竞赛讲座:平面几何四个重要定理

竞赛讲座:平面几何四个重要定理
竞赛讲座:平面几何四个重要定理

平面几何四个重要定理

四个重要定理:

梅涅劳斯(Menelaus)定理(梅氏线)

△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共 线的充要条件是 1RB

AR

QA CQ PC BP =??。

塞瓦(Ceva)定理(塞瓦点)

△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是

1RB

AR QA CQ PC BP =??。

托勒密(Ptolemy)定理

四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。

西姆松(Simson)定理(西姆松线)

上。 例题: 1.

设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。

求证:

FB

AF

2ED AE =

。 【分析】CEF 截△ABD →

1FA

BF

CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。

2. 过△ABC 的重心

G 的直线分别交AB 、AC 于E 、F ,交CB 于D 。

求证:

1FA

CF

EA BE =+。 【分析】连结并延长AG 交BC 于M ,则M 为BC 的中点。

DEG 截△ABM →

1DB MD

GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC

MD

GM AG FA CF =??(梅氏定理)

∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD

GM 2MD 2GM ??=1 【评注】梅氏定理 3.

D 、

E 、

F 分别在△ABC 的BC 、CA 、AB 边上,

λ===EA

CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN :S △ABC 。 【分析】

【评注】梅氏定理 4.

以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。求证:AE 、BF 、CG 相交于一点。

【分析】

【评注】塞瓦定理

5. 已知△ABC 中,∠B=2∠C 。求证:AC 2=AB 2+AB ·BC 。

【分析】过A 作BC 的平行线交△ABC 的外接圆于D ,连结BD 。则CD=DA=AB ,AC=BD 。

由托勒密定理,AC ·BD=AD ·BC+CD ·AB 。 【评注】托勒密定理

B

A

5

6. 已知正七边形A 1A 2A 3A 4A 5A 6A 7。

求证:

4

13121A A 1

A A 1A A 1+

=。(第21届全苏数学竞赛)

【分析】

【评注】托勒密定理

7. △ABC 的BC 边上的高AD 的延长线交外接圆于P ,作PE ⊥AB 于E ,延长ED

AC 延长线于F 。

求证:BC ·EF=BF ·CE+BE ·CF 。

【分析】

【评注】西姆松定理(西姆松线)

8. 正六边形ABCDEF 的对角线AC 、CE 分别被内分点M 、N 分成的比为AM :AC=CN :CE=k ,且B 、M 、N 共线。

求k 。(23-IMO-5) 【分析】

【评注】面积法

9. O 为△ABC 内一点,分别以d a 、d b 、d c 表示O 到BC 、CA 、AB 的距离,

以R a 、R b 、R c 表示O 到A 、B 、C 的距离。

求证:(1)a·R a ≥b·d b +c·d c ;

(2)

a·R a ≥

c·d b +b·d c ;

≥2(d a +d b +d c )。

(3) R a +R b +R c

【分析】

【评注】面积法

10. △ABC 中,H 、G 、O 分别为垂心、重心、外心。 求证:H 、G 、O 三点共线,且HG=2GO 。(欧拉线) 【分析】

【评注】同一法

11. △ABC 中,AB=AC ,AD ⊥BC 于D ,BM 、BN 三等分∠ABC ,与AD 相交于

M 、N ,延长CM 交AB 于E 。

求证:MB//NE 。 【分析】

【评注】对称变换

12. G 是△ABC 的重心,以AG 为弦作圆切BG 于G ,延长CG 交圆于D 。 13. 求证:AG 2=GC ·GD 。 【分析】

【评注】平移变换

14. C 是直径AB=2的⊙O 上一点,P 在△ABC 内,若PA+PB+PC 的最小值是

7,求

此时△ABC 的面积S 。 【分析】

【评注】旋转变换

费马点:已知O 是△ABC 内一点,∠AOB=∠BOC=∠COA=120°;P 是△ABC 内任一点,求证:PA+PB+PC ≥OA+OB+OC

【分析】将C

???→?-)60,B (R 0

C',O ???→?-)60,B (R 0

O', P ???→?-)

