的时域求解器模块外,还为某些特殊应用提供本征模及频域求解器模块。CAD文件的导入功能及SPICE参量的提取增强了设计的可能性并缩短了设计时间。另外,由于CST设计工作室的开放性体系结构能为其它仿真软件提供链接,使微波工作室与其它设计环境相集成。

Sonnet,是一种基于矩量法的电磁仿真软件,提供面向3D平面高频电路设计系统以及在微波、毫米波领域和电磁兼容/电磁干扰设计的EDA工具。SonnetTM应用于平面高频电磁场分析,频率从 1MHz 到几千GHz。主要的应用有:微带匹配网络、微带电路、微带滤波器、带状线电路、带状线滤波器、过孔(层的连接或接地)、偶合线分析、PCB板电路分析、PCB 板干扰分析、桥式螺线电感器、平面高温超导电路分析、毫米波集成电路(MMIC)设计

和分析、混合匹配的电路分析、HDI 和 LTCC 转换、单层或多层传输线的精确分析、多层的平面的电路分析、单层或多层的平面天线分析、平面天线阵分析、平面偶合孔的分析等。

其他的微波射频相关的EDA软件还有Ansoft公司的Serenade 8.71、Esemble 8.0、SIwave 2.0、 Ansoft Links 3.0、Optimatrics,CST公司的CST Mafia 4.1、

CST Design Studio、 CST EM Studio 2.0,Zeland公司的Fidelity,Ansys公司的Ansys、FEKO,Eagleware-Elanix公司的Eagleware Genesys,和Super NEC等。

常用微波元件

常用微波元件 关键词:微波元件、隔离器、环行器 引言: 微波元件的功能在于微波信号进行各种变换,按其变换性质可将微波元件分为以下三类: 一:线性互易元件 凡是元件中没有非线性和非互易性物质都属于这一类。常用的线性互易元件包括:匹配负载、衰减器、移相器、短路活塞、功分器、微波电桥、定向耦合器、阻抗变换器和滤波器等。 衰减器作为线性互易元件,其频率范围可以从0至26.5GHz, 功率高达2000W。 被应用于民用,军事,航天,空间技术等。 高标准的达到“两高一低”,高功率,高隔离度,低插损。 其频率的范围,主要由客户的需求,从而去定制频率。 以下简单介绍50W功率的同轴衰减器,此衰减值可达到60Db, 频率可为8GHz, 12.4GHz, 18GHz,N型接头。 正面背面侧面 二:线性非易元件 这类元件中包含磁化铁氧体等各向异性媒介,具有非互易特性,其散射矩阵是不对称的。但仍工作于线性区域,属于线性元件范围。常用的线性非互易性元件有隔离度、环形器等。 三:非线性元件 这类元件中含有非线性物质,能对微波信号进行非线性变换,从而引起频率的改变,并能通过电磁控制以改变元件的特性参量。常用的非线性元件有检波器,混频器,变频器以及电磁快控元件等。 微波元件分类:

近年来,为了实现微波系统的小型化,开始采用由微带和集中参数元件组成的微波集成电路,可以在一块基片上做出大量的元件,组成复杂的微波系统,完成各种不同功能。 简要的介绍波导型,同轴型,微带型的产品。 波导隔离器频率范围主要为:2.4-110GHz (具体的频段由客户定制) 于衰减器的使用范围类同,主要使用在民用,军事,航天,空间技术等。 同样具备“低插损,高隔离度,高功率”的特性。 优译波导隔离器 同轴:A :低频率12MHz 至 1875MHz, 含FM, VHF, UHF 等。 B :700MHz 至26.5GHz, 含GSM, CDMA, WCDMA, LTE, L.S.C.X 波段等。 优译同轴隔离器

微波、射频与激光的区别(内容清晰)