60,B (R 0

P',连结OO'、PP'。则△B OO'、△

B PP'都是正三角形。

∴OO'=OB ,PP' =PB 。显然△BO'C'≌△BOC ,△BP'C'≌△BPC 。 由于∠BO'C'=∠BOC=120°=180°-∠BO'O ,∴A 、O 、O'、C'四点共线。 ∴AP+PP'+P'C'≥AC'=AO+OO'+O'C',即PA+PB+PC ≥OA+OB+OC 。

14.(95全国竞赛) 菱形ABCD 的内切圆O 与各边分别交于E 、F 、G 、H ,在弧EF 和弧GH 上分别作⊙O 的切线交AB 、BC 、CD 、DA 分别于M 、N 、P 、Q 。

求证:MQ//NP 。

【分析】由AB ∥CD 知:要证MQ ∥NP ,只需证∠AMQ=∠CPN ,

结合∠A=∠C 知,只需证 △AMQ ∽△CPN ←

CN

CP

AQ AM =,AM ·CN=AQ ·CP 。

连结AC 、BD ,其交点为内切圆心O 。设MN 与⊙O 切于K ,连结OE 、OM 、OK 、ON 、OF 。记∠ABO=φ,∠MOK=α,∠KON=β,则

∠EOM=α,∠FON=β,∠EOF=2α+2β=180°-2φ。 ∴∠BON=90°-∠NOF-∠COF=90°-β-φ=α

∴∠CNO=∠NBO+∠NOB=φ+α=∠AOE+∠MOE=∠AOM 又∠OCN=∠MAO ,∴△OCN ∽△MAO ,于是CN

AO

CO AM =

, ∴AM ·CN=AO ·CO 同理,AQ ·CP=AO ·CO 。 【评注】

15.(96全国竞赛)⊙O 1和⊙O 2与ΔABC 的三边所在直线都相切,E 、F 、G 、H 为切点,EG 、FH 的延长线交于P 。求证:PA ⊥BC 。 【分析】 【评注】

16.(99全国竞赛)如图,在四边形ABCD 中,对角线AC 平分∠BAD 。在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G 。求证:∠GAC=∠EAC 。

证明:连结BD 交AC 于H 。对△BCD 用塞瓦定理,可得

1EC

DE

HD BH GB CG =?? 因为AH 是∠BAD 的角平分线,由角平分线定理, 可得

AD AB HD BH =,故1EC

DE

AD AB GB CG =??。

过C 作AB 的平行线交AG 的延长线于I ,过C 作AD 的平行线交AE 的延长线于J 。

CJ AD

EC DE ,AB CI GB CG =

=, 所以1CJ

AD AD AB AB CI =??,从而CI=CJ 。

又因为CI//AB ,CJ//AD ,故∠ACI=π-∠BAC=π-∠DAC=∠ACJ 。 因此,△ACI ≌△ACJ ,从而∠IAC=∠JAC ,即∠GAC=∠EAC 。

已知AB=AD ,BC=DC ,AC 与BD 交于O ,过O 的任意两条直线EF 和GH 与四边形ABCD 的四边交于E 、F 、G 、H 。连结GF 、EH ,分别交BD 于M 、N 。求证:OM=ON 。(5届CMO )

证明:作△EOH

??→?)

AC (S △E'OH',则只需证E'、M 、H'共线,即E'H'、BO 、GF 三线共点。

记∠BOG=α,∠GOE'=β。连结E'F 交BO 于K 。只需证

'

KE FK

F 'H 'BH GB

G 'E ?

?=1(Ceva 逆定理)。 '

KE FK

F 'H 'BH GB

G 'E ??=

'

OKE OFK

F 'OH 'OBH OGB

G 'OE S S S S S S ???????