微波、射频与激光 微波、射频和激光都是通过高温将肿瘤细胞杀死。目前临床上一根治术为主,但并非所有实体肿瘤都适合根治术,有些年龄叫大或者合并其他比较严重疾病者不一定适用,一般晚期癌症患者也不适合根治术。以较小的创伤达到同样的疗效是人们追求的目标,微创医学顺应了这一发展趋势,肿瘤不予切除而采用原位灭活是现代微创治疗医疗的一个重要思想。 微波:微波治疗疾病主要是通过热效应和生物效应来实现的。微波是指频率从300MHZ到GHZ范围内的电磁波。微波对人体组织的热效应效率高、穿透力强、具有内外同时产生热的优点。微波在人体组织内产生热量,作用可达5--8厘米,可穿透衣物和石膏等体表覆盖物,直达病灶部位促进血液循环、水中吸收和新肉芽生长。 一种是微波从体外照射进去,另一种是把微波送到患部直接照射肿瘤,这二种治疗方式可根据病变部位来选择。但有一个共同要求是:必须使病变的温度保持在42.5-43.5℃的范围内,温度低了对肿瘤治疗无效,温度高了将造成对病变周围健康组织的损害,因此微波治疗肿瘤时,一定要严格控制肿瘤部位的温度。 微波进行切割的原理的把双极辐射器送到患部,进行瞬时放电,把病变组织固化。这个治疗方法的实质是通过微波的趋肤效应,把病变组织从表面逐步向内的烧死,从而达到治疗目的。但必须注意定位准确,治疗部位要有及时采取冷却措施。 单针消融面积大于射频,可达到更高的治疗温度,电极所形成的凝固体呈锥形,不适合消融类圆形的肿瘤。 照射治疗5~10W,每次15-20分钟,20分钟,手术进行切割25~35W,最高可达50W,切割止血的作用。 缺陷:容易造成灼伤,有心脏起搏器或者内置金属类的禁用。 射频:在影像技术的引导下,将电极针直接插入肿瘤内,通过射频能量使病灶局部组织产生高温、干燥、最终凝固和灭活软组织及肿瘤。其工作原理为:当电子发生器产生射频电流(460KHZ)时,通过裸露的电极针使其周围组织细胞产生热凝固性坏死和变性。现有的技术可以产生直径约为3-5cm大小的球形或椭圆形凝固灶,并可控制所需凝固病灶的大小。几个球形或椭圆形凝固灶的叠合可产生更大的凝固灶。 射频目前医用射频大多采用200KHz -750KHz的频率。(内镜)射频治疗仪工作频率为400KHz。当射频电流流经人体组织时,因电磁场的快速变化使得细胞内的正、负离子快速运动,于是它们之间以及它们与细胞内的其它分子、离子等的摩擦使病变部位升温,致使细胞内外水分蒸发、干燥、固缩脱落以致无菌性坏死,从而达到治疗的目的。 肿瘤经皮射频消融治疗是在影像学(CT、B超等)导向下,使用射频热效应引起组织凝固性坏死而达到切除肿瘤的目的,目前已在众多的姑息疗法中成为新的热点。该技术的主要作用原理为弹头发出中高频率的射频波(460k Hz),能激发组织细胞进行等离子震荡,离子相互撞击产生热量,达到80-100℃,可有效快速地杀死局部肿瘤细胞,同时可使肿瘤周围的血管组织凝同凝固形成一个反应带,使之不能继续向肿瘤供血和有利于防止肿瘤转移。 整个治疗过程是在电脑控制于电视屏幕监视下进行,集束电极发出的射频波一次可使组织凝同性坏死范围(灭活肿瘤区)达5cm×5cm×5cm,是一种最先进的杀伤肿瘤较多而损害机体较轻的“导向治疗方法”和微创的肿瘤切除治疗方法。 射频消融系统包含射频发生器、电极针及电极板。最重要的是电极针。目前常用的电

网络仿真技术文献综述

成绩:

网络仿真文献综述 摘要:网络仿真技术是一种通过建立网络设备和网络链路的统计模型, 并模拟网络流量的传输, 从而获取网络设计或优化所需要的网络性能数据的仿真技术。网络仿真技术以其独有的方法能够为网络的规划设计提供客观、可靠的定量依据,缩短网络建设周期,提高网络建设中决策的科学性,降低网络建设的投资风险。 网络仿真技术是一种通过建立网络设备和网络链路的统计模型, 并模拟网络流量的传输, 从而获取网络设计或优化所需要的网络性能数据的仿真技术。由于仿真不是基于数学计算, 而是基于统计模型,因此,统计复用的随机性被精确地再现。 关键词:网络仿真;统计模型;仿真技术

1.前言 目前,数据网络的规划和设计一般采用的是经验、试验及计算等传统的网络设计方法。不过,当网络规模越来越大、网元类型不断增多、网络拓扑日趋复杂、网络流量纷繁交织时,以经验为主的网络设计方法的弊端就越来越显现出来了。网络规划设计者相对来说缺乏大型网络的设计经验,因此在设计过程中主观的成分更加突出。 数学计算和估算方法对于大型复杂网络的应用往往是非常困难的,得到的结果的可信性也是比较低的,特别是对于包交换、统计复用的数据网络,情况更是如此。因此,随着网络的不断扩充,越来越需要一种新的网络规划和设计手段来提高网络设计的客观性和设计结果的可靠性,降低网络建设的投资风险。网络仿真技术正是在这种需求拉动下应运而生的。网络仿真技术以其独有的方法能够为网络的规划设计提供客观、可靠的定量依据,缩短网络建设周期,提高网络建设中决策的科学性,降低网络建设的投资风险。 网络仿真技术是一种通过建立网络设备和网络链路的统计模型, 并模拟网络流量的传输, 从而获取网络设计或优化所需要的网络性能数据的仿真技术。由于仿真不是基于数学计算, 而是基于统计模型,因此,统计复用的随机性被精确地再现。它以其独有的方法为网络的规划设计提供客观、可靠的定量依据,缩短网络建设周期,提高网络建设中决策的科学性,降低网络建设的投资风险。 2.网络仿真软件比较分析 网络仿真软件通过在计算机上建立一个虚拟的网络平台,来实现真实网络环境的模拟,网络技术开发人员在这个平台上不仅能对网络通信、网络设备、协议、以及网络应用进行设计研究,还能对网络的性能进行分析和评价。另外,仿真软件所提供的仿真运行和结果分析功能使开发人员能快速、直观的得到网络性能参数,为优化设计或做出决策提供更便捷、有效的手段。因此运用网络仿真软件对网络协议、算法等进行仿真已经成为计算机网络通信研究中必不可少的一部分。 2.1 OPNET仿真软件介绍

微波电路课程设计报告(DOC)

重庆大学本科学生课程设计指导教师评定成绩表 说明:1、学院、专业、年级均填全称。 2、本表除评语、成绩和签名外均可采用计算机打印。 重庆大学本科学生课程设计任务书