?=

'

OE OF

sin OF sin OB sin OB sin 'OE ?βα?αβ=1

注:筝形:一条对角线垂直平分另一条对角线的四边形。

对应于99联赛2:∠E'OB=∠FOB ,且E'H'、GF 、BO 三线共点。求证:∠GOB=∠H'OB 。 事实上,上述条件是充要条件,且M 在OB 延长线上时结论仍然成立。 证明方法为:同一法。

蝴蝶定理:P 是⊙O 的弦AB 的中点,过P 点引⊙O 的两弦CD 、EF ,连结DE 交AB 于M ,连结CF 交AB 于N 。求证:MP=NP 。

【分析】设GH 为过P

的直径,

B

F

??→?)GH (S F'F ,显然'∈⊙O 。又P ∈GH ,∴PF'=PF 。∵PF ??→?)GH (S PF',PA ??→?)GH (S PB ,∴∠FPN=∠F'PM ,

PF=PF'。

又FF'⊥GH ,AN ⊥GH ,∴FF'∥AB 。∴∠F'PM+∠MDF'=∠FPN+∠EDF' =∠EFF'+∠EDF'=180°,∴P 、M 、D 、F'四点共圆。∴∠PF'M=∠PDE=∠PFN 。

∴△PFN ≌△PF'M ,PN=PM 。

【评注】一般结论为:已知半径为R 的⊙O 内一弦AB 上的一点P ,过P 作两条相交弦CD 、EF ,连CF 、ED 交AB

于M 、N ,已知OP=r ,P 到AB 中点的距离为a ,则

2

2

r R a

2PN 1PM 1-=-。

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

平面几何基本定理

. 一.平面几何 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边 的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则 有)(22222BP AP AC AB +=+; 中线长:2 222 22a c b m a -+= 4. 垂线定理:2 2 2 2 BD BC AD AC CD AB -=-?⊥ 高 线 长 : C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---= 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线 段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定 理) 角平分线长:2 cos 2)(2A c b bc a p bcp c b t a +=-+= (其中 p 为周长一半) 6. 正弦定理: R C c B b A a 2sin sin sin ===, (其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a c cos 2222 -+= 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2 ·DC +AC 2 ·BD -AD 2 ·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一 半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定 理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙ O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作 一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2 -r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两 组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过 点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近 两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距 离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点 18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、 △BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF = CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向 外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙ A 1 、⊙ B 1的圆心构成的△——外拿破仑的三角形,⊙ C 1 、 ⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心 19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形 中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点 (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕 20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心 依次位于同一直线(欧拉线)上. 21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半 径为r ,外心与内心的距离为d ,则d 2 =R 2 -2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各 边距离的和. 23. 重心:三角形的三条中线交于一点,并且各中线被这个点分 成2:1的两部分;)3 ,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

(完整word版)高中数学竞赛平面几何讲座第5讲三角形的五心

第五讲三角形的五心 三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心、外心. 三角形外接圆的圆心,简称外心. 与外心关系密切的有圆心角定理和圆周角定理. 例1.过等腰△ ABC底边BC上一点P引PM∥CA交AB 于M;引PN∥BA交AC于N.作点P关于MN 的对称点P′.试证:P′点在△ ABC外接圆上. (杭州大学《中学数学竞赛习题》)分析:由已知可得MP′=MP=MB,NP′ =NP =NC,故点M 是△ P′BP 的外心,点 N 是△ P′PC的外心. 有11 ∠BP′P= 1 2∠ BMP= 1∠BAC, 22 11 ∠ PP′C= ∠ PNC= ∠BAC. 22 ∴∠BP′C=∠BP′P+∠P′PC=∠BAC. 从而,P′点与 A,B,C共圆、即P′在△ ABC外接圆上. 由于P′P平分∠ BP′C,显然还有P′B:P′C=BP:PC. 例2.在△ABC的边AB,BC,CA上分别取点P,Q,S.证明以△ APS,△BQP,△CSQ的外心为顶点的三角形与△ ABC 相似. ( B ·波拉索洛夫《中学数学奥林匹克》) 分析:设O1,O2,O3 是△APS,△BQP, △CSQ的外心,作出六边形 O1PO2QO3S后再由外心性质可知 ∠PO1S=2∠A, ∠QO2P=2∠B, QC ∠SO3Q=2∠C. ∴∠PO1S+∠QO2P+∠SO3Q=360°.从而又知∠ O1PO2+ ∠O2QO3+∠O3SO1=360° 将△ O2QO3绕着O3点旋转到△ KSO3,易判断△ KSO1≌△ O2PO1,同时可得△O1O2O3≌△ O1KO3. 1 ∴∠ O2O1O3=∠KO1O3= ∠O2O1K 2 1( ∠ O2O1S+∠ SO1K) 2 1 = ( ∠ O2O1S+∠ PO1O2) 1 = 1∠ PO1S=∠ A; 2 同理有∠ O1O2O3=∠B.故△O1O2O3∽△ ABC.

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

高中数学竞赛讲座:圆

圆 基础知识 如果没有圆,平面几何将黯然失色. 圆是一种特殊的几何图形,应当掌握圆的基本性质,垂线定理,直线与圆的位置关系,和圆有关的角,切线长定理,圆幂定理,圆和圆的位置关系,多边形与圆的位置关系. 圆的几何问题不是独立的,它与直线形结合起来,将构成许多丰富多彩的、漂亮的几何问题,“三角形的心”,“几何著名的几何定理”,“共圆、共线、共点”,“直线形” 将构成圆的综合问题的基础. 本部分着重研究下面几个问题: 1.角的相等及其和、差、倍、分; 2.线段的相等及其和、差、倍、分; 3.二直线的平行、垂直; 4.线段的比例式或等积式; 5.直线与圆相切; 6.竞赛数学中几何命题的等价性. 命题分析 例1.已知A 为平面上两个半径不等的⊙1O 和⊙2O 的一个交点,两圆的外公切线分别为2121,Q Q P P ,1M 、2M 分别为11Q P 、22Q P 的中点,求证:2121AM M AO O ∠=∠. 例2.证明:唯一存在三边长为连续整数且有一个角为另一个角的两倍的三角形. 例3.延长AB 至D ,以AD 为直径作半圆,圆心为H ,G 是半圆上一点,ABG ∠为锐角.E 在线段BH 上,Z 在半圆上,EZ ∥BG ,且2EZ ED EH =?,BT ∥HZ .求证:ABG TBG ∠=∠3 1. 例4.求证:若一个圆外切四边形有两条对边相等,则圆心到另外两边的距离相等. 例5.设A ∠是△ABC 中最小的内角,点B 和C 将这个三角形的外接圆分成两段弧,U 是落在不含A 的那段弧上且不等于B 与C 的一个点,线段AB 和AC 的垂直平分线分别交线段AU 于V 和W ,直线BV 和CW 相交于T .证明:TC TB AU +=. 例6.菱形ABCD 的内切圆O 与各边分别切于H G F E ,,,,在⌒EF 与⌒GH 上分别作⊙O 切线交AB 于M ,交BC 于N ,交CD 于P ,交DA 于Q ,求证:MQ ∥NP . 例7.⊙1O 和⊙2O 与△ABC 的三边所在直线都相切,H G F E ,,,为切点,并且FH EG ,的延长线交于点P .求证:直线PA 与BC 垂直. 例8.在圆中,两条弦CD AB ,相交于E 点,M 为弦AB 上严格在E 、B 之间的点.过M E D ,,的圆在E 点的切线分别交直线BC 、AC 于G F ,.已知t AB AM =,求EF CE (用t 表示). 例9.设点D 和E 是△ABC 的边BC 上的两点,使得CAE BAD ∠=∠.又设M 和N

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

初中平面几何四个重要定理

初中数学知识重点整理 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、 R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的 充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求证: 。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的中 点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、BF、 CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的比 为AM:AC=CN:CE=k,且B、M、N共线。 求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、R b、R c表示O到A、B、C的距离。

平面几何四大定理

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

高中数学竞赛平面几何讲座第三讲 点共线、线共点.