2、本表除签名外均可采用计算机打印。本表不够,可另附页,但应在页脚添加页码。 摘要 本次主要涉及了低通滤波器,功分器,带通滤波器和放大器,用到了AWR,MATHCAD和ADS 软件。

在低通滤波器的设计中,采用了两种方法:第一种是根据设计要求,选择了合适的低通原型,利用了RICHARDS法则用传输线替代电感和电容,然后用Kuroda规则进行微带线串并联互换,反归一化得出各段微带线的特性阻抗,组后在AWR软件中用Txline算出微带线的长宽,画出原理图并仿真,其中包括S参数仿真,Smith圆图仿真和EM板仿真。第二种是利用低通原型,设计了高低阻抗低通滤波器,高低阻抗的长度均由公式算得出。 在功分器的设计中,首先根据要求的工作频率和功率分配比K,利用公式求得各段微带线的特性阻抗1,2,3端口所接电阻的阻抗值,再用AWR软件确定各段微带线的长度和宽度,设计出原理图,然后仿真,为了节省材料,又在原来的基础上设计了弯曲的功分器。同时通过对老师所给论文的学习,掌握到一种大功率比的分配器的设计,其较书上的简单威尔金森功分器有着优越的性能。 对于带通滤波器,首先根据要求选定低通原型,算出耦合传输线的奇模,偶模阻抗,再选定基板,用ADS的LineCalc计算耦合微带线的长和宽,组图后画出原理图并进行仿真。 设计放大器时,一是根据要求,选择合适的管子,需在选定的频率点满足增益,噪声放大系数等要求。二是设计匹配网络,采用了单项化射界和双边放大器设计两种方法。具体是用ADS中的Smith圆图工具SmitChaitUtility来辅助设计,得到了微带显得电长度,再选定基板,用ADS中的LineCalc计算微带线的长和宽。最后在ADS中画出原理图并进行仿真,主要是对S参数的仿真。为了达到所要求的增益,采用两级放大。其中第一级放大为低噪声放大,第二级放大为双共轭匹配放大。 由于在微波领域,很多时候要用经验值,而不是理论值,来达到所要求的元件特性,因此在算出理论值之后,常常需要进行一些调整来达到设计要求。 关键词:低通原型Kuroda规则功率分配比匹配网络微带线 课程设计正文 1.切比雪夫低通滤波器的设计 1.1 设计要求: 五阶微带低通滤波器: 截止频率2.5GHZ 止带频率:5GHZ 通带波纹:0.5dB 止带衰减大于42dB

射频与微波技术知识点总结

射频/微波的特点: 1.频率高 2.波长短 3.大气窗口 4.分子谐振 微波频率:3003000 波长:0.11m 独特的特点:的波长与自然界物体尺寸相比拟 在波段,由于导体的趋肤效应、介质损耗效应、电磁感应等影响,期间区域不再是单纯能量的集中区,而呈现分布特性。 长线概念:通常把导线(传输线)称为长线,传统的电路理论已不适合长线!系统的组成: 传输线:传输信号 微波元器件:完成微波信号的产生、放大、变换等和功率的分配、控制及滤波天线:辐射或接收电磁波 微波、天线与电波传播的关系:(简答) 微波: 对象:如何导引电磁波在微波传输系统中的有效传输 目的:希望电磁波按一定要求沿微波传输系统无辐射的传输; 天线 任务:将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波 作用:1.有效辐射或接收电磁波;2.把无线电波能量转换为导行波能量 电波传播 分析和研究电波在空间的传播方式和特点 常用传输线机构:矩形波导共面波导同轴线带状线 微带线槽线

分析方法 场分析法:麦克斯韦方程满足边界条件的波动解传输线上电磁场表达式分析传输特性 等效电路法:传输线方程满足边界条件的电压电流波动方程的解沿线等效电压电流表达式分析传输特性 称为传输线的特性阻抗 特性阻抗Z0通常是个复数, 且与工作频率有关。 它由传输线自身分布参数决定而与负载及信源无关, 故称为特性阻抗 对于均匀无耗传输线, 0, 传输线的特性阻抗为 此时, 特性阻抗Z0为实数, 且与频率无关。 常用的平行双导线传输线的特性阻抗有250Ω, 400Ω和600Ω三种。 常用的同轴线的特性阻抗有50 Ω 和75Ω两种。 均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一般为复数, 故不宜直接测量。 无耗传输线上任意相距λ /2处的阻抗相同, 一般称之为λ /2重复性。 传输线上电压和电流以波的形式传播, 在任一点的电压或电流均由沿方向传播的行波(称为入射波)和沿方向传播的行波(称为反射波)叠加而成。 传播常数γ: α为衰减常数, 单位为 β为相移常数 对于均匀无耗传输线来说, 由于β与ω成线性关系, 故导行波的相速与频率无关, 也称为无色散波。当传输线有损耗时, β不再与ω成线性关系, 使相速υp 与频率ω有关,这就称为色散特性。 定义传输线上任意一点 z 处的反射波电压(或电流)与入射波电压(或电流)0L Z C =)j /()j (0C G L R Z ωω++=β ωωγj )j )(j (+=++≈a C G L R

RF 设计与应用----射频集成电路封装

RF设计与应用----射频集成电路封装 关键词:射频,多层电路板,电路封装 摘要:针对无线通信产品业者所面临的课题,本文试着从封装技术在射频集成电路上应用的角度,来介绍射频集成电路封装技术的现况、现今封装技术对射频集成电路效能的影响,以及射频集成电路封装的未来发展和面临的挑战。 在行动通讯质量要求的提高,通讯带宽的需求量大增,因应而生的各项新的通讯规范如GPRS、W-CDMA、CDMA-2000、Bluetooth、 802.11b纷纷出笼,其规格不外乎:更高的数据传输速率、更有效的调变方式、更严谨的噪声规格限定、通讯功能的增强及扩充,另外再加上消费者对终端产品“轻、薄、短、小、久(包括产品的使用寿命、维护保固,甚至是手机的待机时间)”的诉求成了必要条件;于是乎,为了达成这些目的,各家厂商无不使出混身解数,在产品射频(Radio Frequency)、中频(Intermediate Frequency)与基频(Base Band)电路的整合设计、主动组件的选择应用、被动组件数目的减少、多层电路板内线路善加运用等,投注相当的心血及努力,以求获得产品的小型化与轻量化。 针对这些无线通信产品业者所面临的课题,我们试着从封装技术在射频集成电路上应用的角度,来介绍射频集成电路封装技术的现况、现今封装技术对射频集成电路效能的影响,以及射频集成电路封装的未来发展和面临的挑战。 射频集成电路封装技术的现况 就单芯片封装(Single Chip Package)的材质而言,使用塑料封装( P l a s t i c Pac kage)的方式,是一般市面上常见到的高频组件封装类型,低于3GHz工作频率的射频集成电路及组件,在不严格考虑封装金属导线架(Metal Lead Frame)和打线(Wire Bond)的寄生电感(Parasitic Inductance)效应下,是一种低成本且可薄型化的选择。由于陶瓷材料防水气的渗透性特佳及满足高可靠度的需求,故也有采用陶瓷封装技术;对于加强金属屏蔽作用及散热效果的金属封装,可常在大功率组件或子系统电路封装看到它的踪迹。

电力系统分析报告仿真实验报告材料

实用文档 电力系统分析仿真 实验报告 ****

目录 实验一电力系统分析综合程序PSASP概述 (3) 一、实验目的 (3) 二、PSASP简介 (3) 三、实验内容 (5) 实验二基于PSASP的电力系统潮流计算实验 (9) 一、实验目的 (9) 二、实验内容 (9) 三、实验步骤 (14) 四、实验结果及分析 (15) 1、常规方式 (15) 2、规划方式 (23) 五、实验注意事项 (32) 六、实验报告要求 (32) 实验三一个复杂电力系统的短路计算 (34) 一、实验目的 (34) 二、实验内容 (34) 三、实验步骤 (35) 四、实验结果及分析 (36) 1、三相短路 (36) 2、单相接地短路 (36) 3、两相短路 (37) 4、复杂故障短路 (37) 5、等值阻抗计算 (38) 五、实验注意事项 (39) 六、实验报告要求 (39) 实验五基于PSASP的电力系统暂态稳定计算实验 (40) 一、实验目的 (40)

二、实验内容 (40) 三、实验步骤 (41) 四、实验结果级分析 (41) 1、瞬时故障暂态稳定计算 (41) 2、冲击负荷扰动计算 (45) 五、实验注意事项 (74) 六、实验结果检查 (74)

实验一电力系统分析综合程序PSASP概述 一、实验目的 了解用PSASP进行电力系统各种计算的方法。 二、PSASP简介 1.PSASP是一套功能强大,使用方便的电力系统分析综合程序,是具有我国自主知识产权的大型软件包。 2.PSASP的体系结构: 第一层是:公用数据和模型资源库,第二层是应用程序包,第三层是计算结果和分析工具。 3.PSASP的使用方法:(以短路计算为例) 1).输入电网数据,形成电网基础数据库及元件公用参数数据库,(后者含励磁调节器,调速器,PSS等的固定模型),也可使用用户自定义模型UD。在此,可将数据合理组织成若干数据组,以便下一步形成不同的计算方案。 文本支持环境: 点击“数据”菜单项,执行“基础数据”和“公用参数”命令,可依次