第三讲点共线、线共点 在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。 1. 点共线的证明 点共线的通常证明方法是:通过邻补角关系证明三点共线; 证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n (n ≥ 4 点共线可转化为三点共线。 例 1 如图, 设线段 AB 的中点为 C , 以 AC 和 CB 为对角线作平行四边形AECD , BFCG 。又作平行四边形 CFHD , CGKE 。求证:H , C , K 三点共线。证连 AK , DG , HB 。 由题意, AD EC KG , 知四边形 AKGD 是平行四边形, 于是 AK DG 。同样可证 AK HB 。四边形 AHBK 是平行四边形,其对角线 AB , KH 互相平分。而 C 是AB 中点,线 段 KH 过 C 点,故 K , C , H 三点共线。 例 2 如图所示,菱形 ABCD 中,∠ A =120 为△ ABC 外接圆, M 为其上 一点,连接 MC 交 AB 于 E , AM 交 CB 延长线于 F 。求证:D , E , F 三点共线。

证如图,连 AC , DF , DE 。 因为 M 在 上, 则∠ AMC =60°=∠ ABC =∠ ACB 有△ AMC ∽△ ACF ,得 CD CF CA CF MA MC ==。又因为∠ AMC =BAC ,所以△ AMC ∽△ EAC ,得 AE AD AE AC MA MC ==。所以 AE AD CD CF =,又∠ BAD =∠ BCD =120°,知△ CFD ∽△ ADE 。所以∠ ADE =∠DFB 。因为 AD ∥ BC ,所以∠ ADF =∠ DFB =∠ ADE ,于是 F , E , D 三点共线。 A

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

高中数学竞赛专题讲座---平面几何选讲

立身以立学为先,立学以读书为本 平面几何选讲 反演变换 基础知识 一. 定义 1. 设O 是平面π上的一个定点,k 是一个非零常数.如果平面π的一个变换,使得对于平面π上任意异 于O 的点A 与其对应点'A 之间,恒有(1)' ,,A O A 三点共线;(2)'OA OA k ?=,则这个变换称为平面π 的一个反演变换,记做(,)I O k .其中,定点O 称为反演中心,常数k 称为反演幂,点'A 称为点A 的反点. 2. 在反演变换(,)I O k 下,如果平面π的图形F 变为图形'F ,则称图形'F 是图形F 关于反演变换(,)I O k 的反形.反演变换的不动点称为自反点,而反演变换的不变图形则称为自反图形. 3. 设两条曲线u v 、相交于点A ,l 、m 分别是曲线u v 、在点A 处的切线(如果存在),则l 与m 的交角称为曲线u v 、在点A 处的交角;如果两切线重合,则曲线u v 、在点A 处的交角为0.特别地,如果两圆交于点,那么过点作两圆的切线,则切线的交角称为两圆的交角.当两圆的交角为90时,称为两圆正交;如果直线与圆相交,那么过交点作圆的切线,则切线与直线的交角就是直线与圆的交角.当这个交角为90时,称为直线与圆正交. 二. 定理 定理1. 在反演变换下,不共线的两对互反点是共圆的四点. 定理2. 在反演变换(,)I O k 下,设A B 、两点(均不同于反演中心O )的反点分别为' ' A B 、,则有''B A = ''k A B AB OA OB = ?. 定理3. 在反演变换下,过反演中心的直线不变. 定理 4. 在反演变换下,不过反演中心的直线的反形是过反演中心的圆;过反演中心的圆的反形是不过反演中心的直线. 定理5. 在反演变换下,不过反演中心的圆的反形仍是不过反演中心的圆. 定理6. 在反演变换下,两条曲线在交点处的交角大小保持不变,但方向相反. 定理7. 如果两圆或一圆一直线相切于反演中心,则其反形是两条平行直线;如果两圆或一圆一直线相切于非反演中心,则其反形(两圆或一圆一直线)相切. 定理8. 如果两直线平行,则其反形(两圆或一圆一直线)相切于反演中心. 典型例题 一. 证明点共线 例1. ABC 的内切圆与边BC 、CA 、AB 分别相切于点D 、E 、F , 设L 、M 、N 分别是EF 、FD 、DE 的中点.求证:ABC 的外心、 内心与LMN 的外心三点共线. 证明:如图,设ABC 的内心为I ,内切圆半径为r .以内心I 为反演中心,内切圆为反演圆作反演变换2 (,)I I r ,则A 、B 、C 的 反点分别为L 、M 、N ,因而ABC 的反形是LMN 的外接圆.故ABC 的外心、内心和LMN 的外心三点共线. 二. 证明线共点 例2. 四边形ABCD 内接于O ,对角线AC 与BD 相交于P ,设ABP 、BCP 、CDP 、DAP 的 I N M L F E D C B A