射频和微波开关测试系统基础

射频和微波开关测试系统基础 无线通信产业的巨大成长意味着对于无线设备的元器件和组件的测试迎来了大爆发,包括对组成通信系统的各种RF IC 和微波单片集成电路的测试。这些测试通常需要很高的频率,普遍都在GHz范围。本文讨论了射频和微波开关测试系统中的关键问题,包括不同的开关种类,RF开关卡规格,和有助于测试工程师提高测试吞吐量并降低测试成本的RF开关设 计中需要考虑的问题。 射频开关和低频开关的区别 将一个信号从一个频点转换到另一个频点看起来挺容易的,但要达成极低的信号损耗该如何实现呢?设计低频和直流(DC)信号的开关系统都需要考虑它们特有的参数,包括接触电位、 建立时间、偏置电流和隔离特性等。 高频信号,与低频信号类似,需要考虑其特有的参数,它们会影响开关过程中的信号性能,这些参数包括VSWR(电压驻波比)、插入损耗、带宽和通道隔离等等。另外,硬件因素,比如端接、连接器类型、继电器类型,也会极大的影响这些参数。 开关种类和构造 继电器内的容性是限制开关的信号频率的常见因素。继电器的材料和物理特性决定了其构成的内部电容。比如,在超过40GHz的射频和微波开关中,在机电继电器中采用了特殊的接触架构来获得更好的性能。图1显示了一个典型的构造,共同端接位于两个开关端接之间。所有信号的连接线路都是同轴线,来保证最佳的信号完整性(SI)。在这种情况下,连接器是SMA母头。对于更加复杂的开关结构,共同端接被各个开关端接以放射状围绕。 一系列复杂的开关拓扑在RF开关中得以采用。矩阵式开关可以实现每个输入与每个输出的连接。有两种类型的矩阵在微波开关架构中得以采用——blocking和non-blocking架构。一个blocking矩阵可将任意一个输入和任意一个输出进行连接,因此其他的输入和输出就不能同时连接。这对只需在一个时刻切换到一个信号频率的应用是一个有效的低成本方案,信号完整性也更好,因为有更少的继电器路径,特别是避免了相位延迟的问题。而non-blocking 矩阵允许多个路径的同时连接,这种架构具有更多的继电器和线缆,因此灵活性更强,不过 价格也更高。 层叠开关架构是多位置开关的一种替代形式。它采用多个继电器将一个输入连接到多个输出。路径长度(同时决定了相位延迟)是由信号经过的继电器的数量决定的。 树形架构是层叠开关架构的一种替代。相比层叠架构,对于同等规格的系统,树形技术需要更多的继电器,然而,选定的路经和其他不用的路经之间的隔离会更好,这样降低了继电器和通道之间的crosstalk。树形架构具备一些优势,包括无端接残余(unterminated stubs),各个通道特性也会相似。然而,在选定路经上具有多个继电器意味着损耗会更大,信号完整性 也令人堪忧。 RF开关卡架构 在测试仪器主机上的RF开关卡应用中,为保证信号完整性,需要理解许多电性能指标。

射频与微波技术原理及应用汇总

射频与微波技术原理及应用培训教材 华东师范大学微波研究所 一、Maxwell(麦克斯韦)方程 Maxwell 方程是经典电磁理论的基本方程,是解决所有电磁问题的基础,它用数学形式概括了宏观电磁场的基本性质。其微分形式为 0 B E t D H J t D B ρ???=- ????=+??=?= (1.1) 对于各向同性介质,有 D E B H J E εμσ=== (1.2) 其中D 为电位移矢量、B 为磁感应强度、J 为电流密度矢量。 电磁场的问题就是通过边界条件求解Maxwell 方程,得到空间任何位置的电场、磁场分布。对于规则边界条件,Maxwell 方程有严格的解析解。但对于任意形状的边界条件,Maxwell 方程只有近似解,此时应采用数值分析方法求解,如矩量法、有限元法、时域有限差分法等等。目前对应这些数值方法,有很多商业的电磁场仿真软件,如Ansoft 公司的Ensemble 和HFSS 、Agilent 公司的Momentum 和ADS 、CST 公司的Microwave Studio 以及Remcom 公司的XFDTD 等。 由矢量亥姆霍兹方程联立Maxwell 方程就得到矢量波动方程。当0,0J ρ==时,有 222200E k E H k H ?+=?+= (1.3) 其中k 为传播波数,22k ωμε=。 二、传输线理论 传输线理论又称一维分布参数电路理论,是射频、微波电路设计和计算的理论基

础。传输线理论在电路理论与场的理论之间起着桥梁作用,在微波网络分析中也相当重要。 1、微波等效电路法 低频时是利用路的概念和方法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。在集总参数电路中,基本电路参数为L、C、R。由于频率低,波长长,电路尺寸与波长相比很小,电磁场随时间变化而不随长度变化,而且电感、电阻、线间电容和电导的作用都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。 射频和微波频段是利用场的概念和方法,主要考虑场的空间分布,测量参数由电压U、电流I转化为频率f、功率P、驻波系数等,这是分布参数电路。在分布参数电路中,电磁场不仅随时间变化也随空间变化,相位有明显的滞后效应,线上每点电位都不同,处处有储能和损耗。 由于匀直无限长的传输系统在现实中是不存在的,因此工程上常用微波等效电路法。微波等效电路法的特点是:一定条件下“化场为路”。具体内容包括: (1)、将均匀导波系统等效为具有分布参数的均匀传输线; (2)、将不均匀性等效为集总参数微波网络; (3)、确定均匀导波系统与不均匀区的参考面。 2、传输线方程及其解 传输线方程是传输线理论的基本方程,是描述传输线上的电压、电流的变化规律及其相互关系的微分方程。电路理论和传输线之间的关键不同处在于电尺寸。集总参数电路和分布参数电路的分界线可认为是l/λ≥0.05。 以传输TEM模的均匀传输线作为模型,如图1所示。在线上任取线元dz来分析(dz<<λ),其等效电路如图2所示。终端负载处为坐标起点,向波源方向为正方向。 图1. 均匀传输线模型图2、线元及其等效电路根据等效电路,有

电路仿真软件的发展

电路仿真软件的发展 ——闫明亮摘要: 一、电路的发展与简述 二、电路仿真软件的发展 三、最常用的电路仿真软件Multisim的历史与发展 四、不同的电路仿真软件 电路仿真软件,作为一个我们正在学习的方面,应该有必要来了解一下电路仿真软件的发展与历史,才可以更好的了解与学习电路仿真软件。 (一)电路的发展与简述 谈论电路仿真软件发展,我觉得应该先从电路这方面入手,先简单来了解一下电路的发展旅程。电路理论作为一门独立的学科出现于人类历史中大约已有200多年了,在这纷纭变化的200多年里,电路理论从那种用莱顿瓶和变阻器描述问题的原始概念和分析方法逐渐演变成为一门抽象化的基础理论科学,其间的发展和变化贯穿于整个电气科学的发展之中。如今它不仅成为了整个电气科学技术中不可缺少的理论基础,同时也在开拓和发展新的电气理论和技术方面起着重要的作用。 电路理论是一个极其美妙的领域,在这一领域内,数学、物理学、信息工程、电气工程与自动控制工程等学科找到了一个和谐的结合点,其深厚的理论基础和广泛的实际应用使其具有旺盛持久的生命力。因而,对于许多有关的学科来说,电路理论是一门非常重要的基础理论课。 一般来说,电路理论的教学是从微观出发,对各种电气技术及其理论进行深入细致地分析和探讨,其教学目的是让学习者从微观上对电路理论融会贯通,以求能够解决实际的电路问题。然而,在这种微观教学中进行一定的宏观引导却是非常重要的,因为当今的电路理论已从一门较单纯的学科演变成了许多学科所共有的基础理论,这个演变的过程充满了人类智慧的结晶,充满了科学思想甚至哲学概念上的进化,因此若能将电路理论的起源、演变过程及发展趋势充实于教学内容中,从宏观上让学习者对电路理论有一个较全面的认识,则不仅对学习者学

PSS在电力系统稳定性中的应用仿真开题报告

一、选题的目的及研究意义 电力系统的发展,互联电力网络变得越来越大。如此的发展趋势在给电力系统以巨大的技术和经济效益的同时,也使得稳定性破坏事故所波及的范围更加广泛,电力市场的日益开放会使运行方式更加灵活多变,对稳定性的实时性判断要求更高。与此同时,由于受到环境和经济等因素的制约,区域间联网和远距离大容量输电系统的不断出现,系统运行更加接近极限状态,这使得电力系统稳定性问题日趋严重,电力系统一旦失去稳定,往往造成大范围、较长时间停电,在最严重的情况下,则可能使电力系统崩溃和瓦解,因此,准确、快速地分析电力系统在扰动下的稳定性行为,必要时采取适当的控制措施,以保证系统稳定性的要求,是电力系统设计及运行人员最重要也是最复杂的任务之一。 从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题依据电网用电供电系统电路模型要求。因此,利用MATLAB的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型,能够满足电网在其可能遇到的多种故障方面运行的需要。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 实际上, 如何保证和提高电力系统的稳定性是从多个方面进行考虑的。在系统规划阶段应合理选择发电厂厂址, 采用合理的输电方案以及配置相应的保护和自动装置等。在运行管理方面, 控制中心对运行方式的良好安排也有助于保证电力系统的安全稳定运行。当系统遭受扰动后,施加控制是改善和提高电力系统稳定性最经济有效的方法之一, 而严重故障后的紧急控制措施可将由于安全性破坏而对系统造成的影响减小到最低程度。 目前暂态稳定分析的基本方法可分为两类:数值解法和直接法。 数值解法(时域仿真法)是暂态稳定分析基本方法,它以稳态工况或潮流解为初值,对上述方程组联立求解或交替求解,逐步求得状态量和代数量,并根据发电机的转子摇摆曲线来判定系统在扰动下能否保持同步。 目前时域仿真法主要采用的数值计算方法包括显式积分法和隐式积分法。前者包括欧拉法、龙格-库塔法和线形多步法等。后者包括改进的欧拉法和隐式积分法。欧拉法的精度低,数值稳定性较差,一般适用于简单模型和较短的暂态持续时间。龙格-库塔法拟合了泰勒级数的高阶项,具有比较高的精度,数值稳定性好。它的缺点是计算量大,计算速度慢。线形多步法精度高,运算量比龙格一库塔法小,但计算结果受初始值的影响较大,需要选择适当的起步算法来保证其精度。改进的欧拉法用隐式积分校正欧拉法的结果,精度比欧拉法有所提高。隐式梯形积分法在联立求解微分一代数方程时可以消除交接误差,具有较好的数值稳定性,可以采用较大的步长。虽然时域仿真法可以考虑电机的详细模型,而且能够得到足够准确的结果,但是随着网络规模的扩大,时域仿真法的计算量将很大,计算速度不能满足在线监测和控制的要求,并且其不能定量给出系统的稳定裕度。所以对电力系统暂态稳定研究致力于寻找一种快速、准确、实用的暂态分析算法。我国电力科学界对稳定分析的直接法与快速算法的研究大致始于80年代,其中最早发表的一篇是夏道止与Heydt等人关于分解-聚合法在线稳定的研究。随后有电力部电力科学研究院傅书逷等人关于PEBS法的研究:清华大学倪以信与美国Fouad等人对UEP法的直流输电模型与励磁系统模型的研究:1988年我国学者南京电力自动化研究院薛禹胜与比利时Pavella教授等人提出了扩展等面积法(EEAC法),将多机系统变成等值两机系统,利用等面积准则和泰勒展开式导出临界切除时间和稳定裕度的解析式,根据这一解析在注入空间定义稳态稳定域,推算联络潮流的稳定极限。近年来该法经不断完善,已扩展到动态EEAC法,使得计算精度大大提高。到了90年代,直接法与快速算法的研究尤为活跃,如哈尔滨工业大学郭志忠,柳焯等人用高阶Taylor 级数研究快速暂稳计算问题,上海交通大学刘笙等人关于PEBS法复杂模型的研究,东北电力