平面几何的几个重要定理--托勒密定理

托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组 对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之 和). 即:ABCD AB CD AD BC AC BD ?+?≥? 定理:在四边形中,有: ABCD 并且当且仅当四边形内接于圆时,等式成立; () ABCD E BAE CAD ABE ACD AB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC AD BC ED AD BC AC ED AC AD AB CD AD BC AC BE ED AB CD AD BC AC BD E BD A B C ∠=∠∠=∠ ??∴=??=? =∠=∠∴?? ∴=??=? ∴?+?=?+ ∴?+?≥? 证:在四边形内取点,使, 则:和相似 又且和相似 且等号当且仅当在上时成立,即当且仅当、、、 一、直接应用托勒密定理 例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合), 求证:PA=PB+PC. 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为 繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB, ∵AB=BC=AC.∴PA=PB+PC. 二、完善图形借助托勒密定理 例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2 证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是 圆内接四边形. 由托勒密定理,有AC·BD=AB·CD+AD·BC.① 又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.② 把②代人①,得AC2=AB2+BC2. 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD, 求证:AD·BC=BD(AB+AC). 证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴BD=CD. 故AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b,BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理,有AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b +c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进 而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC 的外接圆,以A为圆心,BC为半径作弧交圆于 D,连结BD、DC、DA.∵AD=BC,ACD BDC =∴∠ABD=∠BAC. 又∵∠BDA=∠ACB(对同弧),∴∠1=∠2. 依托勒密定理,有BC·AD=AB·CD+BD·AC.① 而已知a2=b(b+c),即a·a=b·c+b2.② ∴∠BAC=2∠ABC. 五、巧变形妙引线 借肋托勒密定理 例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4, 分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起 来,可联想到托勒密定理,进而构造圆内接四边形. 如图,作△ABC的外接圆,作弦BD=BC,边结AD、CD. 在圆内接四边形ADBC中,由托勒密定理, 有AC·BD+BC·AD=AB·CD 易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC, 1.已知△ ABC 中,∠ B=2∠ C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。 则CD=DA=AB,AC=BD。由托勒密定理,AC·BD=AD·BC+CD·AB。 2.ABC BC P BC AC AB PK PL PN BC AC AB PK PL PM ? =+ 由外接圆的弧上一点分别向边、与作垂线、和, 求证:

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

高中的数学竞赛平面几何基本定理

(高中)平面几何基础知识(基本定理、基本性质) 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边 和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:2 22222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+= (其中p 为周长一半). 6. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC = BC ·DC ·BD . 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角. 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其 延长线必平分对边. 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题 成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD . 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角 形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三

相关文档
最新文档