射频与微波论文-射频与微波应用与发展综述

射频与微波技术应用与发展综述 班级: 姓名: 学号: 序号: 日期:

摘要: 微波技术是近一个世纪以来最重要的科学技术之一,从雷达到广播电视、无线电通信,再 到微波炉,微波技术对社会发展和人们生活的进步产生着深远的影响。本文介绍了微波技 术的发展以及在各个领域中的应用,并对微波技术未来的发展方向进行了讨论。Abstract: Microwave technology is one of the most important technology in the nearly century, from radar to broadcast TV, radio communication, microwave oven, microwave technology had a profound impact on society development and progress of people's lives .The paper introduced the development of microwave technology and it’s applications in various fields. It also discussed the future direction of microwave technology. 关键词:微波技术,微波电效应,污水处理 Keywords: Microwave technology, microwave electric effect, sewage treatment 微波是指波长在1mm~1000mm、频率在300MHz~300GHz范围之间的电磁波,因为 它的波长与长波、中波与短波相比来说,要“微小”得多,所以它也就得名为“微波”了。微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断地得到发展和应用。 19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其 进行了研究。但赫兹本人并没有想到将这种电磁波用于通信,他的实验仅证实了麦克斯韦 的一个预言──电磁波的存在。20世纪初期对微波技术的研究又有了一定的进展,1936年4 月美国科学家SouthWorth用直径为12.5cm青铜管将9cm的电磁波传输了260m远,波导 传输实验的成功激励了当时的研究者,因为它证实了麦克斯韦的另一个预言──电磁波可以 在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,又提供了一个有效

射频微波电路作业1-7(答案版)(DOC)

第一章射频/微波工程介绍 1.简述常用无线电的频段划分和射频的定义。 射频/微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和大1000倍以上 2.简述P,L,S,C,X,Ku,K,Ka波段的频段划分方法。 3.简述射频/微波的四种基本特性和相比普通无线电的优点。 四个基本特性: 1、似光性; 2、穿透性 3、非电离性 4、信息性 优点: (1) 频带宽。可传输的信息量大。 (2) 分辨率高。连续波多普勒雷达的频偏大,成像更清晰,反应更灵敏。 (3) 尺寸小。电路元件和天线体积小。 (4) 干扰小。不同设备相互干扰小。 (5) 速度快。数字系统的数据传输和信号处理速度快。 (6) 频谱宽。频谱不拥挤,不易拥堵,军用设备更可靠。 4.简述射频铁三角的具体内涵。 由于频率、阻抗和功率是贯穿射频/微波工程的三大核心指标,故将其称为射频铁三角。 5.给出几种分贝的定义:dB, dBm,dBc,dBc/Hz,10 dBm+10 dB=? 第二章传输线理论 1.解释何为“集肤效应”?集总参数元件的射频特性与低频相比有何特点? 在交流状态下,由于交流电流会产生磁场,根据法拉第电磁感应定律,此磁场又会产生电场,与此电场联系的感生电流密度的方向将会与原始电流相反。这种效应在导线的中心部位(即r=0位置)最强,造成了在r=0附近的电阻显著增加,因而电流将趋向于在导线外表面附近流动,这种现象将随着频率的升高而加剧,这就是通常所说的“集肤效应”。 电阻:在低频率下阻抗即等于电阻R,而随着频率的升高达到10MHz以上,电容Ca的影响开始占优,导致总阻抗降低;当频率达到20GHz左右时,出现了并联谐振点;越过谐振点后,引线电感的影响开始表现出来,阻抗又加大并逐渐表现为开路或有限阻抗值。 电容:理想状态下,极板间介质中没有电流。在射频/微波频率下,实际的介质并非理想介质,故在介质内部存在传导电流,也就存在传导电流引起的损耗,更重要的是介质中的带电粒子具有一定的质量和惯性,在电磁场的作用下,很难随之同步振荡,在时间上有滞后现象,也会引起对能量的损。 电感:电感线圈的高频特性已经完全不同于理想电感,在谐振点之前其阻抗升高很快,而在谐振点之后,由于寄生电容C s的影响已经逐步处于优势地位而逐渐减小。 2.简述微波电路中Q值的概念。 品质因素Q表示一个元件的储能和耗能之间的关系,即 3.简述传输线有哪几种工作状及其对应的负载反射系数。 当Z L=Z0或为无限长传输线时,ΓL=0,无反射波,是行波状态或匹配状态。 当Z L为纯电抗元件或处于开路或者短路状态时,|ΓL|=1,全反射, 为驻波状态。 当Z L为其他值时,|ΓL|≤1, 为行驻波状态。 4.给出电压驻波比、回波损耗与负载反射系数的关系。 线上任意点的反射系数为

是德科技 N9311X-射频和微波附件介绍

是德科技 N9311X 用于低成本手持式和 台式解决方案的射频和 微波附件套件 产品快报

N9311X 射频和微波附件套件是是德科技经济型手持式和台式解决方案的补充产品(N934xC/N9340B/N9330B/N9310A/N9320B/N9000A)。 当您使用是德科技手持式和经济型台式解决方案进行测量时,这些附件可为您提供完整的解决方案。 天线 天线频率范围天线增益重量尺寸其他信息 N9311x-50070 至1000 MHz无65 克113.5 厘米(全长), 19.5 厘米(伸缩), 10 节 180 °可调伸缩式拉杆天线, 附带N 型 (阳头) 至BNC 型(阴头) 适配器, 50 ΩN9311x-501700 至2500 MHz无70 克210x20毫米全向天线, 附带N型(阳头)至SMA型 (阴头)适配器, 50?Ω N9311x-504*700 MHz - 4 GHz 4 dBi270 克340x200x25毫米对数周期天线, 50?Ω N9311x-508*680 MHz - 8 GHz 5 dBi250 克340x200x25毫米对数周期天线, 50?Ω N9311x-518*680 MHz - 18 GHz 5 dBi250 克340x200x25毫米对数周期天线, 50?Ω * N9311x-504/508/518 运输包装包括: 天线、铝制手提箱、可分离手枪式握柄与"微型三脚架" 模式、N 型至SMA 型工具箱。 N9311X-500N9311X-501N9311X-504 带通滤波器 带通滤波器 3 dB 通带抑制插入损耗VSWR阻抗N9311X-550814 至850 MHz≥? 36 dBc, 740 MHz 时 ≥36 dBc, 915 MHz 时 ≤0.5 dB≤1.550 ΩN9311X-551880 至915 MHz≥ 35 dBc, 862 MHz 时 ≥35 dBc, 932 MHz 时 ≤1 dB≤1.550 ΩN9311X-5521707.5 至1787.5 MHz≥ 35 dBc, 1550 MHz 时 ≥35 dBc, 1925 MHz 时 ≤0.4 dB≤1.550 ΩN9311X-5531845 至1915 MHz≥ 35 dBc, 1770 MHz 时 ≥35 dBc, 1986 MHz 时 ≤0.6 dB≤1.550 ΩN9311X-5541910 至1990 MHz≥ 35 dBc, 1825 MHz 时 ≥35 dBc, 2070 MHz 时 ≤0.6 dB≤1.550 Ω N9311X-551

RF电路及设计的基础知识

微波电路及设计的基础知识 1. 微波电路的基本常识 2. 微波网络及网络参数 3. Smith圆图 4. 简单的匹配电路设计 5. 微波电路的计算机辅助设计技术及常用的CAD软件 6. 常用的微波部件及其主要技术指标 7. 微波信道分系统的设计、计算和指标分配 8. 测试及测试仪器

微波电路及其设计 1.概述 所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。此外,还有毫米波(30~300GHz)及亚毫米波(150GHz~3000GHz)等。 实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频(RF)电路”等等。 由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。 作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。 另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。 2.微波电路的基本常识 2.1 电路分类 2.1.1 按照传输线分类 微波电路可以按照传输线的性质分类,如:

图1 微带线 图2 带状线 图3 同轴线

图4 波导 图5 共面波导 2.1.2 按照工艺分类 微波混合集成电路:采用分离元件及分布参数电路混合集成。 微波集成电路(MIC):采用管芯及陶瓷基片。 微波单片集成电路(MMIC):采用半导体工艺的微波集成电路。 图6微波混合集成电路示例

射频器件及应用介绍

射频器件及应用
理察森电子 2008.11.27
Slide 1
Freescale? and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. ? Freescale Semiconductor, Inc. 2004

射频器件及应用
内容提要
1、直放站系统组成; 2、射频器件分类及著名品牌介绍; 3、Freescale 大功率射频器件LDMOS封装、命名及特 性介绍; 4、器件规格书的阅读理解; 5、应用LDMOS管的功率放大器设计概述; 6、LDMOS功放管使用、安装及调试注意事项; 7、讨论与提问。
Slide 2
Freescale? and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. ? Freescale Semiconductor, Inc. 2004

一、直放站系统信号流图
Slide 3
Freescale? and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. ? Freescale Semiconductor, Inc. 2004

国内电力系统自动化综述-大连理工大学远程与继续教育学院

网络教育学院本科生毕业论文(设计) 题目:国内电力系统自动化综述 学习中心: 层次:专科起点本科 专业: 年级:年春/秋季 学号: 学生: 指导教师: 完成日期:年月日

内容摘要 电力系统具有分布范围广、实时性强、自动化程度高等特点,电力系统自动化是一门科技含量高、涉及专业范围广、技术性较强,对制造、安装、运行和管理工作要求标准非常高的专业。电力系统自动化主要包括电网调度自动化和电厂自动化(包括火电厂自动化、水电厂自动化、变电站综合自动化等)两大部分。 本文主要针对我国电力系统中的电网调度、火电厂、水电厂和变电站综合等四个部分在自动化发展过程、发展现状、问题与措施、新技术新工艺以及发展趋势等方面进行了综合评述。 关键词:电网调度;火电厂;水电厂;变电站

目录 内容摘要............................................................................................................................I 引言.. (1) 1电网调度自动化 (2) 1.1发展过程 (2) 1.2发展现状 (2) 1.3发展趋势 (3) 2火电厂自动化 (4) 2.1发展过程 (4) 2.2新技术新工艺的应用 (4) 2.2.1自动检测技术 (4) 2.2.2自动控制技术 (5) 2.3发展趋势 (6) 3水电厂自动化 (7) 3.1发展过程 (7) 3.2自动化系统 (7) 3.2.1 (7) 3.2.2 (7) 3.3发展趋势 (7) 4变电站综合自动化 (8) 4.1发展过程 (8) 4.2存在的问题与改进措施 (8) 4.3发展趋势 (8) 结论 (9) 参考文献 (11)

相关文档
最新文档